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Abstract: We study the global dynamics of networks of pulsed-coupled neurons that are modeled as integrate
and fire oscillators. We focus on excitatory networks with a strong kernel. We prove the synchronization of the
whole network from any initial state, and find a bound from above of the transients until the full synchronization
is achieved. The methodology of research is by exact mathematical definitions and statements and by deductive
proofs, from standard arguments of the mathematical theory of abstract dynamical systems. We include examples
of applications to diverse fields, and also a brief review of other mathematical methods of research on general
networks of dynamically interacting units.
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1 Introduction
The large-scaled dynamics of systems that change on
time and are composed by many interacting units,
emerges from the free dynamics of each unit and from
the rules of interactions among them. Such dynamical
systems are called, in a general and abstract context,
networks. Applications of the mathematical analysis
of networks are abundant in diverse fields of Science
and Technology (see Section 4).

In particular, some class of networks come from
mathematical dynamical models of the living nervous
system, and are called neuronal networks. Among
these networks we are focusing on those composed
by integrate and fire neurons (e.g. [4, 7]), that are as-
sumed to be pulsed coupled (e.g. [19]).

The pulse-coupling means that the interactions
are instantaneous and are not produced all along time,
but at certain discrete sequence of instants that are
separated by regular or irregular time intervals. An
autonomous system decides by itself the instants at
which the interactions among the units of the net-
work are produced. In other words, the network self-
organizes. In Section 2, we pose the exact statements
of the mathematical model under study.

The emergent dynamics of pulsed-coupled net-
works is usually modeled by impulsive differential or
integro-differential equations (e.g. [18, 38]). For in-
stance, the spikes of the neurons during the synaptic
activity in the living nervous system is mathematically
studied by the solution of impulsive differential equa-

tions (e.g.[6]).
The global dynamics of impulsive differential

or integro-differential equations is a source of many
mathematically open questions, whose answers are
mostly unknown, except in particular cases or in low
dimensions (e.g. [46, 51]). In general, dynamical sys-
tems of coupled units (even if they are not pulsed-
coupled or modeled by impulsive equations), pose
new open problems to Mathematics, which are partic-
ularly difficult to solve if the interactions’ parameters
belong to an intermediate range, neither too strong nor
too weak (e.g. [49]).

The research in this paper focusses on the syn-
chronization mathematical problem of pulsed-coupled
networks of integrate and fire neurons without delay.

The synchronization phenomenon of several
identical (or at least similar) dynamical units appears
in Physics: For instance, the global synchronization
of networks with large complexity was mostly studied
for mutually coupled identical oscillators (e.g. [33]
and references therein). Those results were applied
to study the behavior of Light Controlled Oscillators
(LCO) in [35, 36]. LCO systems are used to study di-
verse biological systems, as for instance, the emergent
synchronized dynamics of populations of the south-
eastern fireflies: a large number of insects flash al-
together as the result of the mutual interactions pro-
duced by the light impulsive signals among them.
Such an experimental result with electronic simulated
fireflies was obtained in [36], while [37] proved math-
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ematically the synchronization for two electronic fire-
flies, which are governed by linear differential equa-
tions during the time-intervals between consecutive
fires.

Other results of synchronization for arbitrarily
large networks of pulsed-coupled units, are already
known and rigorously proved: For instance, [32]
proved the synchronization of large completely con-
nected networks of identical units, with constant pos-
itive interactions, and assuming that the evolution
among pulses is linear on time. [7] proved it for large
completely connected networks of identical units,
with non constant positive interactions, and non linear
dependence on time. [4] prove it for completely con-
nected networks, non constant positive interactions,
and arbitrary dependence on time, provided that cer-
tain stability property holds.

In Theorem 8 of this paper, we generalize the pre-
vious results cited above: We prove the synchroniza-
tion of an arbitrarily large number of dynamical units,
governed by impulsive differential equations of any
type, provided that the state variable of each neuron
is increasing on time (during the time-intervals be-
tween consecutive interactive impulses). We assume
arbitrary, positive or null interactions, and a network’s
graph that is not necessarily complete, but has a strong
kernel with strictly positive weights (Definition 6).

The synchronization of neuronal networks is rele-
vant in the nervous system, not because the whole sys-
tem synchronizes (it certainly does not), but because
some specialized subnetworks synchronize. These
latter groups of cells, allow a living individual acquire
stable biological rhythms that coexist with other non
synchronized regions of the brain. The existence of
stable biological rhythms are essential for life. For
instance, the heart peacemaker neurons work in syn-
chrony [27]. Stable partial synchronization is also
necessary for the regulation of the information that is
generated or processed by the nervous system. This
information is not properly chaotic. Namely, it does
not necessarily increase with a positive rate forever
in the future, but acquires a formed of self-controlled
structured information [47].

Periodic limit cycles that are not necessarily syn-
chronized orbits, appear also in mathematical models
of biological neuronal networks that are not all exci-
tatory [8, 7]. Nevertheless, since the periods (and also
the finite number of periodic orbits) may be arbitrar-
ily large (e.g. [8]), the observed behaviour during a
finite interval or time seems to be irregular. This phe-
nomenon is called virtual chaos in [8], or stable chaos
in [34]. The same argument shows that also when the
network finally synchronizes, it may look exhibiting
virtual chaos during the transitory times, if these tran-
sients last too long.

As said above, in Theorem 8 we prove synchro-
nization of the network. Besides, by Formula (8) we
bound from above the transient duration until full syn-
chronization is achieved. Along the proofs of these re-
sults we obtain intermediate other results, such as the
formation, during the transients, of different patterns
of clustered cells that mutually synchronize and do not
include all the cells of the network (Lemmas 11 and
12). The proofs assume that the network’s dynamics
is autonomous and deterministic, the impulses are ex-
citatory (i.e. positive or null), no delay exists, and the
cells are integrate and fire oscillators. Nevertheless, if
those hypothesis on the model do not hold, still syn-
chronization, or at least phase locking, can be proved.
In fact, [30] proved the synchronization of coupled
oscillators that are stochastically modeled. Also syn-
chronization was proved in some pulsed-coupled net-
works with delayed interactions [48]. Synchroniza-
tion among two chaotic dynamical units (the cells are
not oscillators) was proved when the interactions are
continuous on time, governed by a system of differen-
tial equations of fractional order [45]. Finally, in [43]
some mutually coupled chaotic circuits were proved
to exhibit the so called inverse lag synchronization,
which is, roughly speaking, the phase lock on oppo-
site phases.

2 The mathematical model
Along this paper, each neuron i of the network is mod-
eled as an integrate and fire oscillator. This means that
its instantaneous state is described by a real variable
xi which has two phases: a integration phase, which
is the integral flow that solves an ordinary differential
equation, and a firing phase, which is governed by a
spiking rule according to which the state of the neu-
ron resets and sends instantaneous actions to the other
neurons of the network.

2.1 The integration phase

During the integration phase the variable xi (if the
neuron i were hypothetically isolated from the net-
work) is the solution of an autonomous differential
equation with initial condition xi(0), of the following
type:

dxi
dt

= f(xi) if L ≤ xi < U, L ≤ xi(0) < U (1)

where t ∈ R is time, U > 0 and L < 0 are con-
stants, and f : [L,U ] 7→ R+ is a positive Lipschitz-
continuous function: As the domain of f is the com-
pact interval [L,U ] and f is continuous, the positive
values of f are bounded away from zero. Namely,
there exists a constant a > 0 such that

f(x) ≥ a > 0 ∀ x ∈ [L,U ]. (2)
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Therefore, from the differential equation (1) we ob-
tain that xi(t) is strictly increasing on time t, and its
derivative with respect to t is larger than a positive
constant a. In other words, the velocity according
to which the variable xi(t) increases, is larger than
a > 0. Since the initial condition xi(0) is lower than
U , we deduce that there exists a finite time Ti > 0
(which depends on the initial state xi(0) of the neuron
i) such that xi reaches the upper bound U . Precisely,

xi(T
−
i ) := lim

t→+T−
i

xi(t) = U. (3)

Definition 1 The constant upper bound U > 0 of the
state xi of each neuron, is called the threshold level.
The lowest constant value L < 0 that xi can hypo-
thetically take, is called the low bound. The model
states that the differential equation (1) holds while the
state xi has not arrived to its threshold level and is not
smaller than the low bound.

2.2 The instantaneous firing phase

Definition 2 At any instant T > 0 at which the state
xi arrives to (or is larger than) the threshold level U
- in particular, at the first instant Ti > 0 satisfying
Equality (3), - we say that the neuron i spikes or fires.
Such an instant T is called a spiking instant.

A firing of a neuron, by hypothesis, produces two
consequences:
◦ First, at each instant T > 0 for which xi(T−) =
U , the state xi of the neuron resets. By changing the
origin in the real axis of the variable xi, if necessary, it
is not restrictive to assume that the reset value is zero.
Explicitly:

∀ T > 0, if lim
t→T−

xi(t) = U, then xi(T ) = 0.

(4)
In particular, for the first instant Ti > 0 at which the
neuron i fires, we have xi(Ti) = 0.
◦ Second, at each spiking instant T > 0, the neuron i
sends an instantaneous action signal Ai,j to the other
neurons j ̸= i of the network. This model assumes
that Ai,j is a real number that depends only on i and
j, but not on time.

Definition 3 A neuron i is excitatory if Ai,j ≥ 0 for
all j ̸= i, and it is inhibitory if Ai,j ≤ 0 for all j ̸= i.
We say that a network N is excitatory if all its neurons
are excitatory. Along this paper we only consider ex-
citatory networks. Note that not all the interactions
must be strictly positive.

2.3 The interactions

If T > 0 is an instant at which only one neuron j ̸= i
spikes, then the state xi - of the neuron i that receives
the action signalAj,i ≥ 0 from the neuron j - suffers a
discontinuity jump which is defined by the following
rule:

xi(T ) = xi(T
−) +Aj,i if < U,

xi(T ) = 0 otherwise

If many neurons j1, . . . , jN (all different from i)
spike simultaneously at an instant T > 0, then the
state xi of the neuron i suffers a discontinuity jump
defined by:

xi(T ) = xi(T
−) +

N∑
l=1

Ajl,i if < U, (5)

xi(T ) = 0 otherwise (6)

2.4 Strong excitatory kernel

Definition 4 The network’s graph is defined such that
its vertices are the neurons, and their edges are di-
rected and weighted with the value Ai,j for each
nonzero action signal Ai,j ̸= 0 from the neuron (or
vertex) i to the neuron (or vertex) j ̸= i. Note that
the network’s graph is not necessarily symmetric, i.e.
Ai,j may differ from Aj,i. Also maybe only one of the
two directed edges between i and j may exist (in such
a case the action in the opposite direction is zero).

Definition 5 A kernel K of an excitatory network N
is, if it exists, a complete subgraph, such thatAi,j > 0
for all i ∈ K and for all j ∈ N , j ̸= i. In Figure 1
we draw a simple example of a network of six neurons
with a kernel of three neurons.

Figure 1: The network N = {1, 2, 3, 4, 5, 6} has a
kernel K = {1, 2, 3}.

The neurons that are not in the kernel may have
null or positive interactions among them, and from
them to the neurons in the kernel.
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Definition 6 We say that a kernel K of an excitatory
network N is strong if the number k of neurons in K
is at least 3 and if the minimum excitatory action from
a neuron in K to the other neurons of N is strong
enough to satisfy the following inequality:

min{Ai,j : i ∈ K, j ∈ N , i ̸= j} ≥ U − L√
k

, (7)

where U > 0 is the threshold level and L < 0 the low
bound of the states of the neurons (cf. Definition 1).

In the above definition, the interactions Ai,j for
i ∈ K, j ∈ N , i ̸= j, need not to be actually strong,
in an absolute sense. In fact, the number k of neurons
in the kernel K may be large enough, so Inequality
(7) holds for a small value of min{Ai,j : i ∈ K, j ∈
N , i ̸= j}. In other words, for arbitrarily small pos-
itive interactions Ai,j , the kernel K is strong, (i.e. it
satisfies Inequality (7)), if it has a sufficiently large
number of neurons. On the contrary, if the kernel has
a small number of neurons (say for instance, k = 3),
it will be strong only if the minimum positive interac-
tion Ai,j is large enough to satisfy Inequality (7).

3 Synchronization

3.1 Statement of the main result

Let N be a network composed by m integrate and fire
neurons. We call the m-th. vector

x(0) =
(
x1(0), . . . , xi(0), . . . , xm(0)

)
the initial state of the network. We denote by

x(t) =
(
x1(t), . . . , xi(t), . . . , xm(t)

)
,

the state of network at instant t, and call {x(t)}t≥0 the
orbit with initial state x(0).

Definition 7 We say that the orbit {x(t)}t≥0 is syn-
chronized or that the network with initial state x(0) is
synchronized, if

xi(t) = xj(t) ∀ t ≥ 0 ∀ i ̸= j.

We say that the orbit - or the network- with initial state
x0 synchronizes after a transitory time T0, if T0 ≥ 0
is the minimal non negative real number such that

xi(t) = xj(t) ∀ t ≥ T0 ∀ i ̸= j.

Theorem 8 Let N be an excitatory network with a
strong kernel K. Then, from any initial state there
exists a transitory time T0 ≥ 0 (which, in general, de-
pends on the initial state) such that the network syn-
chronizes for all t ≥ T0. Besides,

T0 ≤
U − L

min{f(x) : L ≤ x ≤ U}
, (8)

where U > 0 is the threshold level, L < 0 is the low
bound of the state xi of each neuron i ∈ N , and f is
the real function in the second member of the differen-
tial equation (1).

We start the proof of Theorem 8 with Lemma 9
in the following Subsection, and end it in Subsection
3.3.

3.2 Lemmas

Assume that N is an excitatory network with a strong
kernel K as in the hypothesis of Theorem 3.3. To sim-
plify the notation, in the sequel we agree that i ̸= j
when we write i, j to denote two neurons of the net-
work N .

Let N be the minimum positive natural number
such that

N ≥ U − L

min{Aj,i: j ∈ K, i ∈ N}
. (9)

Lemma 9 In the hypothesis of Theorem 8, if at least
N neurons of the kernel K spike simultaneously at
some instant T0 > 0, then the neurons of the whole
network spike altogether at instant T0.

Proof: Arguing by contradiction, let us assume that
there exists a neuron i ∈ N that does not spike at
instant T0. We have

xi(T0) < U. (10)

Since L < 0 is the low bound of the state xi of any
neuron, we know

L ≤ xi(T
−
0 ) < U,

where xi(T−
0 ) denotes the limit when t → T−

0 of the
state xi(t) at instant t, which is governed by the dif-
ferential equation (1). By hypothesis, there exists at
least N neurons j1, j2, . . . , jN of the kernel K spik-
ing at instant T0. Thus, these neurons jl are sending
actions Ajl,i to the neuron i. Since the whole network
is excitatory, we have Aj,i ≥ 0 for all j ̸= i. In par-
ticular, for all j ∈ JT0 (where JT0 denotes the subset
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of all the neurons that spike at instant T0), we have
Aj,i ≥ 0. Applying Equality (5), we obtain

xi(T0) = xi(T
−
0 ) +

∑
j∈JT0

Aj,i ≥ xi(T
−
0 ) +

N∑
l=1

Ajl,i.

From Definition 5, Ajl,i > 0 for all jl ∈ K, ∀ i ∈ N .
Besides xi(T−

0 ) ≥ L. Thus, we obtain

xi(T0) ≥ L+N ·min{Aj,i: j ∈ K, i ∈ N}.

Taking into account the definition of the natural num-
ber N as the minimum N ≥ 1 that satisfies Inequality
(9), we deduce
xi(T0) ≥ L +

U − L

min{Aj,i: j ∈ K, i ∈ N}
·min{Aj,i: j ∈ K, i ∈ N}

= L+ (U − L) = U.
Therefore, we deduce that xi(T0) ≥ U , which contra-
dicts to inequality (10) and ends the proof of Lemma
9. �

Lemma 10 There exists a strictly increasing se-
quence {tn}n≥1 of instants tn > 0 such that:

(i) For all n ≥ 1 there exists at least one neuron of the
kernel K spikes at instant tn.
(ii) No neuron of the kernel K spikes during the time
intervals (tn, tn+1) for all n ≥ 1, and also during
[0, t1).

Proof: Such a sequence {tn}n≥1 exists, due to
Equality (3). In fact, denote t0 = 0. Since any neu-
ron i (and in particular any neuron of the kernel) has
a minimal spiking instant Ti > 0, then, from any in-
stant tn > 0, there always exists a first next instant
tn+1 > tn for which at least one neuron of the kernel
spikes. Since tn+1 can be chosen minimal with such
a property, no neuron spikes during the time intervals
[0, t1) and (tn, tn+1). �

Lemma 11 In the hypothesis of Theorem 8, for each
initial state there exists a minimal instant T0 > 0
such that at least N neurons of the kernel K spike
simultaneously at T0. Moreover, T0 = tn0 for some
1 ≤ n0 ≤ N , where N ≥ 1 is the minimum pos-
itive natural number that satisfies Inequality (9) and
{tn}n≥1 is the strictly increasing sequence of Lemma
10.

Proof To prove Lemma 11, it is enough to prove the
following assertion:
Assertion (A) to be proved: There exists a minimal
positive natural number n0 ≥ 1 such that at instant

tn0 at least N neurons of the kernel K spike simulta-
neously.
In fact, if we prove Assertion (A), then we deduce
Lemma 11 by defining T0 := tn0 .

Consider the instant t1. By Lemma 10, which as-
serts the existence of the sequence {tn}n≥1, there ex-
ists at least one neuron, say i1 ∈ K, that spikes at
instant t1. Thus, if N = 1, Assertion (A) holds triv-
ially taking n0 = 1. If N ≥ 2, then either there exist
at least N neurons in K that spike at instant t1 (joint
with i1), or there exists at most N − 1 neurons that do
so. In the first case, Assertion (A) holds for n0 = 1,
and there is nothing more to prove. In the second case,
denote by It1 the subset of neurons in N that spike at
instant t1, and denote by K ∩ It1 the subset of neu-
rons in the kernel K that spike at instant t1. We are
assuming that

#
(
K ∩ It1

)
≤ N − 1, (11)

where # denotes “the number of elements of”.
By hypothesis K is strong, so it satisfies Defini-

tion 6. Thus, k = #K ≥ 3 satisfies Inequality (7).
We have:

√
k >

U − L

min{Ai,j : i ∈ K, j ∈ N}
. (12)

Thus, recalling that N ≥ 1 is the minimum natural
number that satisfies Inequality (9), we deduce

N + 1 <
U − L

min{Ai,j : i ∈ K, j ∈ N}
.

Joining with Inequality (12), we obtain
√
k > N + 1, k > (N + 1)2. (13)

If we denote by #
(
K\ It1

)
the number of cells in the

kernel K that do not spike at instant t1, we have

#
(
K \ It1

)
=
(
#(K)

)
−
(
#(K ∩ It1)

)
= k−

(
#(K∩It1)

)
≥ (N+1)2−

(
#(K∩It1)

)
(14)

Joining Inequalities (11) and (14) se obtain:

#
(
K\ It1

)
≥ (N +1)2− (N − 1) > N2− (N − 1).

(15)
Since at least the neuron i1 spikes at time t1, and the
network is excitatory, we deduce - from Equality (5)
applied to any neuron j ∈ K \ It1 - the following
property:

U > xj(t1) = xj(t
−
1 ) +

∑
i∈It1

Ai,j ≥ L+Ai1,j
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≥ L+min{Ai,j : i ∈ K, j ∈ N}.
Applying inequality (9), we obtain:

U > xj(t1) ≥ L+
U − L

N
∀ j ∈ K \ It1 . (16)

Now, we will generalize Inequalities (15) and (16) for
other instants th with h ≥ 1, as follows:

Assertion (B): If at the instants t1, . . . , tl, . . . , th (for
some h ≥ 1), at most N − 1 cells of the kernel K
spike, then (denoting by Itl the subset of all the cells
that spike at instant tl) the following inequalities hold:

#
(
K \ (

h∪
l=1

Itl)
)
> N2 − h(N − 1). (17)

U > xj(th) ≥ L+
(U − L)h

N
∀ j ∈ K \

( h∪
l=1

Itl

)
.

(18)
Let us prove Assertion (B) by induction on the natural
number h ≥ 1. In (15) and (16), we have proved (B)
if h = 1. Assume that (17) and (18) hold for some
h ≥ 1 and let us prove them for h + 1. Since at most
N − 1 cells of the kernel K spike at the instant tl for
all 1 ≤ l ≤ h+ 1, then in particular for l = h+ 1 we
obtain:

#
(
K ∩ Ith+1

)
≤ N − 1.

Therefore, using Inequality (17) for h, we obtain:

#
(
K \ (

h+1∪
l=1

Itl)
)
=

#
(
K \ (

h∪
l=1

Itl)
)

−
(
#(K ∩ Ith+1

)
)
>

N2 − h(N − 1) −
(
#(K ∩ Ith+1

)
)

≥

N2 − h(N − 1)− (N − 1) = N2 − (h+ 1)(N − 1).

Thus, we have proved Inequality (17) for h+1. Now,
let us prove Inequality (18) for h+1, assuming that it
holds for h. Let us fix any neuron

j ∈ K \
( h+1∪

l=1

Itl

)
⊂ K \

( h∪
l=1

Itl

)
.

Since the neuron j had not spiked in instants
t1, . . . , th, th+1, its variable xj(t) had increased with
t, since the instant t1 up to instant th+1, and is smaller
than the threshold level U . Therefore, applying In-
equality (18) for h, we get:

xj(t
−
h+1) ≥ xj(th) ≥ L+

(U − L)h

N
. (19)

By Lemma 10, at instant th+1 at least one cell, say
ih+1 ∈ K spikes. Then, applying the action’s rule (5),
we obtain:

U > xj(th+1) = xj(t
−
h+1) +

∑
i∈Ith+1

Ai,j ≥

≥ xj(t
−
h+1) +Ai1,j .

Joining with Inequality (19), we deduce:

U > xj(th+1) ≥ L+
(U − L)h

N
+Ai1,j ≥

≥ L+
(U − L)h

N
+min{Ai,j : i ∈ K, j ∈ N}.

Substituting the last term in the above inequality by
the expression obtained from Inequality (9), we get

U > xj(th+1) ≥ L+
(U − L)h

N
+
U − L

N
=

= L+
(U − L)(h+ 1)

N
.

This is Inequality (18) for h + 1, ending the proof of
Assertion (B).

Now, let us show that Assertion (B) implies As-
sertion (A). Arguing by contradiction, let us suppose
that for all 1 ≤ h ≤ N , at most N − 1 cells spike
at instant th. Then, we can apply Assertion (B) with
h = N . From Inequality (17) we obtain:

#
(
K \ (

N∪
l=1

Itl)
)
> N2 −N(N − 1) = N ≥ 1.

So, there exists more than N neurons that have not
spiked at instants t1, t2, . . . , tN (including instant tN ).
From Inequality (18) with h = N , we have:

U > xj(tN ) ≥ L+
(U − L)N

N
= L+ (U −L) = U

∀ j ∈ K \
( h∪

l=1

Itl

)
.

We conclude that more thanN neurons, which we call
j, do not spike at instant tN , but nevertheless, the val-
ues xj(tN ) of their respective state variables at instant
tN are larger or equal than the threshold level U . This
contradicts Definition 2 of the spiking instants. We
have proved Assertion (A), which implies Lemma 11,
as wanted. �
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Lemma 12 In the hypothesis of Theorem 8, letN ≥ 1
be the minimal positive natural number that satisfies
Inequality (9). If T0 > 0 is the first instant such that at
least N neurons of the kernel K spike simultaneously,
then there exists at least one neuron i0 ∈ K that does
not spike during the time interval [0, T0) (excluding
its right extreme T0).

Proof: Let {tn}n≥1 be the increasing sequence of
instants of Lemma 10. Applying Lemma 11,

T0 = tn0 for some 1 ≤ n0 ≤ N.

If n0 = 1, then by condition (ii) of Lemma 10,
no spike occurs during the time interval [0, t1) =
[0, tn0) = [0, T0). So, in this case Lemma 12 holds
trivially. If n0 ≥ 2, then we take into account that
T0 = tn0 is the first instant at which at least N neu-
rons of K spike. In other words:

At any instant

t1, . . . , tn0−1

at most N − 1 neurons of the kernel K spike, and be-
sides, from condition (ii) of Lemma 10, no neuron
spikes at the intermediate times t ∈ (tn, tn+1). We
conclude that:

Assertion (C): There exist at most

(N − 1)(n0 − 1) < N · n0 ≤ N2

neurons of the kernel K that spike during the time in-
terval [0, tn0) = [0, T0).

From the definition ofN as the minimum positive
natural number that satisfies Inequality (9), we deduce

U − L

min{Ai,j , i ∈ K, j ∈ N}
≥ N + 1. (20)

By hypothesis, Inequality (7) holds. Combining In-
equalities (7) and (20), we obtain:

√
k ≥ (N + 1) > N, k > N2

where k is the number of neurons of the kernel K.
Then, from Assertion (C) we deduce that there exist
less than k neurons of K that spike during the time
interval [0, T0). But k = #K. We conclude that there
exists at least one neuron of the kernel K that does
not spike during such an interval, ending the proof of
Lemma 12. �

3.3 End of the Proof of Theorem 8

The Proof of Theorem 8 Consider the minimal pos-
itive natural number N ≥ 1 that satisfies Inequality
(9). From Lemma 11, for any initial state of the net-
work, there exists a first instant T0 ≥ 0 (which may
depend on the initial state), such that at least N neu-
rons of the kernel K spike simultaneously at T0. Ap-
plying now Lemma 9, all the neurons of the network
spike simultaneously at T0. Thus, at instant T0, from
the reset rule (4) we have

xi(T0) = 0 ∀ i ∈ N .

By a translation of the origin of time axis to T0, the
new initial state of each neuron i is zero. By hypothe-
sis, all the cells are identical: i.e. they satisfy (during
their integration periods) the same differential equa-
tion (1). Since at instant T0 all of them have the same
state equal to zero, and from T0 they are all governed
by the same differential equation, we deduce that all
of them arrive together to the threshold level U , at an
instant T1 > T0. Thus, all the neurons of the network
spike together (again) at time T1 > T0; and besides

xi(t) = xj(t) ∀ T0 ≤ t < T1 ∀ i ̸= j.

Applying again the reset rule (4) at instant T1, we ob-
tain

xi(T1) = 0 ∀ i ∈ N .

Arguing by induction, if all the cells spike simultane-
ously at an instant Tn, then from instant Tn and until
they arrive again to the threshold level U at instant
Tn+1 > Tn, we have:

xi(t) = xj(t) ∀ Tn ≤ t < Tn+1 ∀ i ̸= j. (21)

We assert that

lim
n→+∞

Tn = +∞. (22)

In fact, Tn+1−Tn is the constant time that any neuron
i (whose state at instant Tn is xi(Tn) = 0) takes to
arrive to the threshold level U > 0, being governed
uniquely by the differential equation (1). Since the
instantaneous velocity at which xi(t) increases with t
is dxi/dt, we obtain:

Tn+1 − Tn ≥
xi(T

−
n+1)− xi(Tn)

max{dxi(t)/dt: Tn ≤ t ≤ Tn+1}
=

=
U − 0

max{f(x) : 0 ≤ x ≤ U}
= b > 0,

where b is a constant. Therefore Tn+1 ≥ Tn + b for
all n ≥ 0, which implies Tn ≥ nb → +∞, when
n→ +∞. This proves Equality (22), as wanted.
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Since Equality (21) holds for all n ≥ 0, and Tn →
+∞, we deduce that

xi(t) = xj(t) ∀ t ≥ T0, ∀ i ̸= j.

So, by Definition 7, the network synchronizes for all
t ≥ T0, proving the first part of Theorem 8.

Now, to end the proof of Theorem 8, it is only
left to prove Inequality (8), which bounds from above
the transitory time T0. As proved in the first part
above, the network synchronizes (as a later time) at
the first instant T0 ≥ 0 at which at least N neurons of
the kernel K spike simultaneously. Applying Lemma
12, there exists a neuron i0 that does not spike during
the time interval [0, T0). But, from Lemma 9, all the
neurons of the network K spike at instant T0. Then,
T0 equals the waiting time until the neuron i0 spikes
for the first time. Therefore, during the time inter-
val [0, T0) the state xi0(t) of the neuron i0 is strictly
increasing on time, governed by the differential equa-
tion (1) plus the positive discontinuity jumps that are
produced on the state of i by the actions that come
from other neurons j ̸= i. Thus, the time T0 is not
larger than the time T ∗

0 that would take the variable
xi0 , to arrive from the lowest possible level L < 0 at
instant 0, to the highest possible level U > 0 at in-
stant T0, if it were only governed by the differential
equation (1):

T0 ≤ T ∗
0 .

So, let us compute T ∗
0 as if xi0 were only governed by

(1). Applying the mean value theorem of the deriva-
tive, there exists τ ∈ [0, T ∗

0 ] such that

dxi0
dt

∣∣∣∣
t=τ

=
U − L

T ∗
0 − 0

,

from which

T ∗
0 =

U − L

(dxi0/dt)|t = τ
=

=
U − L

f(xi0(τ))
≤ U − L

min{f(x): L ≤ x ≤ U}
.

We deduce that

T0 ≤ T ∗
0 ≤ U − L

min{f(x): L ≤ x ≤ U}
,

which is Inequality (8) as wanted, ending the proof of
Theorem 8. �

4 Applications and other methods of
research

Diverse mathematical tools are used to analyze the
emergent global dynamics of networks of interact-
ing units. For instance, the Linear Matrix Inequal-
ity (LMI) approach, is used to study the stability and

Lyapunov exponents in applications to Control Engi-
neering, Communications, Manufacturing and Man-
agement [20, 23], and in particular to prove synchro-
nization of artificial neuronal networks [28].

Classical arguments in the theory of differential
equations and abstract dynamical systems are used for
networks with low dimensions, mostly those that are
continuously coupled on time. For instance, phase
locking (instead of full synchronization) is proved in
the emergent dynamics of low-dimensional networks
of interacting predator-prey communities [42, 13].
The dynamics of populations is also modeled by im-
pulsive differential equations, as a pulsed coupled net-
work, in some examples of vaccination and biological
control (see for instance [24] and references therein).
On small networks, equilibrium states, periodic orbits
and synchronized periodic orbits are searched in the
emergent dynamics of a network composed by two in-
teracting populations in a social system [41].

Other mathematical approach to study the emer-
gent behaviour of finite networks of interacting units
is provided by the Game Theory. Finite games are also
studied as networks (e.g. [31]). As a difference with
the approach given by the Theory of Dynamical Sys-
tems, the Game Theory usually models the network
taking into account the existence of different strate-
gies according to which the cells interact dynamically
(e.g. [16]). The excitatory interaction among the cells
in a neuronal network work similarly as the so called
imitative strategy in the theory of games. Combin-
ing arguments of Dynamics and Game Theory, the so
called evolutive games, under an imitative strategy hy-
pothesis, are applied to study a social network of firms
and workers [1]. The synchronization of coupled dy-
namical units appears also in the research of economic
cycles [44]. Classical arguments of Dynamics under
the hypothesis of Game Theory, is applied to study a
nonlinear network composed by two interacting com-
petitors with delay times in the insurance market [50].

Artificial Neuronal Networks (ANNs; see for in-
stance [10] and the references therein) is a methodol-
ogy that is being widely used in applications, mainly
to simulate and predict the behaviour of physical or
social systems with large complexity, and for engi-
neering design of artificial intelligence and data pro-
cessing. The methodology of research with ANNs,
usually applies a combination of different mathemat-
ical tools, from Dynamics, Probability Theory and
Statistics, to Numerical Analysis, Optimization and
Computational algorithms. The purpose of an ANN
is, in general, to process the information that is re-
ceives from the neurons in the so called input layer,
provide results obtained from the neurons of the so
called output layer , by means of a black box, which
is composed by the neurons of one or more hidden
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layers. The system is controlled by diverse feed-back
or feed-forward couplings among the layers. A se-
quential learning process is produced by the ANN by
the accumulation of the previous dynamical experi-
ences that the information data provides. The main
characteristic of an ANN that allows it to work as
a learning machine and makes it useful in applica-
tions is its self-organizing capability. This ability is
governed by the so called self-organizing-mappings
(SOM) which are functional representations. Among
the self-organizing features, some subsets of neurons
in the network may self-synchronize, or at least peri-
odically self-synchronize.

For instance, the self-synchronization of groups
of an ANN is applied to model a network of the me-
dieval society [5]. Also the SOM technique is applied
in the research of the market of equity funds [9]. Dif-
ferent architectures of ANNs and SOM are applied in
the prediction and surety bonding in Construction En-
gineering [2], in meteorologic predictions of the wind
speed [14], in the optimization of the compression
ratio and other criteria for image processing [21, 3],
in the study of dataset clustering in Gastroenterology
[11], to simulate and detect earning management on
accounting and financial applications [17], etc. A par-
ticularly flexible application of ANNs is the Field-
Programmable-Gate-Array (FPGA). It is the design of
integrated-circuits based ANNs such that the architec-
ture of the network and the self-organizing mappings
that allow the network work as a learning machine, are
programmable.

5 Final comments
In Neuroscience, the formation of groups of neu-
rons into synchronized clusters is based on the mu-
tual synaptical connections that are modeled as a bio-
electrical circuit [15]. In general, in electrical circuits
synchronization provides security and stability of the
system, and in the case of data processing systems, it
provides sufficient reliability [40].

Nevertheless, a synchronized orbit (and also any
other periodic limit orbit) is usually not obtained for
free. If attracting all or most orbits (as we have proved
in Theorem 8), synchronization implies a sacrifice in
the theoretic optimum amount of information that the
system processes or memorizes with respect to the
number of neurons that are used for the task. In fact,
according to the abstract mathematical definition of
entropy in the Ergodic Theory (e.g. [22]), if the global
attractor is periodic, the system has zero entropy. In
spite of this mathematical prorperty, the null entropy
only means that the limit rate of increasing informa-
tion is zero, when time goes to infinite. But the system

may still be able to process or memorize a positive fi-
nite amount of information, while its transients last.
In fact, by Formula (8) we find a bound from above
of the transitory time T0. The bound works for any
initial state, but the transitory time, and the patterns
of clustered neurons that are formed during the tran-
sitory time intervals, depend on the initial state of the
network (Lemmas 11 and 12).

As a consequence, if the network N under ob-
servation, is a part of a larger network, and if this
larger network sends signals to N , then it modifies
the instantaneous state of one or more of the cells in
N . Thus, N will generically loose its synchroniza-
tion as a consequence of the signals it receives from
its exterior. From the lost of synchrony, and while
the transitory time T0 lasts, the network N will show
a specific pattern in the sequence {tn}n≥1 of spiking
instants and in the clusters (or subsets) of spiking neu-
rons (Lemmas 10 and Lemma 12). This pattern de-
pends on the stimulus that N received from the exter-
nal macro-network. Since the system is assumed to
be deterministic, each external stimulus provokes the
reproduction (in N ) of each transitory pattern. The
transitory time interval T0 until the network recuperes
its synchronization, and the pattern it shows, depend
on the received stimulus, but may last much more than
the stimulus itself. In fact, the (optimum) upper bound
of the transitory time in Inequality (8) may be very
large for certain choice of the parameters of the net-
work N .

Finally, we notice that the synchronization result
would be false in general, if the model of each neu-
ron (as an integrate and fire oscillator) were not one-
dimensional. Many neurons in the nervous system are
modeled by multi-dimensional differential equations
(see for instance [39]). And not all the asymptoti-
cal dynamics of a model of a biological neuron in a
multi-dimensional setting are globally stable. [12].
In fact, the one-dimensional phase-amplitude descrip-
tion of some neurons has been recently proved to be
inadequate, in some cases, for the analysis of rhythms
and oscillations [25]. If the limit set of a the dynamics
of a neuron i has (for instance) more than one limit
cycle, then the perturbation produced on the state of
i, for example by the actions of other neurons in the
network, may move the state from the basin of attrac-
tion of one limit cycle to the basin of a different limit
cycle. The resultant dynamics may be chaotic, rather
than periodic [26].
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