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Abstract: Various different types of detectors can be used to identify malfunctioning elements in a network. The
detectors themselves might not function properly. Four types of possible detector faults are identified, where de-
tectors are located at vertices and are used to identify malfunctioning vertex locations. This leads to a sequence of
four detector-failure parameters for various (domination-related) parameters.
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1 Introduction
Graphs and networks are frequently used to model sit-
uations in which elements are subject to failure or in-
trusion. In a multiprocessor network each vertex can
represent one processor, each of which can be sub-
ject to a complete failure or might seem to operate but
actually produce incorrect data. In a communication
network a transmitter/receiver (represented by a ver-
tex) can totally fail or might transmit and/or receive
incorrect data, and a communication link (represented
by an edge) might be subject to full or partial interfer-
ence. In modeling a facility one might be interested in
the (failure) location of a fire, a thief, or a saboteur.

Reliability measures are concerned with how well
the system can be expected to operate given the
probabilities with which individual elements (vertices
and/or edges) will function properly. For example,
what is the probability that all of the functioning ver-
tices can still communicate? Or, what is the expected
number of pairs of vertices that can communicate?
Vulnerability measures are concerned with the mini-
mum amount of element failures (perhaps induced by
a knowledgeable opponent) before an overall failure
is reached, such as disconnecting the network or re-
sulting in accepting an incorrect result produced with
one or more malfunctioning processors. Robustness is
concerned with optimal operation of the network sys-
tem in the presence of element failures.

A natural central concern is the determination that
an element failure has occurred and the identification
of which element is failing. Various types of detectors
can be used for locating and reporting element fail-
ures. Some, like sonar devices, can be assumed to be

able to detect failures anywhere in the system, while
others, like heat sensors, might have a limited detec-
tion range.

For uniform terminology, the facility model will
be used. The failure site will be termed an “intruder”
location. One aspect of operation for a detector is the
manner in which it determines where an intruder lies.
For example, a camera gives an exact location and a
heat sensor determines a region in which an intruder
lies. A second aspect is the manner in which detectors
communicate to a central responder. The central focus
of this paper is the consideration of various possible
faults in the use of detectors for determining failure lo-
cations and in the use of detectors for transmitting this
information. Note that intruder locations (fire, thief,
saboteur, malfunctioning processors, etc.) will be de-
scribed as failures, while the terms fault/faulty will be
applied to the detectors.

In Section 2 various detection modes will be de-
scribed. In Section 3 a series of progressively more
serious detector faults will be considered. The param-
eters associated with each detection mode/detection
fault (many of which have yet to be studied) will be
introduced. The framework described here is applica-
ble much more widely.

2 Intruder detection models
Standard graph theory terminology will be used. In
particular, for a graph G = (V,E) the distance d(u, v)
is the minimum number of edges in a uv path for ver-
tices u and v in V (G). The (open) neighborhood N(v)
is the set of vertices at distance one from v, N(v) =
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{w ∈ V (G) : vw ∈ E(G)}, and the closed neighbor-
hood is N [v] = N(v) ∪ {v}. Being concerned with
determining an intruder location anywhere in the sys-
tem, we will mainly be concerned with various types
of dominating sets. Vertex set D ⊆ V (G) is dominat-
ing if ∪v∈DN [v] = V (G), that is, every vertex w is in
D or is adjacent to some v ∈ D. For a dominating set
D of detectors, every vertex location is within distance
one of at least one detector.

2.1 Locating sets/metric bases
First, a case of location at arbitrary distances is
considered. Assume that a detector at vertex x
can determine the distance d(x,w) to an intruder
at w. With an (ordered) set X = {x1, x2, ..., xk}
of vertices, for each v ∈ V (G) we have a k-tuple
(d(x1, v), d(x2, v), ..., d(xk, v)). As introduced in
Slater [11] and Harary and Melter [3], X is a locating-
set or metric basis if all of these k-tuples are distinct.
We can say that a vertex x resolves two vertices u and
v if d(x, u) ̸= d(x, v). Then X is locating if for ev-
ery two vertices u and v in V (G) at least one x ∈ X
resolves u and v. The location number LOC(G) is
the minimum cardinality of a locating set X ⊆ V (G).
Because d(xi, xi) = 0, clearly each xi in X resolves
itself with any other vertex.

A branch of a tree T at vertex v is a subgraph
induced by v and one component of T \{v}. A branch
B at vertex v is called a branch path if B is a path with
degree deg(v) ≥ 3, in which case v is called a stem of
B. Tree T42 in Figure 1 has order n = |V (T42)| = 42,
sixteen branch paths, and six stems: s1, s2, ..., s6.
Let L1, L2, ..., Lk be the components of the subtree
induced by all of the branch paths, and for T42 we
have k = 6.

Using the next result, one can see that
LOC(T42) = 10 and {1, 2, ..., 10} is an LOC(T42)-
set. For path Pn we clearly have LOC(Pn) = 1, using
one endpoint as an LOC(Pn)-set.
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Figure 1: Tree T42 with LOC(T42) = 10

Theorem 1 (Slater [11]) Let T be a tree with max-
imum degree ∆(T ) ≥ 3 (that is, with at least one
stem). Vertex set S is locating if and only if for
each vertex u there are vertices from S on at least
deg(u)− 1 of the deg(u) components of T \{u}.

Theorem 2 (Slater [11]) Let T be a tree with set L
of endpoints with |L| ≥ 3, with components L1, L2,
..., Lk of the subtree induced by the set of all branch
paths, and let ei be the number of branch paths in Li.
Then LOC(T ) = |L| − k, and S is an LOC(T )-
set if and only if it consists of exactly one vertex from
each of exactly ei − 1 of the branch paths of Li, for
1 ≤ i ≤ k.

As noted, various types of faults for a detector can
be considered. One such is that a detector will become
completely inoperable. Resolving set S is redundant-
resolving if S \{v} is also resolving for each v in S.
Let RED:LOC(G) denote the minimum cardinality
of a redundant-resolving set.

Theorem 3 (Hernando, et al [4]) For a tree T
with set L of endpoints with |L| > 3, with branch
path components L1, L2, ..., Lk and ei the number
of endpoints of T in Li, let E1 be the set of end-
points corresponding to branch paths where ei = 1.
Then RED:LOC(T ) = |L \E1| and L \E1 is a
RED:LOC(T )− set.

For tree T42, {1, 2, ..., 10, y, v, r, s} is an
RED:LOC(T42)− set.

2.2 Domination-related models

Heat sensors and motion detectors have a limited
range. Guards in a museum have a limited line of
sight for the objects therein. If a processor A is testing
the correct functioning of processor B, but communi-
cation between A and B must involve at least one in-
termediate processor C, then A can not conclude that
B is malfunctioning because it might be C that is not
functioning correctly. In brief, detectors might have a
limited range.

The basic limited range detector model is that of
a dominating set. One can think of using a camera
as a detector where a camera can be used to precisely
determine any intruder location adjacent to it or at its
own location. Then a set D ⊆ V (G) of camera detec-
tor locations can identify any intruder location if and
only if D is dominating, ∪v∈DN [v] = V (G). The
domination number γ(G) is the minimum cardinality
of a dominating set. When an intruder at v can inter-
fere with the detection or reporting of an intruder at v,
we need to consider open neighborhood domination.
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Vertex set D ⊆ V (G) is an open-dominating set (also
called a total dominating set) if ∪v∈DN(v) = V (G).

Think of a locating set with range limited to dis-
tance one. A detector at v can determine if there is
an intruder at v, or if there is an intruder in N(v),
but which element in N(v) cannot be determined.
These ideas of locating and dominating were merged
in Slater [12, 13]. Dominating set L ⊆ V (G) is a
locating-dominating set if for any two vertices u and
v in V (G)−L one has N(v)∩L ̸= N(u)∩L. Every
graph has a locating-dominating set (namely V (G))
and LD(G) is the minimum cardinality of such a set.

Identifying codes were introduced in Karpovsky,
Chakrabarty and Levitin [6]. For this model a detec-
tion device at vertex v can determine if there is an in-
truder in N [v], but which vertex location in N [v] can-
not be determined. Then S ⊆ V (G) is an identifying
code if for all u and v in V (G) one has N [v] ∩ S ̸=
N [v] ∩ S. Graph G has an identifying code when no
two vertices have the same closed neighborhood, and
IC(G) is the minimum cardinality of such a set.

When a detection device at vertex v can determine
if an intruder is in N [v] but will not/can not report
if the intruder is at v itself, then we are interested in
open-locating-dominating sets as introduced for the k-
cubes Qk by Honkala, Laihonen and Ranto [5] and for
all graphs by Seo and Slater [9, 10]. Vertex set S ⊆
V (G) is an open-locating-dominating set if for all u
and v in V (G) one has N(u)∩S ̸= N(v)∩S. Graph
G has an open-dominating set when no two vertices
have the same open neighborhood, and OLD(G) is
the minimum cardinality of such as set.

 (Pn)

LD(Pn)

IC(Pn)

OLD(Pn)

u   v   w  x   y

u   v   w  x   y

u   v   w  x

Figure 2: Distinguishing sets for paths

In general, a collection C = {S1, S2, ..., Sp} of
subsets of V (G) is a distinguishing set for graph G if
∪1≤i≤pSi = V (G) and for every pair of distinct ver-
tices u and v in V(G) some Si contains exactly one
of them. So, L = {w1, w2, ..., wj} is a locating-
dominating set if C1 = {{w1}, N(w1), {w2},
N(w2), ..., {wj}, N(wj)} is distinguishing with p =

2j;S = {w1, w2, ..., wj} is an identifying code
if C2 = {N [w1], N [w2], ..., N [wj ]} is distinguish-
ing; and S = {w1, w2, ..., wj} is an open-locating-
dominating set if C3 = {N(w1), N(w2), ..., N(wj)}
is distinguishing. Figure 2 illustrates how to
achieve the values γ(Pn) = ⌈(1/3)n⌉, LD(Pn) =
⌈(2/5)n⌉, IC(Pn) = ⌈n/2⌉, and OLD(Pn) =
⌈(2/3)n⌉ . Note that for LD-sets, C1 can be a mul-
tiset if, for example, N(w1) = N(w2). For a dom-
inating set D the associated collection C4 has I(D)
singleton set entries where I(D) = Σv∈D(1+deg(v))
is the influence of D as defined in Grinstead and Slater
[1]. Each {v} appears in C4, in fact, |N [v]∩D| times.
The redundance is important when we consider fault-
tolerance.

3 Fault tolerant detection models

There are two aspects to using a detector in deciding
where an intruder is located. The detector must be
able to determine the presence of the intruder and to
transmit this information to a central point P where
this information can be used. For now we assume
there is at most one faulty detector. For the redundant-
locating sets in Section 2.1, a detector becomes com-
pletely inoperable and does not transmit any informa-
tion. This type of detector fault can be determined if
we, for example, synchronize transmission times. In
this case, a detector’s failure is indicated by the fact
that it has not reported, and the failure is known.

Contrast this with a case in which the detector’s
ability to actually detect an intruder is lost, but the de-
tector itself can not determine its own failure. It will
transmit the information that no intruder is present
to a point P. At P this failure might not be appar-
ent. Locating-dominating set L is redundant-locating-
dominating if L\{v} is also locating-dominating for
each v in L. Let RED:LD(G) denote the mini-
mum cardinality of a redundant-locating-dominating
set. For this framework, let DET :LD(G) denote the
minimum cardinality of a locating-dominating set L
with the property that if any one detector in L in-
accurately reports that no intruder is present, then
the intruder location can still be determined. Such
sets L will be called detector-redundant. Consider
L = {v1, v2, v3, v5, v6, v7} in cycle C8, as in Figure
3.

Theorem 4 (Slater [14]) If L ⊆ V (G) is a detection-
redundant set and v ∈ L, then L − v is a locating-
dominating set. In particular, RED:LD(G) ≤
DET :LD(G).

Proposition 5 For cycle C8, RED:LD(C8) = 6 <
DET :LD(C8) = 7.
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Figure 3: RED:LD(C8) < DET :LD(C8)

Proof: L = {v1, v2, v3, v5, v6, v7} is a redundant-
locating-dominating set, so RED:LD(C8) ≤ 6. If
any vertex is dominated only once by a dominating
set D, then a single RED-fault can leave that intruder
location unreported. Hence, any RED:LD(C8)-set D
must dominate every vertex twice. It follows that the
influence of D must satisfy I(D) ≥ 2 · |V (C8)| =
16. But |D| ≤ 5 implies that I(D) ≤ 15. So,
RED:LD(C8) = 6.

Likewise, each detection-redundant set D ⊆
V (C8) must dominate every vertex twice. Thus,
for example, V (C8)\{v1, v2} and V (C8)\{v1, v3}
are not detection-redundant. As observed above,
V (C8)\{v1, v5} is not detection -redundant. Finally,
consider D = V (C8) − {v1, v4}, and assume v2
reports an intruder in N(v2) = {v1, v3} while all
other detectors report no intruder. The intruder can
be at v, with detector v8 being faulty or at v3 with
detector v3 faulty. Thus, DET :LD(C8) ≥ 7. Let
L = V (C8)\{v1}. For 3 ≤ i ≤ 7, because at most
one detector is faulty, either an intruder at vi is re-
ported by vi as being at vi or by both vi−1 and vi+1

as being in N(vi−1) ∩ N(vi+1) = {vi}. Assume an
intruder is at v2 or v8, say v2. If v2 does not report
itself, then v3 reports N(v3). Because v4 and v5 re-
port no intruder, the intruder in N(v3) must be at v2.
If the intruder is at v1, we can assume that v2 reports
N(v2). Because both v3 and v4 report no intruder, the
intruder in N(v2) must be at v1. Thus V (C8)\{v1} is
a DET :LD(C8)-set. ⊓⊔

For detection-redundant intruder reporting, any
detector actually reporting that there is an intruder is
accurate (“telling the truth”). That is, for RED and
DET a detector problem is in the inability to correctly
report an intruder location. Following are two mod-
els involving a single fault that involves inaccurately
reporting the actual presence of an intruder. Consider
the simple domination model in which each detector
at a vertex v is camera-like and can precisely identify

at which vertex in N [v] an intruder is located. For
any situation in which a detector can fail to report or
can inaccurately report that there is no intruder at a
location where one actually exists, clearly no intruder
location can be covered by only one detector. That is,
every vertex must be double dominated. As defined
by Harary and Haynes[27], vertex set D ⊆ V (G) is
a k-tuple dominating set if |N [x] ∩ D| ≥ k for ev-
ery x ∈ V (G), and the minimum cardinality of a k-
tuple dominating set is denoted by γxk(G). The dou-
ble domination number of G is γx2(G). Note that if
D is double dominated, then any intruder at a vertex x
will be accurately reported at least once even with one
RED or DET fault. Thus we have the following.

Theorem 6 For any graph G, γx2(G) =
RED:γ(G) = DET :γ(G)

As introduced in Slater [15] and Roden and Slater
[7]. For a “liar’s dominating set” it is assumed that
any one detector v in the neighborhood of an intruder
vertex x might (either deliberately or through a trans-
mission error) misreport the location of x by indicat-
ing that there is no intruder or by misreporting another
location y ∈ N(v) as the intruder location.

A dominating set D ⊆ V (G) is a liar’s domi-
nating set if for any designated (intruder) vertex x,
if all or all but one of the vertices in N [x] ∩ D re-
port x as the intruder location, and at most one vertex
v in N [x] ∩ D either reports a vertex y ∈ N [v] or
fails to report any vertex, then the vertex x can be cor-
rectly identified as the intruder location. That is, if
an intruder is at x ∈ V (G) then the detectors outside
N [x] are assumed to indicate there is no intruder (thus,
we have no “false alarm”), one vertex v in N [x] ∩ D
can report no intruder exists or report any vertex in
N [v] as the intruder location, every other detector in
N [x] ∩ D correctly reports location x, and x will be
identifiable. The liar’s domination number γLR(G) or
simply LR(G) is the minimum cardinality of a liar’s
dominating set. It is being assumed that all detectors
can, in fact, detect correctly and there will be at most
one fault in the reporting to central location P.

Theorem 7 (Slater[15]) For every connected graph
G of order n ≥ 3 we have γx2(G) ≤ LR(G), and,
if G has minimum degree δ(G) ≥ 2, then γx2(G) ≤
LR(G) ≤ γx3(G).

Theorem 8 (Slater[15]) Vertex set D ⊆ V (G) is a
liar’s dominating set if and only if (1) D double dom-
inates every v ∈ V (G) and (2) for every pair of dis-
tinct vertices u,v we have |(N [u] ∪N [v]) ∩D| ≥ 3.

For the fourth fault tolerant detection model con-
sidered here, we have an error correcting code prob-
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lem. Detectors might be able to detect the intruder lo-
cation, but there can be an error in any one detector’s
transmission to central point P, including the possi-
bility of a false alarm. ER will be used to indicate the
possibility of such a case.

4 Fault tolerant detection parame-
ters

We have a sequence of four fault tolerant parameters
associated with each resolving or distinguishing pa-
rameter. For RED we need redundancy in that one of
our detectors might fail to transmit; for DET every de-
tector transmits but one of the detectors transmitting a
“no intruder” message can be incorrect; for LR one no
intruder message can be incorrect, or one detector v
can misreport an intruder location in its range as be-
ing anywhere in v’s detection range; and for ER any
one detector can misreport whether or not there is an
actual intruder in its range.

Depending on the basic parameter Ψ, not all
four fault tolerant parameters need be distinct. As
noted, for example, RED:γ(G) = DET :γ(G) for
all graphs G. Long cycles Cn will usually suffice to
demonstrate when the parameters are different.

4.1 γ(G)≤ RED:γ(G) = DET :γ(G) ≤
LR:γ(G) ≤ ER:γ(G)

From Theorems 6 we have RED:γ(G) =
DET :γ(G) = γx2(G). By theorem 3.5, L ⊆ V (G)
is a liar’s dominating set if and only if L double
dominates each vertex and triple dominates each pair
of vertices. As in Slater[15] and Roden and Slater[7],
such a set is an X(2, 3)(G)-set. In general, given
a sequence of nonnegative integers(c1, c2, ..., ct)
with 0 ≤ c1 ≤ c2 ≤ ... ≤ ct) and ct ≥ 1, a set
D ⊆ V (G) is a X(c1, c2, ..., ct)(G)-dominating set
if for 1 ≤ i ≤ t every S ⊆ V (G) with |S| = i
has |N [S] ∩ D| ≥ ci. The minimum cardinal-
ity of a X(c1, c2, ..., ct)(G)-dominating set is the
X(c1, c2, ..., ct)(G)-domination number, denoted by
γX(c1,c2,...,ct)(G). Rephrasing Theorem 3.5, we have
LR(G) = γx(2,3)(G).

For ER:γ(G) and detector set S ⊆ V (G), any
x ∈ S can report an intruder location in N [x], even
when no intruder is actually there. Assume that
N [w]∩S = {x, y}. If x reports an intruder at w and all
other detectors report no intruder, there can be an in-
truder at w with an error from y or no intruder with an
error from x. Note that if any two detectors in N [w]
agree that there is or is not an intruder at w, at least
one (and hence both) will be correct. It follows that

any triple dominating set allows for all possible single
intruder error correction.

Theorem 9 γ(G) ≤ RED:γ(G) = DET :γ(G) =
γx2(G) ≤ LR:γ(G) = γx(2,3) ≤ ER:γ(G) =
γx3(G).

One can verify that for cycle Cn we have
γ(Cn) = ⌈n/3⌉, RED:γ(Cn) = DET :γ(Cn) =
γx2(Cn) = ⌈2n/3⌉, LR:γ(Cn) = ⌈3n/4⌉, and
ER:γ(Cn) = n.

4.2 LOC(G)≤ RED:LOC(G) =
DET :LOC(G)≤ LR:LOC(G)=
ER:LOC(G)

For locating sets the existence of an intruder
anywhere in the graph can be detected by any
detection-functioning detector. This implies that
RED:LOC(G) = DET :LOC(G), as follows. One
can identify a detector with an RED-fault because it
fails to report. For a DET-fault a detector can report
that there is no intruder within the range of that de-
tector, in this case all of V (G). However, any operat-
ing detector will indicate the presence of an intruder,
enabling us to determine that a detector reporting no
intruder is the faulty one.

For liar’s-locating and error-locating faults, con-
sider the following. If we have only two detec-
tors, then the one can report an incorrect distance
and we clearly cannot decide which is misreporting.
That is, LR:LOC(G) ≥ 3. For an error-locating
fault, as noted, an error based on reporting no in-
truder can be identified. Because the range of a de-
tector is all of V (G), there can be no false alarms,
and we have 3 ≤ LR:LOC(G) = ER:LOC(G).
For path Pn, n ≥ 4, we have LOC(Pn) = 1,
RED:LOC(Pn) = DET :LOC(Pn) = 2, and
LR:LOC(Pn) = ER:LOC(Pn) = 4.

5 Summary

For various domination-related parameters involving
locating vertices that function as places from which
detectors can determine information about the loca-
tion of an “intruder”, four types of possible detector
faults have been identified. For each parameter Ψ this
leads to four fault-related parameters, and we have
Ψ(G) ≤ RED:Ψ(G) ≤ DET :(G) ≤ LR:Ψ(G) ≤
ER:Ψ(G), with some of these pairs of parameters
turning out to be identical for specific examples. Most
of the parameters described here (for example, the IC-
parameters and OLD-parameters) are only now being
studied. There are general results applying to general
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Figure 4: Domination fault parameter for cycles and
(infinite) paths

distinguishing sets. Collection S = {s1, s2, ..., st}
is distinguishing for graph G if ∪1≤i≤tSi = V (G)
and for each pair u, v of vertices there is some Si

containing exactly one of them. For v ∈ V (G), let
S(v) = {i|v ∈ Si} and A∆B is the symmetric dif-
ference of sets A and B. Then S is distinguishing if
S(v) ̸= ∅ for all v ∈ V (G) and |S(u)∆S(v)| ≥ 1 for
all pairs u,v. As examples of general results, we have
the following. S is redundant-distinguishing if S − Si

is distinguishing for 1 ≤ i ≤ t.

Theorem 10 S is redundant-distinguishing if each
|S(u)| ≥ 2 and |S(u)∆S(v)| ≥ 2.

S is detection-distinguishing if S can distinguish
under the condition that one Si can falsely report “no
intruder” in Si.

Theorem 11 S is detection-distinguishing if each
|S(u)| ≥ 2 and for each pair u,v we have either |S(u)|
\S(v)| ≥ 2 or |S(v) \S(u)| ≥ 2.

All of these problems can be extended to consider
multiple intruders and/or multiple faults. For exam-
ple, in Roden and Slater[8] we consider liars’ domina-
tion, where for LR(i, j)(G) we allow up to i intruders
and j liars.

Finally, note that these ideas formed the basis
of a talk at the Bordeaux Workshop on Identifying
Codes (Bordeaux, 2011). Copies of the slides used
are available at the website. However, there FT was
used for what is here denoted by DET. In Slater[14]
FTLD(G) was used for what is here DET :LD(G).
The latter now seems preferable so as to identify the
specific type of detector fault.
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