A new type of sequence space of non-absolute type and matrix transformation

Neyaz Ahmad Sheik
NIT Srinagar
Department of Mathematics
Hazratbal Srinagar-190006, Kashmir
INDIA
neyaznit@yahoo.co.in

Ab. Hamid Ganie*
NIT Srinagar
Department of Mathematics
Hazratbal Srinagar-190006, Kashmir
INDIA
ashamidg@rediffmail.com

Abstract: In this paper, we introduce the space \(r^q(\triangle u^p) \), where

\[
r^q(\triangle u^p) = \{ x = (x_k) \in \omega : (\triangle x_k) \in r^q(u, p) \};
\]

where \(r^q(u, p) \) has recently been introduced and studied by Neyaz and Hamid (Acta Math. Acad. Paeda. Nyreg., 28, 2012, pp. 47-58). We show its completeness property, prove that the space \(r^q(\triangle u^p) \) and \(l(p) \) are linearly isomorphic and compute \(\alpha, \beta \) and \(\gamma \)-duals of \(r^q(\triangle u^p) \). Moreover, we construct the basis of \(r^q(\triangle u^p) \). Finally, we characterize some matrix class.

Key-Words: Sequence space of non-absolute type; paranormed sequence space; \(\alpha, \beta \) and \(\gamma \)-duals; matrix transformations.

1 Introduction

We denote the set of all sequences with complex terms by \(\omega \). It is a routine verification that \(\omega \) is a linear space with respect to the co-ordinatewise addition and scalar multiplication of sequences which are defined, as usual, by

\[
x + y = (x_k) + (y_k) = (x_k + y_k)
\]

and

\[
\alpha x = \alpha (x_k) = (\alpha x_k),
\]

respectively; where \(x = (x_k), y = (y_k) \in \omega \) and \(\alpha \in \mathbb{C} \). By sequence space we understand a linear subspace of \(\omega \) i.e. the sequence space is the set of scalar sequences (real or complex) which is closed under co-ordinate wise addition and scalar multiplication. Throughout the paper \(N, R \) and \(C \) denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let \(l_\infty, c \) and \(c_0 \), respectively, denotes the space of all bounded sequences, the space of all convergent sequences and the sequences converging to zero. Also, by \(l_1, l(p), cs \) and \(bs \) we denote the spaces of all absolutely convergent, \(p \)-absolutely convergent, convergent and bounded series, respectively.

The classical summability theory deals with a generalization of convergence of sequences and series. One original idea was to assign a limit to divergent sequences or series. Toeplitz [1] was the first to study summability methods as a class of transformations of complex sequences by complex infinite matrices. The theory of matrix transformations is a wide field in summability; it deals with the characterizations of classes of matrix mappings between sequence spaces by giving necessary and sufficient conditions on the entries of the infinite matrices.

Let \(X, Y \) be two sequence spaces and let \(A = (a_{nk}) \) be an infinite matrix of real or complex numbers \(a_{nk} \), where \(n, k \in N \). Then, the matrix \(A \) defines the \(A \)-transformation from \(X \) into \(Y \), if for every sequence \(x = (x_k) \in X \) the sequence \(Ax = \{ (Ax)_n \} \), the \(A \)-transform of \(x \) exists and is in \(Y \); where \((Ax)_n = \sum_k a_{nk} x_k \). For simplicity in notation, here and in what follows, the summation without limits runs from 0 to \(\infty \). By \(A \in (X : Y) \) we mean the characterizations of matrices from \(X \) to \(Y \) i.e., \(A : X \rightarrow Y \). A sequence \(x \) is said to be \(A \)-summable to \(l \) if \(Ax \) converges to \(l \) which is called as the \(A \)-limit of \(x \).

We denote by \((A) \) the set of all sequences which are summable \(A \). The set \((A) \) is called summability field of the matrix \(A \). Thus, if \(Ax = \{ (Ax)_n \} \), then \((A) = \{ x : Ax \in c \} \), where \(c \) is the set of convergent sequences. For example, \((I) = c \).

For a sequence space \(X \), the matrix domain \(X_A \)
of an infinite matrix A is defined as

$$X_A = \{ x = (x_k) : Ax \in X \}. \quad (1)$$

A infinite matrix $A = (a_{nk})$ is said to be regular [2, 3] if and only if the following conditions hold:

(i) $\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = 1$,

(ii) $\lim_{n \to \infty} a_{nk} = 0$, $(k = 0, 1, 2, \ldots)$,

(iii) $\sum_{k=0}^{\infty} |a_{nk}| < M$, $(M > 0, n = 0, 1, 2, \ldots)$.

Let (q_k) be a sequence of positive numbers and let us write, $Q_n = \sum_{k=0}^{n} q_k$ for $n \in N$. Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean (R, q_n) is given by

$$r_{nk}^q = \left\{ \begin{array}{cl} \frac{q_k}{Q_n}, & 0 \leq k \leq n, \\ 0, & k > n \end{array} \right.$$

The Riesz mean (R, q_n) is regular if and only if $Q_n \to \infty$ as $n \to \infty$ [3].

Kizmaz [4] defined the difference sequence spaces $Z(\Delta)$ as follows

$$Z(\Delta) = \{ x = (x_k) \in \omega : (\Delta x_k) \in Z \}$$

where, $Z \in \{l_\infty, c, c_0\}$ and $\Delta x_k = x_k - x_{k+1}$.

Başar and Altay [5] has studied the sequence space as

$$bv_p = \{ x = (x_k) \in \omega : \sum_{k} |x_k - x_{k-1}|^p < \infty \},$$

where $1 \leq p < \infty$. With the notation of (1), the space bv_p can be redefined as

$$bv_p = (l_p)_\Delta, 1 \leq p < \infty$$

where, Δ denotes the matrix $\Delta = (\Delta_{nk})$ defined as

$$\Delta_{nk} = \left\{ \begin{array}{cl} (-1)^{n-k}, & if \ n - 1 \leq k \leq n, \\ 0, & if \ k < n - 1 \ or \ k > n \end{array} \right.$$

This space was further studied by Başar, Altay and Mursaleen [6] and have introduced $bv(u, p)$ and $bv_\infty(u, p)$ which are defined as follows:

$$bv(u, p) = \{ x = (x_k) \in \omega : \sum_{k} |u_k \Delta x_k|^{p_k} < \infty \},$$

where $0 \leq p_k < \infty$ and

$$bv_\infty(u, p) = \{ x = (x_k) \in \omega : \sup_{k} |u_k \Delta x_k|^{p_k} < \infty \}.$$

With the notation of (1), the space $bv(u, p)$ and $bv_\infty(u, p)$ can be redefined as

$$bv(u, p) = [l(p)]_{\Delta^{\infty}} \ \text{and} \ \bv_\infty(u, p) = [l_\infty(p)]_{\Delta^{\infty}}$$

where, Δ^{∞} denotes the matrix $\Delta = (\Delta_{nk}^{\infty})$ defined as:

$$\Delta_{nk}^{\infty} = \left\{ \begin{array}{cl} (-1)^{n-k}u_k, & if \ n - 1 \leq k \leq n, \\ 0, & if \ k < n - 1 \ or \ k > n. \end{array} \right.$$

for all $n, k \in N$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors [5-30]. They introduced the sequence spaces

$$l_p = (l_p)^F, (l_\infty)_{c0}, (l_\infty)_{c0} \ [7], \ \text{and} \ \{c, c_0\} \ [8],$$

$$c_{00} = (c_0)^F, (c_\infty)_{c0} = (c_\infty)^F \ [9], \ \text{and} \ \{c, c_0\} \ [10],$$

$$r_p = (r_p)^F, (r_\infty)_{c0} = (r_\infty)^F \ [11], \ \text{and} \ \{c, c_0\} \ [12].$$

The Riesz Sequence space $r^q(\Delta^p_u)$ of non-absolute type

In this section, we define the Riesz sequence space $r^q(\Delta^p_u)$, prove that the space $r^q(\Delta^p_u)$ is complete paranormed linear space and it is shown to be linearly isomorphic to the space $l(p)$.

A linear Topological space X over the field of real numbers R is said to be a paranormed space if there is a sub-additive function $h : X \to R$ such that $h(\theta) = 0$, $h(-x) = h(x)$ and scalar multiplication is continuous, that is, $|ax| - |a| \to 0 \ and \ h(x-y) \to 0 \ imply \ h(ax, x-y) \to 0 \ for \ all \ a' \ in \ R \ and \ x \ in \ X$, where θ is a zero vector in the linear space X. Assume here and after that (p_k) be
a bounded sequence of strictly positive real numbers with \(\sup_k p_k = H \) and \(M = \max \{1, H\} \). Then, the linear spaces \(l(p) \) and \(l_\infty(p) \) were defined by Maddox [2] (see also, [25,26]) as follows:

\[
l(p) = \{ x = (x_k) : \sum_k |x_k|^{p_k} < \infty \}
\]

and

\[
l_\infty(p) = \{ x = (x_k) : \sup_k |x_k|^{p_k} < \infty \}
\]

which are complete spaces paranormed by

\[
h_1(x) = \left[\sum_k |x_k|^{p_k} \right]^{1/M}
\]

and

\[
h_2(x) = \sup_k |x_k|^{p_k/M}
\]

iff \(\inf p_k > 0 \).

We shall assume throughout the text that \(p_k^{-1} + \{p'_k\}^{-1} = 1 \) provided \(1 < \inf p_k \leq H < \infty \) and we denote the collection of all finite subsets of \(N \) by \(F \), where \(N = \{0, 1, 2, \ldots\} \).

Neyaz and Hamid [18] have recently introduced \(r^q(u, p) \) which is defined as:

\[
r^q(u, p) = \left\{ x = (x_k) \in \omega : \sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k q_j x_j \right\}
\]

where, \(0 < p_k \leq H < \infty \).

With the notation of (1) we redefine \(r^q(u, p) \) as:

\[
r^q(u, p) = \{ l(p) \} R^q_u.
\]

Following Başar and Altay [5], Mursaleen et al [17, 23], Hamid et al [18, 23, 24], Basarir [27], Choudhary and Mishra [28], Gross Erdmann [30], Tripathy [31], we define the Reisz sequence space \(r^q(\triangle^p_u) \) as the set of all sequences such that \(R^q \triangle \)-transform of it is in the space \(l(p) \), that is,

\[
r^q(\triangle^p_u) = \left\{ x = (x_k) \in \omega : \sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k q_j \triangle x_j \right\}
\]

where, \(0 < p_k \leq H < \infty \).

\section*{Remark 1}

If we take \((u_k) = e = (1, 1, \ldots) \) in \(r^q(\triangle^p_u) \), we get the results obtained in [27].

With the notation of (1) we redefine \(r^q(\triangle^p_u) \) as:

\[
r^q(\triangle^p_u) = \{ l(p) \} _R^q_u.
\]

Define the sequence \(y = (y_k) \), which will be used, by the \(R^q \triangle \)-transform of a sequence \(x = (x_k) \), i.e.,

\[
y_k = \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k q_j \triangle x_j.
\]

Now, we begin with the following theorem which is essential in the text.

\section*{Theorem 2}

\(r^q(\triangle^p_u) \) is a complete linear metric space paranormed by \(h_\triangle \), defined as:

\[
h_\triangle(x) = \left[\sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k (q_j - q_{j+1}) x_j + \frac{q_k u_k x_k}{Q_k} \right]^{1 \over 2}
\]

with \(0 < p_k \leq H < \infty \).

\section*{Proof:}

The linearity of \(r^q(\triangle^p_u) \) with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for \(z, x \in r^q(\triangle^p_u) \) [2]

\[
\left[\sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k (q_j - q_{j+1}) (x_j + z_j) + \frac{q_k u_k x_k}{Q_k} \right]^{1 \over 2} \\
\leq \left[\sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k (q_j - q_{j+1}) x_j + \frac{q_k u_k x_k}{Q_k} \right]^{1 \over 2} \\
+ \left[\sum_k \frac{1}{Q_k} \sum_{j=0}^{k-1} u_k (q_j - q_{j+1}) z_j + \frac{q_k u_k z_k}{Q_k} \right]^{1 \over 2}
\]

and for any \(\alpha \in \mathbb{R} \) [32]

\[
|\alpha|^{p_k} \leq \max(1, |\alpha|^M).
\]

It is clear that, \(h_\triangle(\theta) = 0 \) and \(h_\triangle(x) = h_\triangle(-x) \) for all \(x \in r^q(\triangle^p_u) \). Again the inequality (3) and (4), yield the subadditivity of \(h_\triangle \) and

\[
h_\triangle(\alpha x) \leq \max(1, |\alpha|) h_\triangle(x).
\]

Let \(\{x^n\} \) be any sequence of points of the space \(r^q(\triangle^p_u) \) such that \(h_\triangle(x^n - x) \to 0 \) and \((\alpha_n) \) is a sequence of scalars such that \(\alpha_n \to \alpha \). Then, since the inequality,

\[
h_\triangle(x^n) \leq h_\triangle(x) + h_\triangle(x^n - x)
\]
holds by subadditivity of h_\triangle, \(\{h_\triangle(x^n)\} \) is bounded and we thus have
\[
h_\triangle(\alpha_n x^n - \alpha x) = \\
\left[\sum_k \frac{1}{Q_k} \left| \sum_{j=0}^{k} u_k(q_j - q_{j+1}) (\alpha_n x_j^n - \alpha x_j) \right|^p \right]^{\frac{1}{p}} \\
\leq |\alpha_n - \alpha| \frac{1}{M} h_\triangle(x^n) + |\alpha| \frac{1}{M} h_\triangle(x^n - x)
\]
which tends to zero as \(n \to \infty \). That is to say that the scalar multiplication is continuous. Hence, \(h_\triangle \) is paranorm on the space \(r^q(\Delta_p^\infty) \).

It remains to prove the completeness of the space \(r^q(\Delta_p^\infty) \). Let \(\{x^i\} \) be any Cauchy sequence in the space \(r^q(\Delta_p^\infty) \), where \(x^i = \{x_0^i, x_1^i, \ldots\} \), then for a given \(\epsilon > 0 \) there exists a positive integer \(n_0(\epsilon) \) such that
\[
h_\triangle(x^i - x^j) < \epsilon \quad \text{(5)}
\]
for all \(i, j \geq n_0(\epsilon) \). Using definition of \(h_\triangle \) and for each fixed \(k \in N \) that
\[
\left| (R^q \Delta x^i)_k - (R^q \Delta x^j)_k \right| \\
\leq \sum_k \left| (R^q \Delta x^i)_k - (R^q \Delta x^j)_k \right|^p \frac{1}{p} \\
< \epsilon
\]
for \(i, j \geq n_0(\epsilon) \), which leads us to the fact that \(\{(R^q \Delta x^0)_k, (R^q \Delta x^1)_k, \ldots\} \) is a Cauchy sequence of real numbers for every fixed \(k \in N \). Since \(R \) is complete, it converges, say, \((R^q \Delta x^i)_k \to ((R^q \Delta x)_k \) as \(i \to \infty \). Using these infinitely many limits \((R^q \Delta x^0)_k, (R^q \Delta x^1)_k, \ldots \), we define the sequence \(\{(R^q \Delta x)_0, (R^q \Delta x)_1, \ldots\} \). From (5) for each \(m \in N \) and \(i, j \geq n_0(\epsilon) \),
\[
\sum_{k=0}^{m} \left| (R^q \Delta x^i)_k - (R^q \Delta x^j)_k \right|^p \\
\leq h_\triangle(x^i - x^j)^M < \epsilon^M \quad \text{(6)}
\]
Take any \(i, j \geq n_0(\epsilon) \). First, let \(j \to \infty \) in (6) and then \(m \to \infty \), we obtain
\[
h_\triangle(x^i - x) \leq \epsilon.
\]
Finally, taking \(\epsilon = 1 \) in (6) and letting \(i \geq n_0(1) \), we have by Minkowski’s inequality for each \(m \in N \) that
\[
\left[\sum_{k=0}^{m} \left| (R^q x)_k \right|^p \right]^{\frac{1}{p}} \\
\leq h_\triangle(x^i - x) + h_\triangle(x^i) \leq 1 + h_\triangle(x^i)
\]
which implies that \(x \in r^q(\Delta_p^\infty) \). Since \(h_\triangle(x-x^i) \leq \epsilon \)
for all \(i \geq n_0(\epsilon) \), it follows that \(x^i \to x \) as \(i \to \infty \), hence we have shown that \(r^q(\Delta_p^\infty) \) is complete, hence the proof. \(\square \)

Note that one can easily see the absolute property does not hold on the spaces \(r^q(\Delta_p^\infty) \), that is \(h_\triangle(x) \not= h_\triangle(|x|) \) for atleast one sequence in the space \(r^q(\Delta_p^\infty) \) and this says that \(r^q(\Delta_p^\infty) \) is a sequence space of non-
absolute type.

Theorem 3 The Riesz sequence space \(r^q(\Delta_p^\infty) \) of non-
absolute type is linearly isomorphic to the space \(l(p) \), where \(0 < p_k \leq H < \infty \).

Proof: To prove the theorem, we will show the existence of a linear bijection between the spaces \(r^q(\Delta_p^\infty) \) and \(l(p) \), where \(0 < p_k \leq H < \infty \). With the not-
tion of (3), define the transformation \(T \) from \(r^q(\Delta_p^\infty) \) to \(l(p) \) by \(x \to y = Tx \). The linearity of \(T \) is trivial. Further, it is obvious that \(x = \theta \) whenever \(Tx = \theta \) and hence \(T \) is injective.

Let \(y \in l(p) \) and define the sequence \(x = (x_k) \) by
\[
x_k = \sum_{n=0}^{k-1} \left(\frac{1}{q_n} - \frac{1}{q_{n+1}} \right) u_k^{-1} Q_k y_k + u_k^{-1} Q_k y_k,
\]
for \(k \in N \). Then,
\[
h_\triangle(x) = \left[\sum_k \left| \sum_{j=0}^{k-1} u_k(q_j - q_{j+1}) x_j + \frac{q_k u_k}{Q_k} x_k \right|^p \right]^{\frac{1}{p}} \\
= \left[\sum_k \left| \sum_{j=0}^{k} \delta_{kj} y_j \right|^p \right]^{\frac{1}{p}} \\
= \left[\sum_k |y_k|^p \right]^{\frac{1}{p}} \\
= h_1(y) < \infty,
\]
where,
\[
\delta_{kj} = \begin{cases}
1, & \text{if } k = j, \\
0, & \text{if } k \not= j.
\end{cases}
\]

Thus, we have \(x \in r^q(\Delta_p^\infty) \). Consequently, \(T \) is surjective and is paranorm preserving. Hence, \(T \) is a linear bijection and this proves that the spaces \(r^q(\Delta_p^\infty) \) and \(l(p) \) are linearly isomorphic, hence the proof.
3 Basis and α, β- and γ-duals of the space $r^q(\Delta_u^p)$

In this section, we compute α, β, and γ-duals of the space $r^q(\Delta_u^p)$ and finally in this section we give the basis for the space $r^q(\Delta_u^p)$.

For the sequence space X and Y, define the set

$$S(X : Y) = \{z = (z_k) : xz = (x_kz_k) \in Y\}.$$ \hfill (7)

With the notation of (7), the α, β, and γ-duals of a sequence space X, which are respectively denoted by X^α, X^β and X^γ and are defined by

$$X^\alpha = S(X : l_1), \quad X^\beta = S(X : cs) \text{ and } X^\gamma = S(X : bs).$$

If a sequence space X paranormed by h contains a sequence (b_n) with the property that for every $x \in X$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n \to \infty} h(x - \sum_{k=0}^{n} \alpha_k b_k) = 0,$$

then (b_n) is called a Schauder basis (or briefly basis) for X. The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) and written as $x = \sum \alpha_k b_k$.

First we state some lemmas which are needed in proving our theorems.

Lemma 4 \cite{33}

(i) Let $1 < p_k \leq H < \infty$. Then $A \in (l(p) : l_1)$ if and only if there exists an integer $B > 1$ such that

$$\sup_{K \in F} \left| \sum_{n \in K} a_{nk} b_k \right| < \infty.$$ \hfill (8)

(ii) Let $0 < p_k \leq 1$. Then $A \in (l(p) : l_1)$ if and only if

$$\sup_{K \in F} \left| \sum_{n \in K} a_{nk} b_k \right| < \infty.$$ \hfill (9)

Lemma 5 \cite{33}

(i) Let $1 < p_k \leq H < \infty$. Then $A \in (l(p) : l_\infty)$ if and only if there exists an integer $B > 1$ such that

$$\sup_{n} \left| \sum_{k=0}^{n-1} a_{nk} b_k \right| < \infty.$$ \hfill (10)

(ii) Let $0 < p_k \leq 1$ for every $k \in N$. Then $A \in (l(p) : l_\infty)$ if and only if

$$\sup_{n,k} \left| \sum_{i=k+1}^{n} a_{nk} b_k \right| < \infty.$$ \hfill (11)

Lemma 6 \cite{33} Let $0 < p_k \leq H < \infty$ for every $k \in N$. Then $A \in (l(p) : cs)$ if and only if

$$\lim_{n \to \infty} a_{nk} = 0 \text{ for } k \in N.$$ \hfill (12)

Theorem 7 Let $1 < p_k \leq H < \infty$ for every $k \in N$. Define the sets $D_1(u, p)$ and $D_2(u, p)$ as follows

$$D_1(u, p) = \bigcup_{B > 1} \{a = (a_k) \in \omega :$$

$$\sup_{K \in F} \left| \sum_{n \in K} x_n \right| \leq \infty \}$$

and

$$D_2(u, p) = \bigcup_{B > 1} \{a = (a_k) \in \omega :$$

$$\sup_{K \in F} \left| \sum_{n \in K} x_n \right| \leq \infty \}$$

Then,

$$[r^q(\Delta_u^p)]^\alpha = D_1(u, p)$$

and

$$[r^q(\Delta_u^p)]^\beta = [r^q(\Delta_u^p)]^\gamma = D_2(u, p) \cap cs.$$}

Proof: Let us take any $a = (a_k) \in \omega$. We can easily derive with (2) that

$$a_{nk} x_n = n \sum_{k=0}^{n-1} \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) u_{k}^{-1} a_{n} Q_{k} y_{k} + a_{nk} u_{k}^{-1} Q_{n} y_{n}$$

$$= (Cy)_n$$ \hfill (11)

where, $C = (c_{nk})$ is defined as

$$c_{nk} = \begin{cases} \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) u_{k}^{-1} a_{n} Q_{k}, & \text{if } 0 \leq k \leq n - 1, \\ 0, & \text{if } k > n, \end{cases}$$

for all $n, k \in N$. Thus we observe by combining (11) with (i) of Lemma 4 that $a x = (a_{nk} x_n) \in l_1$ whenever $x = (x_n) \in r^q(\Delta_u^p)$ if and only if $C y \in l_1$ whenever $y \in l(p)$. This shows that $[r^q(\Delta_u^p)]^\alpha = D_1(u, p)$.

E-ISSN: 2224-2880 856 Issue 8, Volume 12, August 2013
Further, consider the equation,
\[
\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n} \left[\frac{a_k}{q_k} + \frac{1}{q_k} - \frac{1}{q_{k+1}} \right] \sum_{i=k+1}^{n} a_i u^{-1}_k Q_k \cdot y_k = (Dy)_n
\]
where, \(D = (d_{nk}) \) is defined as
\[
d_{nk} = \begin{cases} \left(\frac{a_k}{q_k} + \frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} a_i u^{-1}_k Q_k, & \text{if } 0 \leq k \leq n, \\ 0, & \text{if } k > n. \end{cases}
\]
Thus we deduce from Lemma 6 with (12) that \(ax \in \omega \cap \text{cs} \) whenever \(x = (x_n) \in r^q(\Delta^p_u) \) if and only if \(Dy \in \omega \cap \text{cs} \). Therefore, we derive from (8) that
\[
\sum_{k} \left| \left(\frac{a_k}{q_k} + \frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} a_i u^{-1}_k Q_k \cdot B^{-1} \right| \leq \infty,
\]
and \(\lim d_{nk} \) exists and hence shows that \([r^q(\Delta^p_u)]^\alpha = D_2(u,p) \cap \text{cs} \). As proved above, from Lemma 5 together with (12) that \(ax = (a_k x_k) \in b_s \) whenever \(x = (x_n) \in r^q(\Delta^p_u) \) if and only if \(Dy \in l_\infty \) whenever \(y = (y_k) \in l(p) \). Therefore, we again obtain the condition (13) which means that \([r^q(\Delta^p_u)]^\gamma = D_2(u,p) \cap \text{cs} \) and the proof of the theorem is complete. \(\square \)

Theorem 8 Let \(0 < p_k < 1 \) for every \(k \in N \). Define the sets \(D_3(u,p) \) and \(D_4(u,p) \) as follows
\[
D_3(u,p) = \{ a = (a_k) \in \omega : \sup_{k \in F} \left| \sum_{n \in K} \left[\frac{1}{q_k} - \frac{1}{q_{k+1}} \right] u^{-1}_n Q_k \right| < \infty \}
\]
and
\[
D_4(u,p) = \{ a = (a_k) \in \omega : \sup_{k} \left| \left(\frac{a_k}{q_k} + \frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} a_i u^{-1}_k Q_k \cdot B^{-1} \right| \leq \infty \}
\]
Then, \([r^q(\Delta^p_u)]^\alpha = D_3(u,p) \) and
\[
[r^q(\Delta^p_u)]^\beta = [r^q(\Delta^p_u)]^\gamma = D_4(u,p) \cap \text{cs}.
\]

Proof: The proof follows easily from Theorem 7 (above) by using second parts of Lemmas 4, 5 and 6 instead of the first parts. \(\square \)

Theorem 9 Define the sequence \(b^{(k)}(q) = \{ b^{(k)}_n(q) \} \) of the elements of the space \(r^q(\Delta^p_u) \) for every fixed \(k \in N \) by
\[
b^{(k)}_n(q) = \begin{cases} \left(\frac{1}{q_n} - \frac{1}{q_{n+1}} \right) u^{-1}_k Q_n + u^{-1}_k Q_k, & \text{if } 0 \leq n \leq k - 1, \\ 0, & \text{if } n > k - 1. \end{cases}
\]
Then, the sequence \(\{ b^{(k)}_n(q) \} \) is a basis for the space \(r^q(\Delta^p_u) \) and any \(x \in r^q(\Delta^p_u) \) has a unique representation of
\[
x = \sum_{k} \lambda_k(q) b^{(k)}(q)
\]
where, \(\lambda_k(q) = (R^q \Delta x)_k \) for all \(k \in N \) and \(0 < p_k \leq H < \infty \).

Proof: It is clear that \(b^{(k)}(q) \subset r^q(\Delta^p_u) \), since
\[
R^q \Delta b^{(k)}(q) = e^{(k)} \in l(p) \text{ for } k \in N
\]
and \(0 < p_k \leq H < \infty \), where \(e^{(k)} \) is the sequence whose only non-zero term is 1 in \(k^{\text{th}} \) place for each \(k \in N \).

Let \(x \in r^q(\Delta^p_u) \) be given. For every non-negative integer \(m \), we put
\[
x^{[m]} = \sum_{k=0}^{m} \lambda_k(q) b^{(k)}(q).
\]
Then, we obtain by applying \(R^q \Delta \) to (16) with (15) that
\[
R^q \Delta x^{[m]} = \sum_{k=0}^{m} \lambda_k(q) R^q \Delta b^{(k)}(q)
\]
and
\[
\left(R^q \Delta \left(x - x^{[m]} \right) \right)_i = \begin{cases} 0, & \text{if } 0 \leq i \leq m, \\ (R^q \Delta x)_i, & \text{if } i > m \end{cases}
\]
where \(i, m \in N \). Given \(\varepsilon > 0 \), there exists an integer \(m_0 \) such that
\[
\left(\sum_{i=m}^{\infty} |(R^q \Delta x)_i|^{p_k} \right)^{\frac{1}{p_k}} < \frac{\varepsilon}{2},
\]
for all $m \geq m_0$. Hence,
\[
\begin{align*}
 h_{\triangle}(x - x^{[m]}) = & \left(\frac{\sum_{i=m}^{\infty} |(R^q \triangle x)_i|^{p_k}}{\sum_{i=m_0}^{\infty} |(R^q \triangle x)_i|^{p_k}}\right)^{\frac{1}{p_k}} \\
 \leq & \left(\frac{\sum_{i=m_0}^{\infty} |(R^q \triangle x)_i|^{p_k}}{\sum_{i=m}^{\infty} |(R^q \triangle x)_i|^{p_k}}\right)^{\frac{1}{p_k}} \\
 \leq & \frac{\varepsilon}{2} < \varepsilon
\end{align*}
\]
for all $m \geq m_0$, which proves that $x \in r^q(\Delta^p_u)$ is represented as (14).

Let us show the uniqueness of the representation for $x \in r^q(\Delta^p_u)$ given by (13). Suppose, on the contrary; that there exists a representation $x = \sum_k \mu_k(q)b^k(q)$. Since the linear transformation T from $r^q(\Delta^p_u)$ to $l(p)$ used in the Theorem 3 is continuous we have
\[
(R^q \triangle x)_n = \sum_k \mu_k(q) \left(R^q \triangle b^k(q)\right)_n = \sum_k \mu_k(q)c_n^{(k)} = \mu_n(q)
\]
for $n \in \mathbb{N}$, which contradicts the fact that $(R^q \triangle x)_n = \lambda_n(q)$ for all $n \in \mathbb{N}$. Hence, the representation (14) is unique. This completes the proof. \hfill \Box

4 Matrix Mappings on the Space $r^q(\Delta^p_u)$

In this section, we characterize the matrix mappings from the space $r^q(\Delta^p_u)$ to the space l_{∞}.

Theorem 10 (i) : Let $1 < p_k \leq H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (r^q(\Delta^p_u) : l_{\infty})$ if and only if there exists an integer $B > 1$ such that
\[
C(B) = \sup_n \left| \left[\frac{a_{nk}}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} a_{ni} \right] u_k^{-1}B^{-1}Q_k \right|^{p_k'} < \infty
\]
and $\{a_{nk}\}_{k \in \mathbb{N}} \in cs$ for each $n \in \mathbb{N}$.

(ii) : Let $0 < p_k \leq 1$ for every $k \in \mathbb{N}$. Then $A \in (r^q(\Delta^p_u) : l_{\infty})$ if and only if
\[
\sup_n \left| \left[\frac{a_{nk}}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{n} a_{ni} \right] u_k^{-1}Q_k \right|^{p_k} < \infty,
\]
and $\{a_{nk}\}_{k \in \mathbb{N}} \in cs$ for each $n \in \mathbb{N}$.

Proof: We only prove the part (i) and (ii) follows in a similar fashion. So, let $A \in (r^q(\Delta^p_u) : l_{\infty})$ and $1 < p_k \leq H < \infty$ for every $k \in \mathbb{N}$. Then Ax exists for $x \in r^q(\Delta^p_u)$ and implies that $\{a_{nk}\}_{k \in \mathbb{N}} \in \{r^q(\Delta^p_u)\}^{p_k}$ for each $n \in \mathbb{N}$. Hence necessity of (17) holds.

Conversely, suppose that the necessities (17) hold and $x \in r^q(\Delta^p_u)$, since $\{a_{nk}\}_{k \in \mathbb{N}} \in \{r^q(\Delta^p_u)\}^{p_k}$ for every fixed $n \in \mathbb{N}$, so the A-transform of x exists. Consider the following equality obtained by using the relation (11) that
\[
\sum_{k=0}^{m} a_{nk}x_k = \sum_{k=0}^{m} \left[\frac{a_{nk}}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{m} a_{ni} \right] u_k^{-1}Q_k y_k.
\]
(19)

Taking into account the assumptions we derive from (19) as $m \to \infty$ that
\[
\sum_{k} a_{nk}x_k = \sum_{k} \left[\frac{a_{nk}}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{\infty} a_{ni} \right] u_k^{-1}Q_k y_k
\]
(20)

Now, by combining (20) and the inequality which holds for any $B > 0$ and any complex numbers a, b
\[
|ab| \leq B \left(|aB^{-1}|^{p_k'} + |b|^p \right)
\]
with $p^{-1} + p'^{-1} = 1$ (see [10]), one can easily see that
\[
\sup_{n \in \mathbb{N}} \left| \sum_{k} a_{nk}x_k \right| \leq \sup_{n \in \mathbb{N}} \sum_{k} \left[\frac{a_{nk}}{q_k} + \left(\frac{1}{q_k} - \frac{1}{q_{k+1}} \right) \sum_{i=k+1}^{\infty} a_{ni} \right] u_k^{-1}Q_k \left| y_k \right|
\]
\[
\leq B \left(C(B) + h_{\triangle}^{B+1}(y) \right) < \infty.
\]
This shows that $Ax \in l_{\infty}$ whenever $x \in r^q(\Delta^p_u)$. This completes the proof. \hfill \Box

Acknowledgement: We would like to express our gratitude to the reviewers for their careful reading, valuable suggestions which improved the presentation of the paper.
References: