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Abstract: Given an undirected graph G = (V,E), two distinguished vertices s and t of G, and a diameter bound
D, a D-s, t-path is a path between s and t composed of at most D edges. An edge e is called D-irrelevant if does
not belong to any D-s, t-path of G. In this paper we study the problem of efficiently detecting D-irrelevant edges
and also study the computational complexity of diameter-related problems in graphs. Detection and subsequent
deletion of D-irrelevant edges have been shown to be fundamental in reducing the computational effort to evaluate
the Source-to-terminal Diameter-Constrained reliability of a graph G, R{s,t}(G,D), which is defined as the
probability that at least a path between s and t, with at most D edges, survives after deletion of the failed edges
(under the assumption that edges fail independently and nodes are perfectly reliable). Among other results,
we present sufficient conditions to efficiently recognize irrelevant edges and we present computational results
illustrating the importance of embedding a procedure to detect irrelevant edges based on these conditions, within
the frame of an algorithm to calculate R{s,t}(G,D), built on a theorem of Moskowitz. These results yield a
research path for the theoretical study of the problem of determining families of topologies in which R{s,t}(G,D)
can be computed in polynomial time, as the general problem of evaluating this reliability measure is NP-Hard.
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1 Introduction
Unless otherwise stated, in this paper we consider
undirected graphs G = (V,E), where V represents
a finite set of vertices and E is a finite set of edges.

The purpose of this work is two-fold. We first
investigate, from a computational point of view, di-
ameter properties of graphs related to the following
optimization problem: given two vertices s and t of
G, we would like to efficiently identify edges that
do not belong to any path between s and t of length
less or equal to a given bound D; we then apply
some of the results shown to compute more efficiently
the Diameter-Constrained reliability (DCR) of a com-
munication network (originally introduced in [17]), a
constrained version of the classical network reliabil-
ity measure (refer to [20, 21, 22, 24, 25] for further
discussion on this classical model). This study serves
as a guide to address the problem of identifying fami-
lies of topologies in which the DCR can be computed
in polynomial time (as its computation is known to be
NP-Hard).

Given a probabilistic graph G = (V,E), a set

of terminal nodes K ⊆ V , and a diameter bound
D, in which each edge e ∈ E has been assigned a
probability of failure qe = 1 − re (re is called the
reliability of the edge e) under the assumption that
edges fail independently and nodes are perfectly re-
liable, the K-terminal Diameter-Constrained reliabil-
ity, RK(G,D), gives the probability of the event that
for each pair of nodes x, y ∈ K, a path between x
and y of length (i.e., number of edges comprising the
path) D or less, called a D-x, y-path, survives after
deletion of the failed edges. In this paper we consider
the case when K = {s, t}, known as the Source-to-
terminal Diameter-Constrained reliability of a graph
G, denoted as R{s,t}(G,D). For the classical relia-
bility measure, the K-terminal reliability RK(G), of
a graph G, is the probability that after the removal
of the failed edges, each pair of nodes x, y ∈ K is
connected by at least an operational path, indepen-
dently of its length. Both the classical reliability and
the DCR can be computed by application of a theo-
rem of Moskowitz [14], also refered as the Factoring
Theorem, in which the reliability of the probabilistic
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graph is computed in term of the reliabilities of two
smaller graphs using a specific edge as pivot.

In many real-life situations the quality of the
communication depends on the existence of a path
connecting each pair of terminals x and y, whose
length (measured as the number of edges) is bounded
by a given integer D. The K-terminal Diameter-
Constrained Network reliability is the probability of
this event and it was originally introduced by Petingi
and Rodriguez in 2001 [17] (for a survey on this relia-
bility model refer to [16]). The DCR can be applied to
assess performance objectives of for example packet-
oriented networks where links may fail and there is
a ”time-to-live” (TTL) limit, specified in number of
hops that can be traversed by any given packet (for
instance IPv6 packets include a hop limit field [11]).
It is also the case of many overlay networks (such as
peer-to-peer file sharing networks) that employ flood-
ing protocols for peer discovery which specify a max-
imum number of hops to be visited by a request (for
instance Gnutella, which employs a flooding-based
routing algorithm with a TTL value of 7 hops [19]).
As the classical reliability measure does not capture
the distances between the network nodes, the DCR
can be applied to assess the probability of establish-
ing a connection by setting, for example, the diameter
bound D equal to the maximum number of hops to be
visited by a packet or request. Another scenario for
P2P networks is obtained if the link reliability value
represents the probability that a pair of given nodes
are in each other routing tables. In that case, the DCR
models the fraction of the peers than can be reached
from an arbitrary node. the The DCR measure sub-
sumes the classical reliability in the following sense;
as any path in a network on n vertices is composed
of at most n − 1 edges, then RK(G,D) = RK(G),
whenever D = n − 1. As the calculation of the clas-
sical reliability for an arbitrary set of terminal ver-
tices K is an NP-Hard problem [1], then evaluation
of the DCR is an NP-Hard problem as well. For fixed
number of terminal vertices K, and for fixed values
of the bound D, Cancela and Petingi [7] proved that
to determine RK(G,D) is also an NP-Hard problem.
Monte Carlo techniques have been shown to be ex-
cellent candidates to accurately estimate the classical
reliability [4, 5] as well as to calculate the DCR [6].

For the classical reliability, topological reductions
(e.g., series reduction, degree-2 reduction, parallel re-
duction, polygon-to-chain reductions) can be applied
to a graph to reduce its size while preserving the relia-
bility, and therefore reducing the computational effort
for its evaluation. A series-parallel graph is a graph
G = (V,E) that can be reduced to single edge by
application of series-parallel reductions, and, for any
arbitrary set of terminal vertices K, RK(G) can be

computed in time O(|E|) [21]. For fixed values of
the diameter bound D, with the exception of parallel
reductions, the aforementioned transformations can-
not be applied to evaluate the DCR, as these topologi-
cal transformations may change the distance between
nodes of a graph (and therefore its diameter). As
for this case these transformations are not reliability-
preserving, the deletion of D-irrelevant edges can be
considered as the alternative to efficiently calculate
RK(G,D), as well as possibly determine families of
graphs in which RK(G,D) can be calculated in poly-
nomial time.

An edge e of a graph G is said to be irrel-
evant if deletion of the edge (denoted as G − e)
preserves the K-terminal Diameter-Constrained reli-
ability, that is, RK(G,D) = RK(G − e,D), for
a given diameter bound D. For the specific case
when K = {s, t}, an edge e that does not belong to
any D-s, t-path can be then deleted without affecting
the reliability. In [8] a preliminary study addressing
D-irrelevancy was presented to show how the com-
putational effort to evaluate the Source-to-terminal
Diameter-Constrained reliability of graphs can be im-
proved when irrelevant edges are efficiently detected
(and then deleted); among other results we are extend-
ing this study by presenting new sufficient conditions
to identify a superset of the D-irrelevant edges identi-
fied in [8].

The paper is structured as follows. In Section 2
we introduce notation and definitions pertaining to
the concept of edge-irrelevancy and of the DCR. As
the classical reliability is a special case of the Di-
ameter Constrained reliability (i.e., when the diame-
ter bound D = n − 1 for graphs on n vertices), in
Section 3 we present a review of known reliability-
preserving topological transformations applied to im-
prove the computational effort to evaluate the classi-
cal reliability (and therefore of the DCR), and char-
acterize families of graphs for which the reliability
can be computed in polynomial time. Since for fixed
values of D, these transformations are not reliability-
preserving, we introduce new sufficient conditions, in
addition to the ones presented in [8], to efficiently
identify irrelevant edges in graphs. In Section 4,
we show how these sufficient conditions can be em-
bedded within the frame of a procedure based on
Moskowitz’s Theorem (i.e., Factoring Theorem) to
evaluate R{s,t}(G,D). In Section 5 we present a com-
putational analysis of Factoring Theorem, when a pro-
cedure to detect irrelevant edges is present or not, in
order to compute R{s,t}(G,D), based on computa-
tional experiments (illustrated in Appendix A) per-
formed on different families of topologies. Finally,
in Section 6, we present conclusions and further re-
search.
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2 Definitions and notation
In this section we introduce definitions and notation
that will be used in the sequel.

Definition 1 (Path) - An s, t-path is a sequence of dis-
tinct vertices < u0 = s, u1, u2, . . . , ur−1, t = ur >
of a graph G, such that (ui, ui+1) is an edge of G,
0 ≤ i ≤ r − 1. If each edge e = (u, v) is as-
signed an integer weight w(e), the length of an s, t-
path p =< u0 = s, u1, u2, . . . , ur−1, t = ur > is
LG(p) =

∑r−1
i=0 w((ui, ui+1)). For the unweighted

case, or equivalently when each edge is assigned a
weight of one, then the length LG(p) is the number of
edges comprising the path p.

Definition 2 (Simple Cycle) - A simple cycle is a se-
quence of vertices < u0 = x, u1, u2, . . . , ur−1, y =
ur > of a graph G, such that (ui, ui+1) is an edge of
G, 0 ≤ i ≤ r− 1, and all the vertices of the sequence
are distinct except for x = y .

Definition 3 (Irrelevancy and Critical graphs) - An
s, t-path p is called a D-s, t-path if L(p) ≤ D
(i.e., the path length is at most D). Given a graph
G = (V,E), a distinguished set of terminal vertices
set K = {s, t}, and a diameter bound D, and edge
e = (u, v) ∈ E is said to be D-relevant if e lies in
some D-s, t-path, otherwise e is D-irrelevant. If every
edge of G is D-relevant then G is called D-diameter-
critical.

Definition 4 (Distance and Diameter) - The distance
between two vertices x, y of G is distanceG(x, y) =
min{LG(p) : p is an x, y-path of G}. Moreover the
K-diameter is the maximum distance between vertices
of K.

Definition 5 (Degree) - The degree of a vertex v of a
graph G, denoted as degG(v), is the number of edges
incident at v.

We are also introducing notation to describe topo-
logical transformations in graphs.
◦ Given two graphs G1 = (V1, E1) and G2 =

(V2, E2), and two distinct vertices a, b such that
a ∈ V1 and b ∈ V2, let G1a.e.bG2 describe the op-
eration of joining G1 and G2 by an edge e = (a, b).

◦ Given two paths p1 =< u0, u1, u2, . . . , ur−1, ur >,
and p2 =< v0, v1, v2, . . . , vm−1, vm >, and two
distinct vertices u and v of p1 and p2, respectively,
let p1u.e.vp2 describe the operation of joining p1
and p2 by an edge e = (u, v).

In the following section we present a review of
well-known reliability-preserving transformations ap-
plicable to the classical reliability for a graph G =
(V,E) (and therefore applicable to evaluate the DCR
when D = |V | − 1) and the D-irrelevancy problem to
efficiently identify irrelevant edges for fixed values of
D.

3 Reliability-preserving transforma-
tions for the classical and Diameter
Constrained reliability measures

3.1 Reductions applicable to the classical re-
liability and to the DCR when D = n−1,
for graphs on n vertices

This sub-section is intended as a brief review of topo-
logical reductions known to reduce the computational
effort to evaluate the classical reliability (further de-
tailed information can be found in [20, 21, 22, 24,
25]).

Given a probabilistic graph G = (V,E), the K-
terminal Diameter Constrained reliability, RK(G,D),
is equal to the K-terminal reliability, RK(G), when-
ever D = n − 1, where n = |V |; consequently
reliability-preserving reductions applicable for the
classical case to reduce the computational effort to
evaluate RK(G), in addition to possibly identifying
families of graphs in which the reliability can be eval-
uated in polynomial time (as the general problem is
NP-Hard), can be extended for the evaluation of the
DCR as well.

For fixed values of the diameter bound D, and
for the case of the DCR, these reductions are not
reliability-preserving, as they may change the distance
between nodes of a graph in an arbitrary way; in the
next sub-section we will look at D-irrelevancy as the
alternative way to reduce the computation effort to
evaluate RK(G,D), for fixed D.

A simple reduction, is a reliability-preserving
transformation that reduces the size of a graph G =
(V,E), i.e. reduces |V | + |E|, and therefore the
computational complexity of evaluating RK(G): Cer-
tain edges and/or vertices in G are replaced to obtain
G′; possibly a new set K ′ is defined; and a multi-
plicative factor Ω is defined; all such that RK(G) =
ΩRK′(G′).

The following are simple reliability-preserving
reductions [20]:
◦ A parallel reduction replaces a pair of edges e1 =

(u, v) and e2 = (u, v), with a single edge e3 =
(u, v) with reliability re3 = 1 − qe1qe2 , K ′ = K,
and Ω = 1.
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◦ A series reduction replaces two edges e1 = (u, v)
and e2 = (v, w), under the assumption that
degG(v) = 2 (see Definition 5) , with a single edge
e3 = (u,w) with reliability re3 = re1re2 , K ′ = K,
and Ω = 1.

◦ A degree-2 reduction replaces two edges e1 =
(u, v) and e2 = (v, w), under the assumption that
degG(v) = 2, and {u, v, w} ⊆ K, with a single
edge e3 = (u,w) with reliability re3 = re1re2/(1−
qe1qe2), K

′ = K − {v}, and Ω = 1− qe1qe2 .
A graph G = (V,E) is called series-parallel if it

can be reduced to a single edge by successive applica-
tions of series-parallel reductions mentioned above. If
a probabilistic series-parallel graph G = (V,E), with
terminal vertex set K, can be reduced to a single edge,
then this graph is called series-parallel-reducible and
RK(G) can be computed in polynomial time. How-
ever, depending upon the location of the terminal
vertices, there are other series-parallel graphs that
cannot be reduced to a single edge (series-parallel-
irreducible) by successive applications of these sim-
ple reductions.

In [21], Satyanarayana and Wood introduced a
new set of reliability-preserving non-simple topolog-
ical transformations, called polygon-to-chain reduc-
tions, which in combination with the series-parallel
and degree-2 reductions aforementioned, reduce any
probabilistic series-parallel graph G = (V,E), and
for any arbitrary set of terminal vertices K ⊆ V , into
a single edge in time O(|E|); consequently the evalu-
ation of the classical reliability for any series-parallel
graph is achievable in polynomial time.

A chain ξ of a graph G is an al-
ternating sequence of vertices and edges
u0, (u0, u1), u1, (u1, u2), u2, . . . , ur−1, (ur−1, ur), ur
such that the internal vertices u1, u2, . . . , ur−1 of
the chain have all degree-2 in G and u0, and ur
have degree greater than 2. The length of a chain
is simply the number of edges it contains. Suppose
next that ξ1 and ξ2 are two distinct chains of length l1
and l2 respectively; if the two chains have common
end-vertices u and v in G, then ∆ = ξ1 ∪ ξ2 forms
a polygon. Satyanarayana and Wood showed that
any polygon, independently of its length, can be
transformed, using the simple reductions, into seven
elementary polygons in which terminal vertices were
assigned to different vertices of these polygons. By a
complex analysis, they showed that these elementary
polygons could be always transformed into chains
while preserving the calculation of the reliability.

For fixed values of the diameter bound D, except
for parallel reductions, the aforementioned reductions
are not reliability-preserving in case of the DCR. In
the next sub-section we consider how deletion of D-

irrelevant edges could be considered as the alterna-
tive to minimize the computational effort to evalu-
ate RK(G,D), for constant values of D and when
K = {s, t}.

3.2 The problem of D-irrelevancy and ef-
ficient calculation of the Source-to-
terminal Diameter Constrained reliabil-
ity

Given an edge e and two vertices s and t of a graph
G, e is D-relevant if and only if there exist an s, t-
path p among all s, t-paths containing e, such that
LG(p) ≤ D. Thus we are considering first the op-
timization problem of finding a shortest s, t-path of G
containing an specific edge e.

For the case in which negative integer weights
can be assigned to the edges of the graph, we show
next that to find a shortest s, t-path containing an
specific edge e is NP-Hard, by transforming the
Longest Path problem in which positive integer
weights are assigned to the edges of a graph, into this
decision problem:

P1: Shortest Path Containing an Specific Edge
(SPE)

Instance: Graph G′ = (V ′, E′), edge e∗, vertices
s′, t′ ∈ V ′, length l(e′) ∈ Z , for each e′ ∈ E′, and
bound k′ ∈ Z .

Question: Is there an s′, t′-path p′ of length k′ or
less containing the edge e∗ (i.e., L(p′) ≤ k′)?

Consider next the Longest Path problem, to be
known to belong to the NP-Complete computational
class, when positive integer weights are assigned to
the edges [13]:

P2: Longest Path (SPP)
Instance: Graph G = (V,E), vertices s, t ∈ V ,

length l(e) ∈ Z+, for each e ∈ E, and bound k ∈
Z+.

Question: Is there an s, t-path p of length k or
greater (i.e., L(p) ≥ k)?

Lemma 6 The Shortest Path Containing an Specific
Edge problem, P1, is NP-Hard.

Proof: It is not known if SPE is in NP. Consider the
transformation from the Longest Path problem to the
SPE problem.

Let G = (V,E), vertices s, t ∈ V , length l(e) ∈
Z+, bound k ∈ Z+ be an instance of P2. Let G′ =
(V ′, E′) be graph obtained by joining two copies of G
by an edge e∗ = (a, b) where a is vertex t of the first
copy of G and b is vertex s of the second copy of G,
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Figure 1: Transformation from the Longest Path prob-
lem to the Shortest Path Containing an Specific Edge.

that is, G′ = Gt.e∗.sG. Moreover let the vertices s′

and t′ be the vertices of G′ corresponding to vertex s
of first copy of G and vertex t of the second copy of
G, respectively. In addition, for each edge e′ ∈ E′,
let l(e′) = −l(e) where e is e′ corresponding edge
in G (as the edges of G have been assigned positive
weights, then the edges of G′ have negative weights).
Moreover let l(e∗) = −1, and k′ = −2k − 1 (see
Figure 1).

Suppose G contains an s, t-path p of length
LG(p) ≥ k. As LG′(p) = −LG(p) then the path
p′ = pt.e∗.sp is an s′, t′-path in G′ containing e∗. As
LG(p) ≥ k then LG′(p′) ≤ −2k − 1.

Conversely let p′ be an s′, t′-path in G′ of length
LG′(p′) ≤ k′. The path p′ must contain the edge e∗, as
otherwise p′ is not a s′, t′-path, thus p′ = p′1t.e

∗.sp′2,
where p′1 and p′2 are s, t-paths in the first and sec-
ond copy of G, respectively. But as LG′(p′) ≤ k′ =
−(2k + 1) then either LG′(p′1) ≤ −k or LG′(p′2) ≤
−k, then G contains a path whose length is greater or
equal to k, as p′1 and p′2 are paths in G ⊓⊔

If the optimization problem SPE is extended to
find a shortest s, t-path containing a predefined set of
edges (or vertices), then the problem is NP-Hard as
well, as the above proof can be generalized by replac-
ing the edge e∗ by a path with a fixed number of edges,
where each edge of the path is assigned a weight of -1.

When positive weights are assigned to the edges,
little is known regarding the corresponding optimiza-
tion problem of finding a shortest s, t-path containing
an specific edge (or a predefined set of edges), even
though this problem has been studied since the 1960s.
In a recent paper by Bijörklund et al. [2], the authors
studied the problem of finding a shortest simple cy-
cle through a set of elements B ⊂ V ∪ E (i.e., ver-

tices and edges), and a randomized algorithm (of order
2|B|nO(1)) was introduced for any arbitrary set B of
elements. This problem is equivalent to the problem
of finding a shortest s, t-path through a set of edges (or
vertices), as an edge between s and t can be added, if
s and t are not adjacent, to form a simple cycle. How-
ever, according to this paper, little is known regard-
ing the optimal solution of this optimization problem
when b = |B| is a constant, b ≥ 3. Thus it is not clear
if there exist a computationally efficient way to de-
termine necessary and sufficient conditions to classify
an edge e as D-irrelevant or not. However in [8], suf-
ficient conditions to identify D-irrelevant edges were
introduced, and are stated in the following proposi-
tion:

Proposition 7 Given a graph G = (V,E), a diam-
eter bound D ∈ Z+, and an edge e = (u, v) of
G. If distanceG(s, u) + distanceG(v, t) ≥ D and
distanceG(s, v) + distanceG(u, t) ≥ D, then e is
D-irrelevant.

Given a graph G = (V,E), let n = |V | and
m = |E|. The distance (see Definition 4) between
s and any other vertex of the graph, can be efficiently
determined by application of Dijkstra’s Shortest Path
algorithm (DSPA for short) [12] of order O(m + n).
From Definition 3, it follows that edges that do not be-
long to any s, t-path are also irrelevant; it is important
to note that if G is one-connected (i.e., there exist a
vertex, called a cut-point, whose deletion disconnects
G), and s and t belong to a two-connected compo-
nent C = (Vc, Ec), any edge e that does not belong
to this component, is also D-irrelevant as no s, t-path
containing e exists in G; thus it is possible that Propo-
sition 7 won’t recognize e as irrelevant. In this case,
edges that belong to blocks (two-connected compo-
nents) other than C, can be efficiently identified by
a linear-time algorithm based on bi-connectivity the-
ory [10]. Next suppose that G has more than one
connected component, then if s and t belong to a
same connected component (not necessarily a two-
connected one) C = (Vc, Ec), any edge e that does
not belong to C is also irrelevant. In this case Propo-
sition 7 will classify this edge as D-irrelevant as the
original distance between s and a end-point of e is set
to infinite by Dijkstra’s algorithm.

We are proposing next sufficient conditions which
detect a superset of the set of D-irrelevant edges iden-
tified by Proposition 7.

Proposition 8 Given a graph G = (V,E), a diam-
eter bound D ∈ Z+, and an edge e = (u, v) of G.
If distanceG−e(s, u) + distanceG−e(v, t) ≥ D and
distanceG−e(s, v) + distanceG−e(u, t) ≥ D, then e
is D-irrelevant.
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Proof: Suppose that e = (u, v) is D-relevant, then as
e belongs to a D-s, t-path, at least one of the following
conditions is true:

1. There exist an s, t-path p =< s = u1, u2, . . . ,
u, v, . . . , uL, uL+1 = t > of length L ≤ D.
Thus the length of sub-path p1 =< s = u1, u2,
. . . , u > plus the length of sub-path p2 =<
v, . . . , uL, uL+1 = t > is at most D − 1.

2. There exist an s, t-path p =< s = v1, v2, . . . ,
v, u, . . . , vL′ , vL′+1 = t > of length L′ ≤ D.
Thus the length of sub-path p3 =< s = v1, v2,
. . . , v > plus the length of sub-path p4 =<
u, . . . , vL′ , vL′+1 = t > is at most D − 1.

As the sub-paths p1, p2, p3, and p4 are paths in G−e,
then

• distanceG−e(s, u)+distanceG−e(v, t) < D, or

• distanceG−e(s, v) + distanceG−e(u, t) < D.

By the contrapositive, if (distanceG−e(s, u) +
distanceG−e(v, t) ≥ D) and (distanceG−e(s, v) +
distanceG−e(u, t) ≥ D) then e is D-irrelevant ⊓⊔

It is obvious that if the conditions stated in Propo-
sition 7 recognize a set of D-irrelevant edges S1, then
the conditions specified by Proposition 8 find a set of
D-irrelevant edges S2 where S1 ⊆ S2.
In Figure 2 a graph is depicted in which edges
(1, 2), (2, 3), and (3, 4) are D-irrelevant, whenever
D = 5. In this case S1 = ∅ as the conditions stated
by Proposition 7 are not met. However by application
of Proposition 8, if e = (1, 2), (distanceG−e(s, 1) +
distanceG−e(2, t) ≥ 5) and (distanceG−e(s, 2) +
distanceG−e(1, t) ≥ 5), as distanceG−e(s, 1) = 1,
distanceG−e(2, t) = 4, distanceG−e(s, 2) = 4, and
distanceG−e(1, t) = 4. Similarly edges (2, 3), and
(3, 4) are also identified as D-irrelevant by Proposi-
tion 8.

We next present two procedures, Irrelevant-P1()
([8]) and Irrelevant-P2(), to detect irrelevant edges,
based on Proposition 7 and Proposition 8, respec-
tively:

Irrelevant-P1()
Input: Graph G = (V,E), terminal set K = {s, t},
diameter bound D.

1. delete from G edges that do not belong to any
s, t-path.

2. call DSPA twice, once to find the
distanceG(s, v) for every vertex v ∈ V ,
and then to find distanceG(t, v) for every vertex
v ∈ V (order O(m+ n)).

3. delete the edges from G that meet the conditions
stated in Proposition 7.

4. if there still edges in G that do not belong to any
s, t-path, go to Step 1,
else Exit.

Irrelevant-P2()
Input: Graph G = (V,E), terminal set K = {s, t},
diameter bound D.

1. delete from G edges that do not belong to any
s, t-path.

2. for every edge e = (u, v) of G do

2.1 delete e from G. Apply DSPA to G− e.

2.2 if conditions stated in Proposition 8 for the
end-vertices of e = (u, v) are met Skip (the
edge is D-irrelevant thus consider G− e),
else put-back e in G.

3. if there still edges in G that do not belong to any
s, t-path, go to Step 1,
else Exit.

In Step 1 of procedures Irrelevant-P1() and
Irrelevant-P2(), all the edges that do not belong to
any s, t-path can be identified by a linear-time algo-
rithm based on bi-connectivity theory [10].

Despite of the fact that procedure Irrelevant-P2()
finds a superset of the edges detected by Irrelevant-
P1(), the conditions stated in Step 2 of the latest are
determined by just two application of Dijkstra’s algo-
rithm in time O(m + n), while the distance condi-
tions stated in Proposition 8 are determined in time
O(m2), as we must apply DSPA m times (i.e. Step 2
of Irrelevant-P2()), each time when we delete a pos-
sible irrelevant edge e from G; the trade-off between
the number of irrelevant edges recognized, and the
computational complexity for detecting these edges,
when applying these procedures, has to be further in-
vestigated (Section 5).

As it was mentioned in the Introduction, both the
classical reliability and the DCR can be computed
by application of a procedure based on a theorem of
Moskowitz (i.e., Factoring Theorem), in which the re-
liability of the probabilistic graph G can be computed
in term of the reliabilities of two (possibly smaller)
networks derived from G by fixing the state of a se-
lected edge e either up (i.e., e is operational) or down
(i.e., e failed). In the next section we consider the
problem of embedding a procedure to determine ir-
relevant edges (by either applying Irrelevant-P1() or
Irrelevant-P2()) within the context of Moskowitz’s
Theorem.
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Figure 2: Graph G = (V,E) and diameter bound D =
5.

4 Moskowitz and computation of
the Source-to-terminal Diameter-
Constrained Reliability

Moskowitz’s Decomposition Theorem express the re-
liability of a network G as a function of the reliabili-
ties of the two networks obtained from G by fixing the
state of a selected edge e either up (i.e., re is set to 1)
or down (i.e., re is set to 0). Moskowitz’s decompo-
sition was extensively used within the context of the
classical reliability (see [15, 18, 22, 24, 25]). Within
this context we say that the random state of an edge e
is undetermined if 0 < re < 1 [8].

Theorem 9 For any network G that has at least one
edge e whose random state is undetermined then

R{s,t}(G,D) =

reR{s,t}(G ∗ e,D) +

(1− re)R{s,t}(G− e,D), where

◦ e is an edge with undetermined random state in G if
0 < re < 1.

◦ G ∗ e is the network obtained from G by fixing the
edge e up (i.e., re = 1).

◦ G− e is the network obtained from G by fixing edge
e down (i.e., re = 0, or equivalently e is deleted
from G).

Consider a procedure Factoring( ) to evaluate
R{s,t}(G,D), derived from Theorem 9; this proce-
dure describes a binary tree in which each node j of
this tree represents a subgraph of G, Gj , in which its
edges are either operational (reliability 1), have failed
(reliability 0), or whose random states are undeter-
mined (the root node of the derived binary tree repre-
sents the original network G). For each of the possi-
ble subgraphs Gj’s, its Source-to-terminal Diameter-

Constrained reliability is then calculated as:

R{s,t}(Gj , D) =



0 : if there is no D-s, t-path in
Gj .

1 : if Gj contains an operational
D-s, t-path.

reR{s,t}(Gj ∗ e,D)+

(1− re)R{s,t}(Gj − e,D) :

e is undetermined.

We can embed either procedure Irrelevant-
P1() or procedure Irrelevant-P2(), described in
Section 3, within Factoring( ), to possibly delete
irrelevant edges in each of the states Gj of the binary
tree generated by the application of the recursive
function previously stated, to possibly shorten the
computational effort. The following procedure,
called Fact-Reductions−i(), evaluates the Source-
to-terminal Diameter-Constrained reliability of a
network while enforcing the deletion of irrelevant
edges identified by procedure Irrelevant-Pi()
(i ∈ {1, 2}). Procedure Fact-Reductions−i() re-
ceives five parameters, namely the network topology
G, the source and terminal nodes s and t, the diameter
constraint D, and a flag called flagr, which indicates
whether further reductions are or are not possible. At
the first invocation, flagr is set to 1.

Procedure Fact-Reduction−i(G, s, t,D, flagr)
Input: network G = (V,E), s, t, D, and flagr
Output: reliability R{s,t}(G,D)

1. Check end recursion condition:

1.1. If G contains a D-s, t-path having only op-
erational edges return (1).

1.2. If there is no D-s, t-path in G return (0).

2. Apply procedure to detect irrelevant edges:

2.1. If (flagr = 1) call Irrelevant-
Pi(G, s, t,D).

3. Select randomly an edge e in G with undeter-
mined state.

4. Solve recursively for G− e : R{s,t}(G− e,D) =
Fact-Reduction−i(G− e, s, t, 1).

5. Solve recursively for G ∗ e : R{s,t}(G ∗ e,D) =
Fact-Reduction−i(G ∗ e, s, t, 0).

6. Compute R{s,t}(G,D) : return (R{s,t}(G,D) =
(1− re)R{s,t}(G− e,D) + reR{s,t}(G ∗ e,D)).
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In the next section we present experimental re-
sults to compare the computational performances
of Factoring( ), Fact-Reduction−1(), and Fact-
Reduction−2().

5 Analysis of experimental results il-
lustrated in Appendix A

In this section we compare the computational effort
and other performance metrics yielded by the three
methods mentioned in Section 4, that is, Factoring(
), and Fact-Reduction−1(), Fact-Reduction−2(),
based on experimental results illustrated in Appendix
A. Tests were performed on different families of
topologies, which encompass the Arpanet, the 5X5-
Grid, the Dodecahedron, and Circulant graphs Cn

1,n/2

on n vertices with jumps 1 and n/2 (see Figure 3), and
they were chosen on the basis of they previous use in
the related literature. As most of these topologies are
of relatively low-density, we have also performed tests
on high-density graphs such as complete graphs (Kn)
on n vertices.

In [8] computational experiments were performed
on the same families of topologies as the one shown
in Figure 3, to compare the performance of Factor-
ing( ), with the performance of Fact-Reduction−1(),
and by taking into account different values of the di-
ameter bound D. The tests performed in this work
were geared to complement the study presented in [8],
by also presenting computational results obtained by
embedding procedure Irrelevant-P2() within Factor-
ing( ), and run on the same set of topologies.

For all tests, an unique probability of failure qe =
0.5 was assigned to each edge e ∈ E. In Table 1 and
Table 2 of Appendix A, the data shown in columns
1 through 3 represent the type of topology, the la-
bel of the source and terminal nodes of the topology,
and the diameter bound D, respectively. Column 4
shows the value of the Source-to-terminal Diameter
Constrained reliability; columns 5 and 6, 7 and 8,
and 9 and 10, represent the tree size (i.e., the number
of nodes generated by factoring recursive algorithm)
and CPU time (in seconds) taken by Factoring( ),
Fact-Reduction−1(), and Fact-Reduction−2() pro-
cedures, respectively.

In agreement with the conclusions stated in [8],
the experimental results illustrated by Table 1 and
Table 2 show a consistent computational gain ob-
served when elimination of irrelevant edges was per-
formed on most topologies, either by applying Fact-
Reduction−1() or Fact-Reduction−2(), especially
when low-density topologies were tested (e.g., Circu-
lants, Dedocahedron); the most significant gain was
observed when tests were performed on the 5X5-

Grid topology (Table 1). We think that detection
of irrelevant edges may play an important role when
studying the computational complexity for evaluating
R{s,t}(G,D) for low-density graphs.

For topologies composed of n nodes, the compu-
tational gain when detecting irrelevant edges is partic-
ularly important for low values of the diameter bound
D, and it becomes less significant when D increases
toward the maximum value n− 1 (i.e., as stated in the
Introduction R{s,t}(G,D) approaches the classical re-
liability value R{s,t}(G)), or when tests were per-
formed on high-density topologies (e.g., K7 or K8).

The comparison between Fact-Reduction−1()
and Fact-Reduction−2() yields a computational gain
when the latest was applied on most of the classes of
topologies, and for most values of the diameter bound
D, except when the D bound was approaching n− 1,
or when tests were conducted on high-density graphs.
It is important to note that the number of recursive
calls (i.e., tree size) was consistently less when Fact-
Reduction−2() was applied on most topologies.

6 Conclusions and further research

The purpose of this work is to present a study of
the optimization problem of identifying D-irrelevant
edges and diameter-related problems in graphs, from
a computational point of view. Since presently is
unknown if necessary and sufficient conditions that
can efficiently (polynomial time) detect all irrelevant
edges exist (the equivalent problem when edges with
negative integer weights are allowed is NP-Hard), we
have introduced new sufficient conditions that can ef-
ficiently recognize a subset of the D-irrelevant edges.
We then presented numerical results illustrating the
importance of embedding a procedure to detect irrele-
vant edges based on these conditions, in combination
with an algorithm derived from Moskowitz’s Decom-
position Theorem, in order to evaluate R{s,t}(G,D).

Future work will comprise the determination of
classes of topologies for which R{s,t}(G,D) can be
evaluated in polynomial time (e.g., sparse graphs) as
suggested by the computational analysis presented in
Section 5.
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7 Appendix A (experimental results)

d)

0

0

19

c)

0

6

12

18

24

a) b)

19

Figure 3: Classes of topologies: a) 5X5-Grid, b) Arpanet, c) Dodecahedron, and d) Circulant C16
1,8.

G (s, t) D Fact Fact-R-1 Fact-R-2
Rs,t(G,D) tree-size CPU-t (s) tree-size CPU-t (s) tree-size CPU-t (s)

5X5Grid (0,20) 8 0.176359 N/A > 24 hours 317631 1 232109 1
5X5Grid (0,6) 8 0.498971 353362807 883 43661 < 1 28723 < 1
5X5Grid (0,12) 8 0.339515 1.09e +09 2706 16333687 98 8559269 93
5X5Grid (0,18) 8 0.234521 N/A > 24 hours 1.005e +09 4903 483325443 4113
5X5Grid (0,24) 8 0.123324 N/A > 24 hours 1.035e +09 5246 1.035e +09 7685

Table 1: Comparison of the three methods (Factoring(), Fact-Reduction−1(), and Fact-Reduction−2()) on the
5X5-Grid. Computations whose execution time exceeded 24 hours were aborted.
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G (s, t) D Fact Fact-R-1 Fact-R-2
Rs,t(G,D) tree-size CPU-t (s) tree-size CPU-t (s) tree-size CPU-t (s)

Dodeca (0,19) 5 0.168441 44015523 95 27935 <1 27935 < 1
7 0.268820 79223841 170 19313039 89 11353599 79
9 0.285391 92836783 201 66597743 298 31235671 255

Arpanet (0,19) 4 0.162109 13803603 19 97 < 1 97 < 1
6 0.237618 62130037 103 362293 1 80109 < 1

9 0.295711 214988177 373 106920719 399 61103239 371
19 0.302415 263588889 475 261395215 876 109031949 690

K6 (0,5) 3 0.913330 44673 < 1 32305 < 1 29731 < 1
5 0.923584 45417 < 1 45369 < 1 42655 < 1

K7 (0,6) 3 0.953217 2634387 9 1535477 22 1454955 23
4 0.962086 2675467 8 2593747 40 2482975 34
5 0.963001 2679667 8 2673787 38 2566875 46

K8 (0,7) 2 0.911011 277526209 1550 2915 0 2915 0
3 0.975735 313904521 1185 140021817 1143 135421811 1343
5 0.982520 317848021 1197 317225461 2557 308845439 3358
7 0.982573 317878981 234 317877541 546 309523559 678

C20
1,10 (0,19) 5 0.578125 207057 0 337 0 157 0

9 0.581543 1592451 2 7013 0 2813 0
11 0.584226 6190747 11 1264923 4 1185547 4
17 0.587613 15617515 27 15188151 48 6622651 33

Table 2: Comparison of the three methods (Factoring(), Fact-Reduction−1(), and Fact-Reduction−2()) on the
Dodecahedron, Arpanet, Complete graphs on 6, 7, 8 vertices, and the Circulant on 20 vertices with jumps 1 and
10.
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