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Abstract: The power spectrum estimation plays a significant role in the marine monitoring and the quality of
spectrum will seriously affect the results of marine monitoring. There have been various algorithms on power
spectrum estimation, one of which is Burg algorithm. Though this method can effectively improve the resolution
of spectral estimation, it will cause the shifting of peak frequency and the splitting of spectral lines accompanying
spurious frequency components. In this paper, a novel method for minimizing the prediction error energies is
presented, which is based on the optimum tapered Burg algorithm. The proposed method is implemented in two
aspects. Firstly, the first order reflection coefficient is calculated by minimizing the averaged optimum tapered
forward and backward prediction error energies of the third order filter. Then, the residual factor is introduced
to estimate the model order. In the end of the paper, the experimental results demonstrate that in contrast to
Burg algorithm and optimum tapered Burg algorithm, the proposed algorithm can not only effectively improve the
spectrum resolution, lower the degree of peak frequency shifting and spectrum lines splitting, but also be able to
alleviate the generation of spurious peak frequencies and the phenomenon of spectral leakage.

Key–Words: Burg algorithm, Spectrum estimation, Prediction error energy, Levinson-Durbin recursion.

1 Introduction
The power spectral analysis plays a significant role in
the signal processing, and is the research focus of in-
formation science as well. In last decades, the power
spectrum estimation has become popular in many ap-
plication areas such as signal prediction, analysis of
radar clutter, seismic signal processing, wave signal
processing and marine monitoring. The fundamental
theory of spectrum estimation is Fourier transforma-
tion, which is the main tool in signal processing and
also the basis of other researching fields [1]. Gener-
ally speaking, there are two types of power spectral
estimation: classical spectrum estimation and modern
spectrum estimation. This paper mainly concentrates
the attention on some algorithms of modern spectrum
estimation.

The classical power spectrum estimation assumes
the unknown data outside the observation areas to be
zero, which is equivalent to impose a window function
on the observed data, leading to lower resolution. The

two most representative methods of classical spectrum
estimation are autocorrelation function algorithm pro-
posed by Schuster and periodogram algorithm pro-
posed by Blackman and Tukey. However, both the
two methods qualify the common limitations such as
large variance, low resolution and relatively large er-
rors caused by the calculation of correlation function
[2]. Therefore, the modern power spectrum estima-
tion is put forward and more widely spread in prac-
tical applications. Unlike the classical spectrum es-
timation, the modern power spectrum estimation first
establishes a model which can describe the practical
process according to priori knowledge of the process.
Then, it estimates the model parameters using the ob-
served data or correlation function, and it identifies the
model finally. The advantage of modern power spec-
trum estimation lies in the maximum uncertainty for
the unknown information of a process. As to the pa-
rameter model, some models such as the autoregres-
sive (AR) model, moving average (MA) model and
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autoregressive and moving average (ARMA) model
have been proposed to approximate the practical pro-
cess. However, AR model is commonly adopted and
widely applied [3, 4]. The parameters of AR model
can be simply obtained by solving a system of linear
equations, besides, it is worth noting that AR model is
suitable for extremely narrow spectrum. Moreover, it
has the recursive characteristic during the parameters
calculation with short length data. In short, the mod-
ern spectrum estimation presents two main problems:
model parameters calculation and model order deter-
mination. For parameters estimation, a large number
of algorithms have been put forward to calculate AR
model parameters. Levinson proposed Yule-Walker
algorithm which is a biased autocorrelation estimator
based on moment estimation, but it makes the model
severely biased. Windrow and Hoff raised the least
squares algorithm which is simple to understand and
of high efficiency, but it owns a relatively large vari-
ance and yields unstable models. Burg proposed Burg
algorithm which is an algorithm calculating each AR
parameters through minimizing the sum of forward
and backward errors subject to the constraint that the
optimal parameters satisfy Levinson recursion. It pro-
vides an increased spectral resolution over the con-
ventional methods. Besides, Burg algorithm generates
stable model with a smaller variance than Yule-walker
algorithm and the least squares algorithm [4, 5]. Al-
though Burg algorithm has the characteristics of low
covariance and high resolution, it ignores the influ-
ence of the phenomena including line splitting, peak
shifting and spurious frequency components. As to
the limitations of Burg algorithm, Kaveh proposed
the optimum tapered Burg algorithm which is more
widely spread than other weighted Burg algorithms
introduced in [6]-[9]. However, the optimum tapered
Burg algorithm can just slightly lower the above phe-
nomena, and particularly the peak shifting and spuri-
ous frequency components are still exist. For the prob-
lem of model order determination, which is the main
influencing factor for spectral resolution representing
the degree how two neighboring frequencies are re-
solved, a large number of researches have presented
that the width of a spectral peak decreases and the
resolution increases with an increasing signal power
and model order. However, an excessive model order
may lead to line splitting or spurious spectral peaks
[10]. As to these conflicting factors, many meth-
ods have been proposed to determine the model or-
der [11, 12]. Akaike proposed the Akaike information
criterion (AIC) which is known to suffer from overfit
[13]. The minimum description length (MDL) crite-
rion or the Bayesian information criterion (BIC), pro-
posed by Rissanen, is a consistent criterion, but un-
fortunately they are not suitable for complex signal.

Broersen presented the combined information crite-
rion (CIC) which depends on a penalty factor [14].
Moreover, relevant experiments have shown that the
selected model order is too low or too high according
to the above criterions.

In this paper, we provide a modified method to
improve the spectrum estimation with short length
signals. The main contributions of this paper lie in
the first order reflection coefficient estimation and the
model order determination. On one hand, we make
some effort on estimating the AR parameters, espe-
cially the first order parameter, for decreasing errors
and alleviating the phenomena of the peak shifting,
line splitting and spurious frequency components. On
the other hand, in order to guarantee the stability of
spectrum estimation, we introduce the residual factor
which notes the minimum difference of two adjacent
averaged forward and backward prediction errors to
determine the model order. Combining the calculation
of residual factor, the first order reflection coefficient
is solved by minimizing the averaged forward and
backward prediction errors of the third order. With-
out loss of generality, we take the real signal as an ex-
ample in this paper, and the algorithm can also be ap-
plied to complex signals. Some experimental results
on real sinusoids in additive Gaussian white noise in-
dicate that our approach improves the phenomena of
line splitting, frequency shifting and spurious spectral
peaks without degrading the resolution.

The remainder of the paper is organized as fol-
lows. Section 2 provides a description of an optimum
tapered Burg algorithm. The improved AR model pa-
rameters calculation and the modified AR model order
determination are presented in section 3 and section 4
respectively. We present some experimental results
for real sinusoids in additive Gaussian white noise in
section 5 and the paper ends with a conclusion in sec-
tion 6.

2 The Optimum Tapered Burg Algo-
rithm Power Spectrum Estimation

In this section, the specific process of the optimum
tapered Burg algorithm is presented.

The basic linear AR model of ocean surface dis-
placement is commonly applied in the maximum en-
tropy spectrum estimation. p-order AR model is de-
fined as:

X(tn) = −a1X(tn−1)− · · · − apX(tn−p) +W (tn),
(1)

where X(t) is a zero-mean stationary random process,
W (t) is a zero-mean white Gaussian noise with a con-
stant variance σ2

W .
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By Fourier transform and time-shifting theorem
for the above formula, we obtain the discrete power
spectrum of signal X(t) as follows [15]:

SX(fk) =
2σ2

W∆t

|1 +
p∑

j=1
ajexp{−i2πfkj∆t}|2

, (2)

the reason that the right side of the formula (2) gener-
ates 2 is that SX(fk) is one-side spectrum. ∆t is time
slot, fk is frequency, a1, a2, · · · , ap are the model pa-
rameters which need to be estimated.

As to the model parameters estimation, Burg al-
gorithm can not only get high accuracy, but also effec-
tively improve the resolution of spectrum estimation.
However, the phenomena of spectrum peak shifting
and line splitting usually appear when we apply Burg
algorithm to frequency spectral analysis. The estima-
tion results are influenced by many factors, including
data length, signal-to-noise ratio (SNR), model order,
the accuracy of model parameters and the initial phase
of signal data. Given that the optimum taper is in-
sensitive to the initial phase, and some experiments
have shown that the optimum tapered Burg algorithm
can get better results than other weighted Burg algo-
rithms, e.g., rectangular window, Hanning window,
and Hamming window. Moreover, optimum tapered
Burg algorithm is of low computational complexity
degree[7, 8]. Therefore, our modified algorithm is
based on the optimum tapered Burg algorithm. Be-
fore presenting optimum tapered Burg algorithm, we
need to simply introduce the optimal window and give
the theoretical supports in the sequel.

2.1 The optimal taper
Let the initial phase φ be a random variable which
is uniformly distributed on [−π, π). Then the mean
value of the frequency error is zero. By minimizing
the variance of averaged frequency error, we obtain
the m-order optimal taper:

Wm(k) =
6(k + 1)(N −m− k + 1)

(N −m+ 1)(N −m+ 2)(N −m+ 3)
,

k = 0, 1, · · · , N −m.

The specific derivation process of the optimal taper is
discussed by Kaveh and Lippert [8].

From the above equation, this optimum taper is
parabolic in form. It is even, positive and has a maxi-
mum at k = (N −m+ 1)/2. Furthermore, if Wm(0)
and Wm(1) are known from the above equation, one
can generate the remaining tapers recursively from:

Wm(k) = 2Wm(k − 1)−Wm(k − 2)− λ,

where λ =
12

(N −m+ 1)(N −m+ 2)(N −m+ 3)
.

For a symmetric taper, the averaged frequency er-
ror variance can be written as [8]:

⟨var(∆f)⟩

=
1

16π3
[
N−2∑
k=1

W1(k)(W1(k)−

1

2
W1(k − 1)− 1

2
W1(k + 1)) +

2W1(0)(W1(0)−
1

2
W1(1))].

For a rectangular taper W1(k) =
1

N
, we have

⟨var(∆f)⟩R

=
1

16π3
[0 +

2

N
(
1

N
− 1

2N
)]

=
1

16π3N2
.

For a Hanning taper W1(k) =
1

2
+

1

2
cos(2π

1

N
), we

have

⟨var(∆f)⟩H

=
1

16π3

(
1

2
+

1

2
cos(2π

1

N
)

)(
1

2
+

1

2
cos(2π

1

N
)

)
As to the optimum taper, using the recursive form and
the value of λ, we have

⟨var(∆f)⟩O

=
1

16π3
[
N−2∑
k=1

W1(k)
6

N(N + 1)(N + 2)

+2W1(0)(W1(0)−
1

2
W1(1))]

=
6N3 + 18N2 + 12N

16π3N2(N + 1)2(N + 2)2

=
6

16π3N(N + 1)(N + 2)
.

Therefore,

⟨var(∆f)⟩O
⟨var(∆f)⟩R

=
6N

(N + 1)(N + 2)
.

⟨var(∆f)⟩O
⟨var(∆f)⟩H
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=
6

N(N + 1)(N + 2)(0.5 + 0.5cos(2π
1

N
))2

≤ 24

N(N + 1)(N + 2)
≤ 1

5
, (N ≥ 4).

The above equations imply that ⟨var(∆f)⟩O is
always less than or equal to ⟨var(∆f)⟩R. The former
is less than one half the latter for N ≥ 9 in the case
of real sinusoid. However, ⟨var(∆f)⟩O is less than
one fifth of ⟨var(∆f)⟩H for N ≥ 4. Similarly, we
can prove that the optimum taper has less averaged
frequency error variance than the Hamming window.

2.2 The optimum tapered Burg algorithm
Burg algorithm applies Levinson-Durbin recursion
formula to calculate AR model parameters from low
to high order. The optimum tapered Burg (TBO) al-
gorithm shares the same basic principle with Burg al-
gorithm. However, the difference between Burg algo-
rithm and TBO algorithm lies in the later imposing an
optimal taper on the forward and backward prediction
errors for degrading the phenomena of spectral peak
shifting and line splitting. The specific process is as
follows.

Suppose a signal xn(n = 1, 2, · · · , N) is given.
Then the forward and backward prediction error ener-
gies of order M (M = 1, 2, · · · , p) are defined as:

efM,j = xj +
M∑

m=1

aM (m)xj−m

=
M∑

m=0

aM (m)xj−m,

ebM,j = xj−M +
M∑

m=1

aM (m)xj+m−M

=
M∑

m=0

aM (m)xj+m−M ,

j = M + 1, · · · , N,

where aM (0) = 1.
At each order M , the mean of the forward and

backward prediction errors (FBPE) is defined as ρM :

ρM =
1

2(N −M)

N∑
j=M+1

{(efM,j)
2 + (ebM,j)

2}.

Define the mean of optimum tapered FBPE ρM as

ρM =
1

2(N −M)

N∑
j=M+1

WM (j){(efM,j)
2+(ebM,j)

2},

(3)

where WM (j) is the M -order optimal window, and

ρ0 =
N∑
j=1

W0(j)x
2
j .

Then setting the derivative of ρM with respect to
aM (M) equals to zero yields M -order reflection co-
efficient aM (M):

aM (M)

=

−2
N∑

j=M+1
WM (j)efM−1,je

b
M−1,j−1

N∑
j=M+1

WM (j){(efM−1,j)
2 + (ebM−1,j−1)

2}
.

(4)
Obviously, the absolute value of aM (M) is always
smaller than unity. Therefore, the stability of the es-
timated AR model is guaranteed. Based on the above
fact, each order reflection coefficient can be calcu-
lated from equation (4) and other parameters can be
obtained via the Levinson-Durbin recursion:

aM (i) = aM−1(i) + aM (M)aM−1(M − i), (5)
1 ≤ i ≤ M − 1.

Finally, the power spectrum is obtained by substitut-
ing the parameters in equation (2) with the estimated
p-order coefficients and the variance of white Gaus-
sian noise σ2

W . In practical experiments, σ2
W is usu-

ally taken as the (p+ 1)-order averaged FBPE.

3 The Improved Optimum Tapered
Burg Algorithm

In this section, the modified calculation method of AR
parameters is presented.

According to the equation (5), if the parameters
of order m − 1 are known, the m-order parame-
ters can be solved under the condition that am(m) is
known. Obviously, in order to estimate the parameters
more accurately, the key problem is how to calculate
each order reflection coefficient. Therefore, a1(1),
whose value influences the accuracy of each param-
eters, takes a significant role in all the reflection co-
efficients. The modified idea is to calculate a1(1) not
by the equation (4) directly but by minimizing the av-
eraged optimum tapered FBPE of each order. Ibrahlm
[7] has proposed to calculate the first order reflection
coefficient by minimizing the optimum tapered FBPE
of the second order filter with respect to a2(1) and
a2(2), but he fails to consider the determination crite-
rion of model order.

Taking the determination criterion of model or-
der into consideration, the paper modifies the first or-
der reflection coefficient by minimizing the third order
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averaged optimum tapered FBPE for further improv-
ing the accuracy of a2(1) and a2(2). Then a1(1) is
obtained by Levinson-Durbin recursion formula from
high to low order. In fact, compared with the sec-
ond order and third order, we find that the latter will
not impose much complexity on the parameters cal-
culation (just increasing 7N + 27 steps addition and
6N + 20 steps multiplication). The simulations will
show that the optimal performance is minimizing the
p-order averaged optimum tapered FBPE firstly in
section 5. There is no denying that the calculation
process is extremely complicated. Based on the above
evidence, we calculate the first order reflection coef-
ficient by minimizing the averaged optimum tapered
FBPE of the third order, which will make preparations
for AR model order determination. The specific pro-
cess is presented in the sequel.

The forward and backward prediction errors of or-
der 3 are defined as

ef3,j

= xj +
3∑

m=1

a3(m)xj−m

= xj + a3(1)xj−1 + a3(2)xj−2 + a3(3)xj−3 ,

eb3,j

= xj−3 +
3∑

m=1

a3(m)xj+m−3

= xj−3 + a3(1)xj−2 + a3(2)xj−1 + a33xj ,

j = 4, 5, · · · , N.

The averaged optimum tapered FBPE of the third-
order is written as

ρ3

=
1

2(N − 3)

N∑
j=4

W3(j)[(xj + a3(1)xj−1

+a3(2)xj−2 + a3(3)xj−3)
2 + (xj−3

+a3(1)xj−2 + a3(2)xj−1 + a3(3)xj)
2],

where W3(j) is 3-order optimal taper. In order to min-
imize the averaged optimum tapered FBPE of the third
order, we set the derivative of ρ3 with respect to a3(1),
a3(2) and a3(3) yielding the following linear equa-
tions: 

∂ρ3
∂a3(1)

= 0,

∂ρ3
∂a3(2)

= 0,

∂ρ3
∂a3(3)

= 0.

Let

bmn =
N∑
j=4

W3(j)(xj+m−3xj+n−3 + xj−mxj−n),

cmn =
N∑
j=4

W3(j)(xj+m−3xj−n + xj−mxj+n−3),

where b = {bmn} and c = {cmn} are both three di-
mensional symmetric matrixes, and satisfy

b12 = b21 = c11 = c22,
b11 = b22 = c12 = c21,
b23 = b32 = c13 = c31,
b13 = b31 = c23 = c32.

Parameters a3(1), a3(2) and a3(3) satisfy the follow-
ing equations:

c13 + b11a3(1) + b12a3(2) + b13a3(3) = 0,
c23 + b21a3(1) + b22a3(2) + b23a3(3) = 0,
c33 + b31a31 + b32a3(2) + b33a3(3) = 0.

(6)

According to the Levinson-Durbin recursion formula
(5), the prediction error coefficients of the second and
third order satisfy

a3(1) = a2(1) + a3(3)a2(2),
a3(2) = a2(2) + a3(3)a2(1),
a2(1) = a1(1) + a2(2)a1(1).

(7)

Then a1(1) can be solved:

a1(1) =
BB1 −B2B3

B2 −B2
3 +BB2 −B1B3

, (8)

where B represents the determinant of symmetric ma-
trix {bmn}, B1, B2 and B3 are the determinant of ma-
trix {bmn} whose first row, second row and third row
are replaced by −c11, −c12 and −c13, respectively.

Based on the above calculation process, the first
three order AR model parameters are obtained. Con-
versely, if we put the first three order AR model pa-
rameters in FBPE respectively, the values of FBPE
will be smaller than the results got by TBO algo-
rithm. Other model parameters are still calculated by
the Levinson-Durbin recursion formula.

4 The Determination of AR Model
Order

In this section, a new criterion for the selection of
model order will be proposed.
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Generally speaking, the optimal selection of
model order is unknown to a priori, and it needs to
select a model order in practical experiments. Sup-
pose the optimal model order is p, where the model
error is the lowest. A large number of experiments
have proved that the spectrum seems to be too smooth
when the model order m < p, which will lower the
resolution of the power spectrum. While it will gen-
erate spurious frequency components and cause dra-
matic changes and shocks under the condition that the
selected order is larger than the optimal model order
[16]. Therefore, the determination of model order di-
rectly influences the quality of spectrum estimation.

The prediction error energy decreases or remains
unchanged with the increased model order, and arrives
the minimum at the optimal model order. In other
words, when the selected order m ≥ n , the m-order
averaged FBPE ρm equals to or less than the n-order
averaged FBPE ρn. Considering that the first order
reflection coefficient is calculated by minimizing the
averaged optimum tapered FBPE of the third order,
this paper introduces a residual factor to determine
the model order from the view of limit convergence.
We regard the residual factor ε as an arbitrary positive
number less than unity.

If 
|ρm−2 − ρm−3| < ε
|ρm−1 − ρm−2| < ε
|ρm − ρm−1| < ε

always holds, we consider the optimal order as p = m,
where the value of ε is close to zero (we take it as 10−4

in practical experiment).
Summarily, the steps of model order determina-

tion are as follows:
(1) Calculate a3(1), a3(2), a3(3), a2(2), a2(1)

and a1(1) by equations (6)–(8);
(2) Judge the order of AR model. Take ε as 10−4,

if |ρm−2 − ρm−3| < ε, |ρm−1 − ρm−2| < ε, |ρm −
ρm−1| < ε always hold, we assume p = m, then the
recursion finish; otherwise, continue the next step;

(3) If m = 3, judge the model order directly
by residual factor; If m ≥ 4, calculate the m−order
mean of optimum tapered forward and backward pre-
diction error energies and reflection coefficients by
equation (3)–(4);

(4) Let m = m + 1, iterate the steps of (2)–(3)
until we get the appropriate model order.

5 MATLAB Simulation
In this section, we check the performance of the pro-
posed method and compare the results with that of
Burg algorithm and TBO algorithm.

In order to investigate the abilities of the pro-
posed method, we define the output signal x(t) =
s(t)+µw(t), where s(t) represents a sinusoidal signal
with non-zero initial phase (generally the initial phase
is defined odd multiple of 45◦), w(t) is a zero-mean
white Gaussian noise. The parameter µ is computed
such that [5]

SNR = 10 log
Ps

µ2Pw
,

Ps =
1

N

N∑
n=1

s(n)2,

Pw =
1

N

N∑
n=1

w(n)2,

where N is the length of the s(n) and w(n). SNR
represents the Signal-to-Noise Ratio.

5.1 Spectral peak shifting and resolution of
estimation problems

The problem of spectral peak shifting means that the
estimated peak frequency apparently departs from the
theoretic frequency value. The problem of resolution
means that the degree how the closely-spaced frequen-
cies can be distinguished. Take the signal x(t) =

sin(2π×0.2t+
π

4
)+sin(2π×0.22t+

π

4
)+µw(t) as

an example. The sampling frequency and the length
of the signal x(n) are taken as 1000 Hz and 51 re-
spectively when carrying out the simulation. By sim-
ulation experiments, for the second order averaged
FBPE, TBO algorithm is 0.0132, while the improved
TBO algorithm is 0.0008, which is much smaller than
the second order averaged FBPE of TBO algorithm.
Each order for the averaged FBPE of Burg algorithm
is shown in Table 1.

Table 1 The averaged FBPE of Burg algorithm

Order 1 2 3 4
FBPE 1.0400 0.9763 0.0890 0.0878

5 6 7 8 9
0.0507 0.0420 0.0417 0.0410 0.0401

10 11 12 13 14
0.0399 0.0395 0.0392 0.0380 0.0380

As is shown in Table 1, there is no significant
change in prediction error energy under the condition
that the model order is larger than 8. While AR model
order reaches p = 12, the prediction error energy is
little changed with the increase of model order. Tak-
ing the order as p = 12, a distinct difference in per-
formance among Burg algorithm, TBO algorithm and
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the improved TBO method is illustrated in Figure 1. It
shows that the proposed algorithm is of highest reso-
lution and least peak shifting compared with the Burg
and TBO algorithm. However, the original Burg algo-
rithm can distinguish the peak frequency reluctantly
accompanying apparent peak shifting phenomenon.
Although TBO algorithm differentiates the two close-
spaced peak frequencies, it accompanies obvious peak
shifting problem especially at f2 = 0.22Hz. Besides,
the three algorithms imply a common phenomenon of
spurious frequency components. Now we take the or-
der as p = 8 and p = 6, its corresponding simulations
are presented in Figure 2 and Figure 3 respectively.
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Figure 1 f1 = 0.2, f2 = 0.22, SNR = 30, p = 12
(a) Burg algorithm

(b) Optimal Burg algorithm
(c) Modified optimal Burg algorithm

Compared with the three figures, we find that the
improved TBO algorithm always owns the proper-
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Figure 2 f1 = 0.2, f2 = 0.22, SNR = 30, p = 8
(a) Burg algorithm

(b) Optimal Burg algorithm
(c) Modified optimal Burg algorithm

ties of highest resolution and slightest spectral peak
shifting. The lager model order is, the higher resolu-
tion will be. Moreover, the phenomenon of spurious
frequency components severely appears in Figure 1
while no spurious frequency component occurs in Fig-
ure 3. That is to say, the higher model order is, the eas-
ier spurious frequency component appears. The three
figures indicate that model order is a significant factor
for spurious frequency, and the following subsection
will describe that SNR is also a key factor which can
not be ignored.
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Figure 3 f1 = 0.2, f2 = 0.22, SNR = 30, p = 6
(a) Burg algorithm

(b) Optimal Burg algorithm
(c) Modified optimal Burg algorithm

5.2 Spurious frequency components and
spectral line splitting problems

In the simulation of spurious frequency components
and line splitting problems, 45 points real sample se-
quence is generated by a unit amplitude sinusoid with
φ = π/4 initial phase and frequency f = 0.2Hz. The
sample rate is 1000 Hz, and AR model order of 5 is
selected. Let SNR = 20, SNR = 35, SNR = 50,
respectively. The differences affected by SNR are pre-
sented in Figure 4–6. As can be seen from the three
figures, the improved TBO algorithm well avoids the
appearance of spurious frequency components. We
can hardly find the phenomenon of line splitting. In
fact, TBO algorithm has well overcome the spectral
line splitting problem, but it fails to control the spuri-

ous frequency components problem especially in the
case of high SNR. As is described in Figure 4-6, in
addition to the improved TBO algorithm, the higher
SNR is, the easier spurious frequency components
problem generates. What is the most distinctive by
Burg algorithm is that it can hardly represent the in-
herent spectral shape (variance instability) while the
improved TBO algorithm can well keep the stability
of its spectral shape (variance stability) within a cer-
tain range of SNR. Through continuous experiments,
it turns out that only when the SNR is more than or
equal to 120dB, can the problems of spectral line split-
ting and spurious frequency components appear by
the improved TBO algorithm. Besides, the stability
of improved TBO algorithm can be evaluated by the
variance of power spectrum. In order to make unified
comparison, the variance for the logarithm of power
spectrum is illustrated in Table 2. The improved TBO
algorithm performs smallest fluctuations in variance
as SNR varies.

Table 2 The variance of logarithmic power
spectrum

Variance SNR=20 SNR=35 SNR=50
Burg 47.156 120.7314 159.8413
TBO 37.3861 33.8982 50.9992
NEW 35.8307 36.0245 36.0730

Summarily, spectral lines splitting and spurious
frequency components are most likely to occur when
the SNR and model order are both high. Besides, they
occur under the condition that the initial phase of si-
nusoidal components is some odd multiple of 45◦ and
the number of AR parameters estimated is a large per-
centage of the number of data values used for the es-
timation [17].

6 Conclusion
The limitations of Burg algorithm for the AR power
spectrum estimation are the frequency bias, line split-
ting and spurious frequency components in process-
ing the sinusoidal signals in noise. However, its at-
tractive features are high resolution spectral estimates
with short signal records, an efficient recursive imple-
mentation and guaranteed stable models. In this paper,
a new method based on Burg algorithm and TBO algo-
rithm has been proposed for estimating closely-spaced
frequencies of the short length signals in the noisy en-
vironment. The simulation results have shown that
improvements including reducing sensitivity to initial
phase, reducing the bias of peak frequency, lessening
the shift of spectral line and avoiding the generation
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Figure 4 f = 0.2, SNR = 20, p = 5
(a) Burg algorithm

(b) Optimal Burg algorithm
(c) Modified optimal Burg algorithm

of spurious frequency components are achieved. All
these improvements suggest that the improved algo-
rithm is an attractive alternative to the Burg algorithm
for AR spectral estimation.
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