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Abstract: Crew scheduling is an important production planning of airlines. Being optimized crew scheduling could
make full use of human resources, and reduce operating costs. The traditional airline crew scheduling model is
deterministic and does not include potential disruptions due to weather, air traffic control, etc. To take into account
of effects of random factors such as weather, air traffic control, passenger demand, etc., we develop a stochastic
chance-constrained programming model (SCCPM) for minimizing the crew cost and maximizing the passenger
satisfaction. Based on Monte Carlo method, Back Propagation (BP) neural network and genetic algorithm, we
develop a hybrid intelligent algorithm to solve the model. To evaluate the robustness of the model, the signal to
noise ratio (SNR) method is included in this paper. We present computational results which show the effectiveness
of our SCCPM and the hybrid intelligent algorithm.

Key–Words: airline operations, crew scheduling, passenger satisfaction, stochastic chance-constrained program-
ming, hybrid intelligent algorithm.

1 Introduction
Flight scheduling, the optimization process of fleet re-
sources, is a very important production plan of air-
lines. Crew scheduling is one of the flight scheduling
problems, therefore, how to effectively make use of
fleet resources is the problem to be solved for various
airlines.

In aviation industry crew cost is the second largest
after fuel among all the operating costs, which in-
cludes employee wages, welfare and crew schedule
costing. However, most of crew cost is control-
lable, which is different from the cost of aviation fuel.
Just by optimizing the scheduling can save tens of
thousands of expenses for airlines. Even slight im-
provements can be translated into significant savings.
Hence, the study of crew scheduling is very necessary.

For previously described reasons, airline crew
scheduling has gained considerable attention. The
airline crew scheduling problem has been formulated
as a set partitioning problem. In practice, the crew
scheduling problem is divided into two separate is-
sues: the first step is the crew pairing; the second step
is to assign crew. The legitimate crew pairings must
first be generated in accordance with legal provisions
and the relevant provisions of airlines, and then search
for the optimum pairing according to the requirements
of the decision makers, such as the one which mini-

mize the paring cost. In this paper we focus on the
pairing optimization model and its algorithm.

In most of the domestic and foreign literature
models are considered to be deterministic in a static
environment, without taking into account of the oper-
ation uncertainties in crew scheduling. Some repre-
sentative works [1-4] appeared in literatures several
years ago. In recent years, crew scheduling prob-
lems with stochastic conditions have been studied in
this field. For example, Yen et al [5] established
stochastic integer programming model for the airline
crew scheduling problem and developed a branch-
ing algorithm to identify expensive flight connections
and branch on multiple variables, finally find alter-
native solutions. They have demonstrated the effec-
tiveness of branching algorithm. Yan et al [6] devel-
oped a stochastic-demand scheduling model consid-
ering stochastic disturbances of aviation passengers,
and employed arc-based and route-based strategies to
develop two heuristic algorithms to solve the model.
Tekiner et al [7] proposed a conventional mathemat-
ical programming model to solve the crew pairing
problem, considering incorporating the set of selected
pairings into the model while keeping the increase
in the crew cost in an acceptable range. Zhang et
al [8] put forward three new crew scheduling mod-
els in an uncertain environment and designed a new
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model solving algorithm. Combined with characteris-
tics of crew scheduling, Zhao [9] put forward a solu-
tion of crew scheduling based on adaptive genetic al-
gorithm. He did some research on implementation of
genetic algorithm and its application to crew schedul-
ing. Mou et al [10] put forward the concept of proba-
bility of the crew delay, presented analytical formula,
and constructs the robust mathematical model of the
crew pairing based on minimizing the probability of
the crew delay. They carried out some computational
experiments using Matlab and compared the results of
the two models.

From the view of mathematical programming,
their models belong to the stochastic expected value
model. Because of the diversity of the decision-
making in real situations, chance-constrained pro-
gramming, which is another sort of the stochastic pro-
gramming, may be more suitable for some problem.
To the best of the authors’ knowledge, there has been
no research on crew scheduling problems where the
chance-constrained programming is used as a model-
ing tool. To remedy this research, we first utilize the
chance-constrained programming concept to develop
a crew scheduling model, from the basis of the air-
line’s perspective.

In this paper we assume that no flights are can-
celled and each flight operates its original duty. We
first present the traditional airline crew pairing model
in Section 2. We introduce our stochastic chance-
constrained programming model in Section 3. To
solve the model, we develop our algorithm in Section
4. In Section 5 we present a method to evaluate the
robustness of the model. A real-life example and its
computational results appear in Section 6. Finally, we
conclude our paper and point out future research di-
rections in Section 7.

2 Traditional Crew Pairing Model
In the traditional airline crew pairing model, the ob-
jective is to minimize the cost of paring, the constraint
is the basic covering one, that is each flight is cov-
ered. The general model is established as a determin-
istic integer programming, where the costs are taken
as fixed value, the decision variables are binary. The
crew scheduling problem (CSP) model [5] is as fol-
lows: 

min
MD∑
j=1

cjxj

s.t.
MD∑
j=1

aijxj = 1, ∀i ∈ F

xj ∈ {0, 1}, ∀j ∈ D.

(1)

Where cj means the cost of the jth pairing, (aij)
is a 0-1 matrix, if flight leg i is covered by pairing j,
(aij) = 1, otherwise 0. And MD is the number of
possible pairings, MF is the number of flight legs in
considered. D is denoted as the set of all legal pair-
ings, F means the set of all flight legs. Finally, xj
equals to 1 if pairing j is selected, and otherwise 0.

3 Stochastic Chance-Constrained
Programming Model

The planned cost was only considered so as to find the
optimal objective value in the traditional crew pair-
ing model. In fact, the cost is uncertain until flight
has finished. The crew cost is at least as large as its
planned cost. Exactly speaking, The crew cost is the
sum of the planned cost and the extra cost. Therefore,
it’s necessary to introduce some stochastic factors into
the model in order to ensure its practicality. The most
important factor affecting the crew cost is flight time.
Flight delays are expensive and lead to loss of time,
money and passengers’ trust. In the improved model,
we will introduce delay costs and passenger satisfac-
tion as two random factors based on the time disrup-
tion.

We assumed that ξai is the flight delay time of
flight leg i, ϕai is the ground delay time. For conve-
nience, define the flight delays,

ξi =

ξ
a
i ξai > 0

0 ξai ≤ 0

, (2)

and ground delays,

ϕi =

ϕ
a
i ϕai > 0

0 ϕai ≤ 0

. (3)

The delay cost is approximated as a nonlinear
function of the delay time: c̃(ξi, ϕi), i ∈ F . When
the delayed flight leg i is covered by pairing j, we add
the delay cost to the planned cost cj , and the actual

cost of pairing j is c∗j = cj +
MF∑
i=1

c̃(ξi, ϕi). For any

crew pairing j, let c∗j be its expected crew cost under
delays. Generally, the actual cost of any pairing j can
be described as,

c∗j = cj +

MF∑
i=1

aij c̃(ξi, ϕi), j ∈ D (4)

The airline belongs to service industries. The
level of the service is a significant indicator for their
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image and public praise among the people. Airlines
should not only focus on their own profit, but also
consider the customers’ feeling. In consideration of
these reasons, we introduce an indicator named as cus-
tomer/passenger satisfaction.

Yu [11], Mao et al [12] pointed out that passen-
ger sanctification (PS) was affected by taking off and
landing time, flight time, delay time and other factors.
We construct linear approximations of the basic sat-
isfaction degree for each pairing and the satisfaction
degree under delay situations. Denote the satisfac-
tion of pairing j without considering the delay as sj .
We assume that the PS’s affected-function by delays
is s̃(ξi, ϕi), i ∈ F . Therefore, the PS under delay
disruption becomes:

s∗j = λ1sj + λ2

MF∑
i=1

aij s̃(ξi, ϕi)

countn
, j ∈ D. (5)

Where
countn - the number of flights included in pairing

j.
λk - the weights of the basic satisfaction and the

satisfaction effected by delays for k=1,2.
Remarks on formula (5): If a selected pairing j

could cover 5 flight legs,
MF∑
i=1

aij s̃(ξi, ϕi) means the

sum of the satisfaction degree of 5 flight legs, now we
should calculate its average value to ensure the degree
bands in (0,1).

In reality, companies not only consider their own
benefits but also passengers’. This paper is based
on the stochastic chance-constrained programming
which initialed by Liu et al [13]. We take delay costs
and passenger satisfaction into account, and establish
the following model,

min P1d
+
1 + P2d

−
2

s.t.

Pr

{
MD∑
j=1

c∗jxj − b1 ≤ d+1

}
≥ α1

Pr

−

MD∑
j=1

s∗jxj

countd
+ b2 ≤ d−2

 ≥ α2

MD∑
j=1

aijxj = 1 ∀i ∈ F

xj = {0, 1} ∀j ∈ D

.

(6)
Where
countd - the number of pairings included in the

decision variables.

d+1 , d
−
2 - the positive and negative deviation vari-

ables, are both greater than or equal to 0, which on
representative of decision value over the target part.

Pk - the priority factor of dk.
αk ∈ (0, 1] - the pre-given confidence level by

the decision makers, k = 1, 2. αk. Usually it takes a
larger value.

4 Hybrid Intelligent Algorithm for
This Model

The traditional method of solving the chance-
constrained programming is to convert the chance
constrains into their determinate equivalent forms,
and then to solve the determinate model. However,
this method is only applied to some special circum-
stances. There are two stochastic variables involved
in our model, thus its highly constrained. Neither the
classical algorithm nor the converting method above
can be effective. In this paper, we employ a intelli-
gent algorithm which was mentioned by Liu [13] in
his monograph. This algorithm can solve the general
chance-constrained programming. The main thought
of this algorithm is to convert the stochastic model to
the certain one. First, we adopt stochastic simulation
technologies to produce the delay time length as the
input data, and then calculate the output data accord-
ing to a formulation we have designed. These inputs
and outputs are used as the training samples for BP
neural network. Second, we train a BP neural network
as the fitting function in the next stage. Finally, we use
the improved-genetic algorithm to find the best solu-
tion. The flowchart for this algorithm is as follows:
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Figure 1: The flowchart for Hybrid Intelligent Algo-
rithm

4.1 Stochastic Simulation Technologies
The SCCPM is different from the traditional model
which contains some random variables. The probabil-
ities of random events are taken as constrains. Thus,
these probabilities should be obtained first. We use
stochastic simulation method to compute them.

4.1.1 The Principle of Monte Carlo Technology
Approaching Probability

We consider Pr{f(x, ξ) ≤ b}, where f(x, ξ) is a
function of stochastic vector. First of all, N indepen-
dent random vectors ξn(n = 1, 2, ...,N) are generated
from the probability distribution φ(ξ) of random vec-
tor ξ.

Denote the number of fn which satisfy the condi-
tion f(x, ξ) ≤ b as M. According to the Law of Large

Numbers, when N is sufficiently large, p =
M

N
is used

as an approximation of Pr{f(x, ξ) ≤ b}.
We know that the minimum d which satisfies the

inequality:

Pr


MD∑
j=1

c∗jxj ≤ d

 ≥ α1,

should be achieved at the equal sign, that is

Pr


MD∑
j=1

c∗jxj ≤ d

 = α1.

When comes to the inequality

Pr


MD∑
j=1

s∗jxj

countd
≥ d

 ≥ α2,

the maximum d is the one we needed. It should be
achieved at the equal sign also,

Pr


MD∑
j=1

s∗jxj

countd
≥ d

 = α2.

Here, we denote f(ξ) =
MD∑
j=1

c∗jxj , the sequence

f(ξ1), f(ξ2), ..., f(ξN )

is produced after N simulations.
Define h(ξk),

h(ξk) =

1 f(ξk) ≤ d

0 otherwise

, k = 1, 2, ..., N.

According to the law of large number, when N tends
to infinity the value of

N∑
k=1

h(ξk)

N

tends to α1 which presents the probability of f(ξ) ≤
d. On this basis, when the sequence

f(ξ1), f(ξ2), ..., f(ξN )

is sorted in ascending order, the N’th element in the
arrangement gives the required value, where N’ is the
integer part of α1 ∗N . Similarly, the maximum d for

Pr


MD∑
j=1

s∗jxj

countd
≥ d

 = α2

should be found at the N”th location of a descending
order sequence, where N” is the integer part of α2∗N .

4.1.2 Monte Carlo Technology to Produce the
Simulation Data

Now, define the following function,

U : x → (U1(x), U2(x)) (7)

x = {x1, x2, ..., xMD
}T (8)

Where,

U1(x) = min

d|Pr


MD∑
j=1

c∗jxj ≤ d

 ≥ α1

 ,

(9)

U2(x) = max

d|Pr


MD∑
j=1

s∗jxj

countd
≥ d

 ≥ α2

 .

(10)
Then d+1 in model (6) is equal to [U1(x)− b1]∨0,

d−2 is equal to [b2 − U2(x)] ∨ 0. Next the input and
output data of the function (7) should be generated.
The steps for simulating U1(x) are as follows:
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Step 1. Initialize the parameters: number of sim-
ulation N, confidential level α1 and α2, the number of
pairings MD, the number of flights MF .

Step 2. Generate MD-dimensional column vector
randomly, that is x.

Step 3. Generate ξ, ϕ , randomly. Note that the
value generated by the random function should be
treated, so as to ensure non-negative.

Step 4. Calculate the value of
MD∑
j=1

c∗jxj .

Step 5. Repeat steps 2-4 N times and then get

N values of
MD∑
j=1

c∗jxj . Sort these values in ascending

order, the N’th is the minimum d needed. Where N’ is
the integer part of α1 ∗N .

Thus, give an x, there is aU1(x) (the minimum d)
through N times’ simulation. Repeat M times like this,
we obtain M training samples. By these samples, train
a neural network (4.2) which is used to approximate
the uncertain function U.

4.2 Training for Neural Network
Train a neural network (the number of input neurons
is MD, that of hidden layer neurons is y, and the num-
ber of output neurons is 2) by the input and output
data to approximate the uncertain function. The un-
certain function is used as the evaluation function in
the next layer algorithms. Where y is determined by
the formula,

y <
√
m+ n+ a. (11)

Where m,n represent the number of input neurons
and output neurons respectively, a is a constant, 1 <
a < 10 [14].

4.3 Genetic Algorithm to Solve the Model
Firstly, the structure of solutions and the initial chro-
mosome should be considered. The solution of the
problem is 0-1 variables, therefore, the coding of the
solution should also comply with this rule. For exam-
ple, a chromosome structure is as follow,

1 0 0 1 0 ... 1 1

Secondly, the initial chromosome must satisfy the
covering constraint,

MD∑
j=1

aijxj = 1 ∀i ∈ F (12)

The basic steps of genetic algorithm:
Step1. Initialize the chromosomes, compute the

fitness of chromosomes by the trained neural network.

Step2. Cross, mutate, select, and compute the fit-
ness of the offspring chromosomes by the trained neu-
ral network.

Step3. Pick up chromosomes by roulette wheel
selection.

Step4. Repeat steps until the completion of the
given number of cycles.

Step5. Obtain the best chromosome, adopt this
chromosome as the optimal solution.

5 Robustness Analysis for the Solu-
tions

Because of the randomness of the model, the model
solution is not unique. In order to make the obtained
solution more robust, we do several experiments to get
some satisfactory solutions, and then select a best one
among them. In this paper, we adopt a SNR approach
for evaluation of the production robustness. This
method was first proposed by Dr. Taguchi Gen’ichi
[15].

The SNR is the ratio of signal to noise, a greater
SNR indicates the products are more robust. It was
divided into definite purposed characteristic, smaller-
the-better characteristic, larger-the-better characteris-
tic. Definite purposed characteristic means we hope
it’s better if the deviation between the product’s qual-
ity and its target value is smaller. It’s expected that

the better the value of
µ

σ
greater when the relative er-

ror is considered. Where µ is the average value of
the data and σ is the standard deviation. Smaller-the-
better characteristic means it’s hoped that the value of
product’s quality characteristic is the smaller the bet-
ter. The quality characteristic is required to have a
small average value, but also a lower fluctuation de-
gree. Larger-the-better characteristic can be under-
stood as the opposite of the former one, that is it’s
expected to have a greater quality characteristic value
which is both required a larger average value and a
lower fluctuation degree.

The objective of the stochastic chance-
constrained programming model in this paper is
to obtain the smallest deviation, therefore, we adopt
the smaller-the-better characteristic of the SNR to
analysis the robustness of solutions. The calculation
formula is

−10 lg(
1

n

n∑
i=1

y2i )

where yi is the objective value of the ith experiment, n
is the experiment times. Zhang [8] used the standard
deviation as the index for robustness analysis.
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Actually, the standard deviation can only measure
the fluctuation degree of the data. It contains both the
fluctuation degree and the average value of the data if
we adopt the SNR method to measure product’s ro-
bustness. The results could be more comprehensive
and accurate.

6 Example and Its Analysis
In order to verify the correctness of the model and
demonstrate how to use the proposed algorithm to
solve the model, we assume the legal crew parings as
in Table 1.

The parings above demand a scheduling cycle no
more than two days, the symbol ’–’ means paring’s
scheduling cycle is one day. Since the two-day parings
involve overnight fee, the cost for two-day parings is
more than the one-day parings’ under the same flight
time.

For convenience, we sort the flight number from
small to big which the Flight 105 corresponds NO. 1,
the Flight 110 corresponds NO. 2. The details are in
Table 2.

Then the matrix(ai,j) mentioned in Section 2 be-
comes a 12× 28 0-1 matrix.

ai,j =


0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1


The initial feasible solution is D1-D5-D9-D21 which
meets the covering constrain. According to the study
by Barnhart et al [1] in 2003, we suppose that the dis-
tribution of the flying delay time and the ground delay
time is:

ξ ∼ [−24.5 + γ(5.28, 5.07)],

and

ϕ ∼ [−0.001 + 146 ∗ β(0.61, 23.6)].

respectively.
The delay cost function can be defined as

c̃(ξi, ϕi) = (ξ2i − 0.01ξi) + 0.1ϕi,

the passenger satisfaction

s̃(ξi, ϕi)

is defined as
1− (ξ + ϕi)/5.

Thus, when an x is given, a U1(x) namely d is ob-
tained after 5000 times simulations. Repeat that pro-
cess 3000 times, we get 3000 training samples which
are used to train a neural network so as to approxi-
mate the uncertain function U. We get the optimal so-
lution for the deterministic model (1) in Section 2 by
the LINGO software. The selected parings are D1-
D9-D11-D15-D23, and the lowest cost is 167 units,
the maximum satisfaction is 93.25 %. We use these
results as our targets in the SCCPM (formula (6)), that
is b1 = 167, b2 = 0.9325, so as to searching the min-
imum deviation.

Since the input data is randomly generated, the
format and range of input data is essential for the func-
tion fitting. We solved the deterministic model with
software and obtained the best optimum solution and
several optimal solutions. We found that the number
of zeros in the solution, that is the number of the se-
lected pairing, is generally not more than 5. Thus the
selection of input data greatly affect degree of func-
tion fitting, in this case, the generated input data have
been processed, so that in each string of data in the
proportion of the number 1 is about 5/28.

The parameter and part of the program in Section
4.2 are as follows:
net =newff(minmax(Y),[10,2],’tansig’,’purelin’,’trainrp’);
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.epochs=1000;
net.trainParam.goal=1e-3;
[net, tr] = train(net, Y,DCS).

We use MATLAB to programme and calculate the
procedures. The results can be seen in Table 3.

From Table 3, we can see paring D1-D5-D10-
D20 disappears 11 times in 20 experiments, and par-
ing D1-D5-D8-D15-D27 does 6 times. They are the
high-frequency solutions. We compare their SNR val-
ues and select a better solution.

According to the formula

−10 lg(
1

n

n∑
i=1

y2i ),

the smaller-the-better characteristic value of paring
D1-D5-D10-D20 is -17.7639, the value of paring D1-
D5-D8-D15-D27 is -21.255, that is to say paring D1-
D5-D10-D20 is more robust than paring D1-D5-D8-
D15-D27. As we all know, the SNR value is expected
to be greater. Thus, we choose the paring D1-D5-
D10-D20 as the optimal solution. The average value
of the 11 results is used to be the optimal value, that is
the optimal cost of crew is 175.8412 and the optimal
satisfaction is 0.901358. The results of the analysis
for the high-frequency solutions are in Tables 4 and 5.
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Table 1: The feasible crew pairings

NO. Flight in the first day Flight in the second day Flight time

D1 125 105 11

D2 131 110 5

D3 131 111 5

D4 131 110-138-118 8

D5 133 110 5

D6 133 111 5

D7 133 110-138-118 8

D8 135 113 6

D9 135 114 6

D10 135 113-138-118 9

D11 136 113 6

D12 136 114 6

D13 136 113-138-118 9

D14 138 118 3

D15 131-111 – 5

D16 131-111-113 110 10

D17 131-111-133 111 10

D18 131-111-133 110-138-118 13

D19 131-111-136 113 11

D20 131-111-136 114 11

D21 131-111-136 113-138-118 14

D22 138-118 – 3

D23 138-118-133 110 8

D24 138-118-133 111 8

D25 138-118-133 110-138-118 11

D26 138-118-136 113 9

D27 138-118-136 114 9

D28 138-118-136 113-138-118 12

Table 2: The corresponding table for flight numbers and their codes in this paper

Flight No. 105 110 111 113 114 118 125 131 133 135 136 138

Code No. 1 2 3 4 5 6 7 8 9 10 11 12
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Table 3: Experimental results

No. d+1 d−2 DEVIATION PARINGS COST P.S.

1 19.9195 1.1616 14.2921 1,5,10,20 186.9195 0.920884

2 10.5642 2.44 8.12694 1,5,8,15,27 177.5642 0.9081

3 14.3432 2.0664 10.66016 1,5,9,11,14 181.3432 0.911836

4 4.6613 4.5293 4.6217 1,5,10,20 171.6613 0.8872

5 5.7355 2.7524 4.84057 1,5,10,20 172.7355 0.904976

6 13.3597 4.857 10.80889 1,5,8,15,27 180.3597 0.8839

7 6.6554 7.0524 6.7745 1,8,20,23 173.6554 0.861976

8 11.8837 3.9815 9.51304 1,5,10,20 178.8837 0.892685

9 13.1552 3.7579 10.33601 1,5,10,20 180.1552 0.894921

10 14.5759 3.6619 11.3017 1,5,10,20 181.5759 0.895881

11 1.6208 1.7012 1.6449 1,5,10,20 168.6208 0.915488

12 5.6148 3.144 4.8735 1,5,10,20 172.6148 0.9011

13 8.7435 2.7711 2.5655 1,5,10,20 175.7435 0.9048

14 21.6965 4.9899 16.6845 1,8,16,27 188.6965 0.882601

15 4.9688 3.6244 4.5655 1,5,10,20 171.9688 0.8963

16 15.1097 6.4671 12.5169 1,5,8,15,27 182.1097 0.8678

17 6.3739 3.1792 5.4155 1,5,10,20 173.3739 0.900709

18 17.0626 4.0479 13.1582 1,5,8,15,27 184.0626 0.892

19 16.1959 3.0793 12.26092 1,5,8,15,27 176.3716 0.8976

20 15.0922 3.945 11.74804 1,5,8,15,27 182.0922 0.89305

Table 4: The analysis of robustness for the high-frequency solutions–Paring 1 : D1-D5-D10-D20

NO. (i) 1 2 3 4 5 6
S-T-B SNR:

optimal value (yi) 14.2921 4.6217 4.8406 9.5130 10.3360 11.3017

NO. (i) 7 8 9 10 11 - −10 lg(
1

n

n∑
i=1

y2i ) = −17.7639
optimal value (yi) 1.6449 4.8735 2.5655 4.5655 5.4155 -

Table 5: The analysis of robustness for the high-frequency solutions–Paring 2 : D1-D5-D8-D15-D27

NO. (i) 1 2 3 4 5 6 S-T-B SNR:

optimal value (yi) 8.12694 10.80889 12.5169 13.1582 12.26092 11.74804 −10 lg(
1

n

n∑
i=1

y2i ) = −21.255

WSEAS TRANSACTIONS on MATHEMATICS Deyi Mou, Yingnan Zhang

E-ISSN: 2224-2880 816 Issue 8, Volume 12, August 2013



7 Conclusion and Future Directions

In this paper, we discuss the matching optimization
model for crew scheduling in uncertain environments.
Crew cost and passenger satisfaction are the two ran-
dom variables affected by delay time.

Since the model is different from the traditional
deterministic model, a hybrid intelligent algorithm
consisted of the Monte Carlo method and the BP neu-
ral network and the genetic algorithm are used to solve
the model. Firstly, we simulate the large amounts of
data as a BP neural network training samples by the
Monte Carlo method. Then we utilize these data to
train a neural network (in this case the network is a
mapping of x and d), which is used as the fitness func-
tion in the next step. Finally, the genetic algorithm
cross, mutate and select until the maximum number of
obtain iterations to obtain the optimal solution. MAT-
LAB software is used to programme and realize the
algorithm.

In the end, we give an example. Due to the uncer-
tainty of the model, multiple runs of the solution are
not unique. But even in this uncertain environment,
the solution still has strong robustness. Smaller-the-
better characteristic SNR is used to measure the cal-
culated results in this paper. The measurement results
show that the algorithm have strong robustness, also
verify the feasibility of this model which can be ap-
plied to practical problems.

However, the airline customer is usually divided
to two classes, business and economy. Different fac-
tors of service quality and other influences which are
important according to the customer class. In this pa-
per we only consider one situation. Due to that the
large number of samples are demanded, the Monte
Carlo simulation process is time-consuming (20 min-
utes each time) which in future studies needs to be
improved. How to improve the efficiency of the algo-
rithm to solve large-scale crew scheduling problems
will be the next focus of our studies.
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