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Abstract: This is a review of studies on fluid flow passing through an isolated ideal aggregate with a porous
layer with the uniformly permeability. Fluid flows are governed by the Brinkman’s extension of Darcy’s law and
continuity equation. These equations with appropriate boundary conditions are analytically solved by introducing
stream functions, respectively. The comparisons between Kim & Yuan’s cell model with a porous layer with the
uniformly permeability and other previous works are investigated.
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1 Introduction
Fluids are substances whose molecular structure of-
fers no resistance to external shear forces: even the
smallest force causes deformation of fluid particles.
Fluid flow is caused by the action of externally ap-
plied forces. Common driving forces include pressure
differences, gravity, shear, rotation, and surface ten-
sion. The effect of the driving forces differ consid-
erably when fluids pass objects with different perme-
abilities so that fluid behavior changes significantly.
Therefore, study of the hydrodynamics of fluid flow
passing impermeable or porous objects is important
in the theory of fluid dynamics.

Porous media can be found in many instances
in natural and engineered systems such as soil and
rocks in nature; animal and plant tissues in biology
[10, 17]; and aggregates formed during sedimentation
and granular filtration in water and wastewater treat-
ment. When fluid flows pass through these porous
medium, the characteristics of flows are closely re-
lated to the hydrodynamic properties of the porous
medium. For example, in water and wastewater treat-
ment using membrane filtration, the product flow and
membrane life-span are affected by hydrodynamic
properties of the porous medium such as permeabil-
ity and selectivity. Therefore, study for hydrodynam-
ics of fluid flow passing through porous media is very
important in real applications.

Fluid flow relative to aggregates of fine parti-
cles is also of significance in processes of conven-
tional water and wastewater treatment such as coagu-
lation/flocculation, sedimentation, and granular filtra-

tion as well as advanced treatment such as membrane
filtration [1, 13, 22, 25, 26, 28, 31, 41, 43, 44].

There are four pressure-driven membrane sepa-
ration process: Microfiltration (MF), Ultrafiltration
(UF), Nanofiltration (NF) and Reverse Osmosis (RO).
MF removes contaminants from a fluid by passage
through a microporous membrane. A typical micro-
filtration membrane pore size range is 0.1 to 10µm.
UF is a variety of membrane filtration in which hy-
drostatic pressure forces a liquid against a semiper-
meable membrane. Suspended solids and solutes of
high molecular weight are retained, while water and
low molecular weight solutes pass through the mem-
brane. This separation process is used in industry and
research for purifying and concentrating macromolec-
ular (103 - 106 Da) solutions, especially protein so-
lutions. NF is a relatively recent membrane process
used most often with low total dissolved solids water
such as surface water and fresh groundwater to soften
water (polyvalent cation removal) and remove disin-
fection by-product precursors such as natural organic
matter and synthetic organic matter. NF is widely
used in food processing applications such as dairy for
simultaneous concentration and partial (monovalent
ion) demineralization. RO is a separation process that
uses pressure to force a solution through a membrane
that retains the solute on one side and allows the pure
solvent to pass to the other side. More formally, it is
the process of forcing a solvent from a region of high
solute concentration through a membrane to a region
of low solute concentration by applying a pressure in
excess of the osmotic pressure. This is the reverse
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of the normal osmosis process, which is the natural
movement of solvent from an area of low solute con-
centration, through a membrane, to an area of high
solute concentration when no external pressure is ap-
plied. The membrane here is semipermeable, meaning
it allows the passage of solvent but not of solute.

MF and UF are widely used for particulate re-
moval, capable of separating particulate materials
ranging from 10 nm to 10 microns. In the processes
of MF/UF, particles within the feed stream are sub-
jected to a drag force and accumulate near the mem-
brane surface and tend to axially migrate to the out-
let of the membrane. The boundary layer concentra-
tion modifies the solution properties of viscosity and
density, and solute molecular diffusivity [29]. During
MF and UF processes, flux decline occurs due to var-
ious fouling phenomena such as concentration polar-
ization, deposition and adsorption of retained solutes
on membrane surfaces, and pore blocking/plugging of
membranes.These phenomena result in a decreasing
driving force on permeation due to enhanced resis-
tances against solvent transport through membranes
[4, 5, 11, 12, 38, 39]. In MF and UF processes, aggre-
gate cake formation is one pattern of matter-stacking
phenomena on the membrane surfaces, while other
patterns cause distinguishable behaviors of permeate
flux decline [2, 3, 6, 8, 9, 18, 24, 32, 33, 34, 35, 36,
37, 47, 48].

The major limiting factor of filtration perfor-
mance is the ratio of permeate flux (with appropri-
ate water quality) to operation/maintenance cost, of-
ten increasing due to membrane fouling. When co-
agulation/flocculation of the conventional water and
wastewater treatment is used as a pretreatment or co-
process of MF/UF applications, a higher permeate
flux is observed because deposited aggregates gener-
ate much more porous and permeable structures than
those of cake layers composed of individual colloidal
particles. This phenomenon, so-called aggregate-
enhanced membrane filtration (AEMF),[14, 19, 20,
23, 28, 31, 42, 45, 46], has significant potential in opti-
mizing MF/UF processes and possibly minimizing the
operation/maintenance cost, but it has not been fully
addressed with rigorous fundamentality. An in-depth
analysis of fluid flow relative to the aggregates will,
therefore, lead to a better understanding of AEMF.

2 Drag force exerted on isolated
spherical objects

The study for hydrodynamics of fluid flow relative to
an impermeable sphere dates back to about 150 years
ago [40]. Fluid flow was governed by the Stokes equa-

tion and continuity equation. Almost 100 years later,
Brinkman [7] studied fluid flow passing through an
isolated sphere of uniform permeability. In 1987 [27],
Masliyah, et al. combined Stokes’ and Brinkman’s
models together and studied the creeping flow past a
solid sphere with a uniformly porous shell.

2.1 Stokes’ model

In 1851 [40], Stokes studied the effect of the internal
friction of fluids on the motion of pendulums. As one
of the applications of the theory, he investigated the
hydraulic resistance of a sphere moving uniformly in
a homogeneous fluid, which can be obtained as a lim-
iting case of the resistance to a ball pendulum.

Let u be the fluid velocity and ur,uθ and uϕ the
components of the velocity along the spherical coor-
dinate system of r, θ and ϕ, respectively, p the pres-
sure, and µ the viscosity of the fluid. When the fluid
is homogeneous, incompressible, and Newtonian, the
governing equations are

µ∇2u = ∇p (1)

and continuity equation

∇ · u = 0 (2)

Besides the general equations of Eqs.(1) and (2),
boundary equations of the fluid flow need to be con-
sidered. For convenience, there will be no occasion
to consider the case of a free surface, only that of the
common surface of the fluid and a solid. If the fluid
immediately in contact with a solid could flow past
it with a finite velocity, it would follow that the solid
was infinitely smoother with respect to its action on
the fluid than the fluid with respect to its action on it-
self. Let R be the radius of the solid whose center is
located at the origin of spherical coordinates (r, θ, ϕ).
The fluid flow approaches in the +Z direction with
velocity V , as depicted in Figure 1, due to the axi-
symmetry of the fluid flow relative to an isolated per-
meable sphere. The boundary conditions are as fol-
lows:

ur (R, θ) = 0 (3a)
uθ (R, θ) = 0 (3b)

lim
r→+∞

ur (r, θ) = V cos θ (3c)

lim
r→+∞

uθ (r, θ) = −V sin θ (3d)

To solve the governing equations of Eqs. (1) and
(2) with boundary conditions (3), Stokes introduced a
stream function ψ(r, θ) which satisfies the following
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Figure 1: Coordinate system for axi-symmetric fluid
flow relative to a solid sphere

equations:

ur = − 1

r sin2 θ

∂ψ

∂θ
(4a)

uθ =
1

r sin θ

∂ψ

∂r
(4b)

Then the governing equations (1) and (2) become the
following partial differential equations in a form of the
stream function ψ(r, θ):

E4ψ = 0 (5)

where E2 is a differential operator defined as

E2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
(6)

The general solution of Eq. (5) is:

ψ =
1

2
V

(
A

r
+Br + Cr2 +Dr4

)
sin2 θ (7)

where coefficients A,B,C and D are determined by
using the boundary conditions (3) as follows:

A =
R3

2
, B = −3R

2
, C = 1, and D = 0 (8)

Stokes [40] also calculated the drag force exerted on
the solid sphere

F = 2πR2

∫ π

0
(−τrr cos θ + τrθ sin θ)|r=R sin θdθ

(9)

where τrr and τrθ are normal and tangential compo-
nents of the stress tensors of fluid flow, respectively.
They are defined as follows:

τrr = −p+ 2µ
∂ur
∂r

(10a)

τrθ = µ

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
(10b)

Using Stokes’ law, the dimensionless drag force Ω is
introduced as

Ω =
F

6πµV R2
(11)

then, it is represented as

Ω = −2B

3R
(12)

components of the flow velocity are

ur =

(
1 +

1

2

R3

r3
− 3

2

R

r

)
cos θV (13)

and

uθ =

(
−1 +

1

4

R3

r3
+

3

4

R

r

)
sin θV (14)

and, therefore the dimensionless drag force is

ΩS = 1 (15)

2.2 Brinkman’s model

Brinkman [7] studied a solution of long chain
molecules in which each polymer molecule forms a
molecular cluster. He also studied sedimentation ve-
locity of the molecular cluster and the viscosity of
such solutions. According to this model, each molecu-
lar cluster is represented by a porous sphere which has
a constant hydraulic permeability. Similar to Stokes’s
model, let R be the radius of the porous sphere which
centers at the origin of spherical coordinates (r, θ, ϕ),
and the flow approaches to the sphere in the +Z direc-
tion with a uniform velocity V , as shown in Figure 2
Let u be the fluid velocity outside the porous sphere,
u∗ = (u∗r , u

∗
θ, u

∗
ϕ) the velocity of fluid through the

porous sphere. The azimuthal component of u∗, u∗ϕ,
is zero due to the spherical symmetry. According to
Brinkman, the fluid flow through the porous sphere is
governed by the extension of Darcy’s law (so called
Brinkman’s extension of Darcy’s law or Brinkman’s
Equation [7]. The governing equations outside and
inside of the porous sphere are

µ∇2u = ∇p, r > R (16a)

µ∗∇2u∗ − µ∗

κ
u∗ = ∇p∗, 0 < r < R(16b)
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Figure 2: Coordinate system for axi-symmetric fluid
flow relative to a porous sphere

respectively, and the continuity equations are,

∇ · u = 0, r > R (17a)
∇ · u∗ = 0, 0 < r < R (17b)

where p and p∗ are pressures, µ and µ∗ viscosities
of fluid, and κ is the permeability of the uniformly
porous sphere.

It is assumed that the velocity of fluid flow at
the center of the porous sphere is finite, the normal
and tangential components of velocity and stress ten-
sor across the porous sphere interface are continuous,
and the flow is unidirectional far from the permeable
sphere. So the boundary conditions are

lim
r→0

u∗r is finite (18a)

lim
r→0

u∗θ is finite (18b)

ur (R, θ) = u∗r (R, θ) (18c)
uθ (R, θ) = u∗θ (R, θ) (18d)
τrr (R, θ) = τ∗rr (R, θ) (18e)
τrθ (R, θ) = τ∗rθ (R, θ) (18f)

lim
r→∞

ur = V cos θ (18g)

lim
r→∞

uθ = −V sin θ (18h)

where τrr∗ and τrθ∗ are normal and tangential com-
ponents of the stress tensors inside the porous sphere,

respectively, which are defined as follows:

τ∗rr = −p∗ + 2µ∗
∂u∗r
∂r

(19a)

τ∗rθ = µ∗
(
1

r

∂u∗r
∂θ

+
∂u∗θ
∂r

−
u∗θ
r

)
(19b)

With the incompressibility of the Newtonian fluid im-
plied in Eq. (17), it has been proven that the continu-
ity of the normal stress is equivalent to that of the fluid
pressure [14, 23]:

p∗ (R, θ) = p (R, θ) (20)

Similar to Eq. (4), ψ∗ (r, θ) is defined

u∗r = − 1

r2 sin θ

∂ψ∗

∂θ
(21a)

u∗θ =
1

r sin θ

∂ψ∗

∂r
(21b)

Then, the governing Eqs.(16) and (17) are combined
into the 4th order partial differential equations

E4ψ = 0, r > R (22a)

E4ψ∗ − 1

κ
E2ψ∗ = 0, 0 < r < R (22b)

where E2 is defined by the Eq. (6). The general
solutions of Eq. (22) are

ψ = −κV
2

(
A

ξ
+Bξ + Cξ2 +Dξ4

)
sin2(θ),

ξ > β (23a)

ψ∗ = −κV
2

[
E

ξ
+ Fξ2 +G

(
cosh ξ

ξ
− sin ξ

)
+H

(
sinh ξ

ξ
− cosh ξ

)]
sin2(θ),

0 < ξ < β (23b)

where ξ = r/
√
κ and β = R/

√
κ. Using boundary

conditions of Eq. (18), one can determine coefficients
A−H as follows:

A =
β3

JB

[
−2β2 + 3

(
β2 + 2

)(
1− tanhβ

β

)]
(24a)

B = −3β3

JB

(
1− tanhβ

β

)
(24b)

C = 1 (24c)
D = 0 (24d)
E = 0 (24e)

F =
3

JB

(
1− tanhβ

β

)
(24f)

G = 0 (24g)

H =
6β2

JB
· 1

coshβ
(24h)
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where JB = 2β2 + 3

(
1− tanhβ

β

)
. The dimen-

sionless drag force ΩB is:

ΩB = −2B

3β
=

2β2
(
1− tanhβ

β

)
2β2 + 3

(
1− tanhβ

β

) (25)

For a impermeable solid sphere, κ → 0, i.e., β → ∞
and tanhβ/β → 0. In this case, ΩB of Eq. (15)
converges to ΩS(= 1).

2.3 Masliya et al.’s model

Masliya et al [27] studied creeping flow past a solid
sphere with a porous shell by combining the Stokes
and Brinkman models. The dimensionless radius
of solid core and shell thickness, normalized by the
square root of the shell permeability, govern the fluid
flow inside and outside the porous shell. In the lim-
iting cases, the analytical solution describing the flow
past the composite sphere reduces to those for flow
past a solid sphere (Stokes’ case [40]) and a homoge-
neous porous sphere (Brinkman’s case [7]).

Let b be the outer radius of the porous shell of
the isolated composite sphere and a the radius of the
solid impermeable sphere surrounded by the porous
shell. It is assumed that the porous shell is homoge-
neous and isotropic with a constant permeability κ.
The creeping flow of the Newtonian fluid of viscosity
µ is assumed to be steady and axi-symmetric. For con-
venience, the authors considered the sphere to be sta-
tionary having its center at the origin of spherical co-
ordinates (r, θ, ϕ), while a constant fluid is approach-
ing in the +Z direction at velocity V , as shown in Fig-
ure 3. Let u = (ur, uθ, uϕ) and u∗ = (ur

∗, uθ
∗, uϕ

∗)
denote the velocity vectors of fluid flow through the
outside of the composite sphere and the porous shell,
respectively. The governing equations are as follows:

µ∇2u = ∇p, r > b (26a)

µ∗∇2u∗ − µ∗

κ
u∗ = ∇p∗, a < r < b (26b)

the continuity equations of

∇ · u = 0, r > b (27a)
∇ · u∗ = 0, a < r < b (27b)

where µ, µ∗, p, p∗ and κ have the same meanings
as described above. The pressure profiles of p and p∗
satisfy the following equation:

p (b, θ) = p∗ (b, θ) (28)

+Z

r

ur

uθ

b

a

θ

V

Approaching

fluid

Solid sphere

Uniformly

porous layer

Figure 3: Coordinate system for axi-symmetric fluid
flow relative to a composite sphere comprising a
solid impermeable sphere surrounded by a uniformly
porous shell

and
µ = µ∗ (29)

is assumed [14, 24].
For the present problem, the boundary conditions

are described as follows:

u∗r (a, θ) = 0 (30a)
u∗θ (a, θ) = 0 (30b)
ur (b, θ) = u∗r (b, θ) (30c)
uθ (b, θ) = u∗θ (b, θ) (30d)
τrr (b, θ) = τ∗rr (b, θ) (30e)
τrθ (b, θ) = τ∗rθ (b, θ) (30f)
lim
r→∞

ur = V cos θ (30g)

lim
r→∞

uθ = −V sin θ (30h)

In the limit of a = b = R, Eq. (30) is identical to Eq.
(18)

To solve the governing equation (26) and (27)
with the boundary conditions of Eq. (30), the stream
functions ψ and ψ∗ of Eq. (23) satisfy the following
partial differential equations:

E4ψ = 0, r > b (31a)

E4ψ∗ − 1

κ
E2ψ∗ = 0, a < r < b (31b)

The general solutions of the stream functions ψ (ξ, θ)
and ψ∗ (ξ, θ) can be expressed as follows, which are
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similar to Eq. (7) and Eq. (23), respectively.

ψ = −κV
2

(
A

ξ
+Bξ + Cξ2 +Dξ4

)
sin2(θ),

ξ > β (32a)

ψ∗ = −κV
2

[
E

ξ
+ Fξ2 +G

(
cosh ξ

ξ
− sin ξ

)
+H

(
sinh ξ

ξ
− cosh ξ

)]
sin2(θ),

α < ξ < β (32b)

where ξ = r/
√
κ, α = a/

√
κ and β = b/

√
κ. In

terms of functional forms, Eqs. (7) and (32a) are
identical using r and ξ, respectively; Eqs. (23b) and
(32b), of the same form, are applied to different radi-
cal ranges.

Using the boundary conditions of Eq. (30), these
coefficients from A to H are determined as follows:

B =
1

2JM

[(
3α3 − 9β α2 + 9α+ 6β3

)
sinh∆

+
(
−3β α3 + 9α2 − 9β α− 6β4

)
cosh∆

]
(33)

where

JM =
(
3α2 − 3

)
sinh∆

+
(
α3 + 3α+ 2β3 + 3β

)
cosh∆− 6α

(34)
and

∆ = β − α

Note that the expression for B in Eq. (33) is another
form of B in Eq. (21) in Masliya et al.’s paper [27].

H =
1

JM

[
−3

(
α3 + 2β3

)
coshα

+9α (−β sinhβ + coshβ
+α sinhα− coshα)]

(35)

G =
(sinhα− α coshβ)H − 3α

α sinhβ − coshα
(36)

F =
G coshα+H sinhα

3α
(37)

E = 2B + 2Fβ3 (38)

= 1 (39)

D = 0 (40)

A = −Bβ2 + E + Fβ3 + (coshβ − β sinhβ)G
+(sinhβ − β coshβ)H − β3

(41)
Masliya et al. calculated the dimensionless drag force
defined as

ΩM =
2B

3β
(42)

and the expression of ΩM is

ΩM =
1

3JM

[(
−3α3 + 9β α2 − 9α− 6β3

)
sinh∆

+
(
3β α3 − 9α2 + 9β α+ 6β4

)
cosh∆

]
(43)

If a = b = R and R → ∞, then ∆ = 0 and α = β =
R/

√
κ→ ∞, and then ΩM → ΩH .

3 Drag force exerted on cells with
uniformly porous layer

In 1958 [16], Happel put Stokes’ sphere into a spher-
ical cell to develop an cell model to study fluid
flow passing through a swarm of equal-sized parti-
cles swarm. In 1973 [30], Neale et al. followed Hap-
ple’s approach to research fluid flow passing through
a swarm of permeable spheres by adding Brinkman’s
model in a cell. In 2005 [21], Kim and Yuan included
Masliyah’s sphere in a cell to study the creeping flow
over a swarm of the equal-sized composite spheres
and provided the most general solution that included
the five previous studies.

3.1 Happel’s cell model

Happel [15] studied the motion of particles relative to
a fluid flow to predict the effect of concentration of
particles on their rate of steady sedimentation under
the influence of gravity. The model assumed that par-
ticles are spherical, mono-dispersed and smooth. The
Navier-Stokes equations without inertia terms were
used to describe the fluid motion. A random assem-
blage consist of a number of cells, each of which con-
tains a spherical particle surrounded by a fluid enve-
lope; each envelope contains the same amount of fluid
as the relative volume of fluid to the particle volume
in the assemblage. Happel developed a sphere-in-cell
model to describe the motion of fluids relative to beds
of spherical particles.

Happel’s cell model considered two concentric
spheres: the inner sphere of a radius a representing
a spherical particle, and the outer sphere of radius b
the cell containing fluid and the particle at the center.
It is assume that the fluid approaching in the +Z di-
rection at velocity V is steady and axi-symmetric, and
this two concentric spheres are stationary having their
center at the origin of spherical coordinates (r, θ, ϕ),
as illustrated in Figure 4 The motion of fluid is gov-
erned by Stokes’ equation with continuity equation as
follows:

µ∇2u = ∇p, a < r < b (44a)
∇ · u = 0, a < r < b (44b)
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Figure 4: Coordinate system for axi-symmetric fluid
flow relative to two concentric spheres comprising a
solid impermeable sphere surrounded by shell of fluid

where the axi-symmetry of the fluid gives a 2-D prob-
lem. To solve the partial differential equations (44), it
is assumed that the internal sphere moves with a free
surface. The boundary condition is described as fol-
lows:

ur (a, θ) = 0 (45a)
uθ (a, θ) = 0 (45b)
ur (b, θ) = V cos θ (45c)
τrθ (b, θ) = 0 (45d)

the limit of b → ∞, Eqs. (45) are identical to Eqs.
(3) with a = R .

Introducing a stream function ψ (r, θ) defined by
Eq. (4), the governing equation Eq. (44) becomes an
ordinary differential equation as follows:

E4ψ = 0, a < r < b (46)

where E2 is the differential operator defined by Eq.
(6). Using the boundary conditions Eq. (45), the so-
lution for Eq. (46) is calculated as

ψ = −V b
2

2

(
A

r
+Br + Cr2 +Dr4

)
sin2 θ, a < r < b

(47)
where

A =
b3η3

−2− 3 η5 + 3 η + 2 η6
(48)

B = −
b
(
3 + 2 η5

)
η

−2− 3 η5 + 3 η + 2 η6
(49)

C =
3 η5 + 2

−2− 3 η5 + 3 η + 2 η6
(50)

and

D = − η3

b2 (−2− 3 η5 + 3 η + 2 η6)
(51)

where η = a/b. The solutions to components of the
velocity u = (ur, uθ) are

ur =

(
−A

r3
− B

r
− C − r2D

)
cos θV (52)

and

uθ =

(
−1

2

A

r3
+

1

2

B

r
+ C + 2 r2D

)
sin θV (53)

The dimensionless drag force ΩH is given as

ΩH = −2

3

2 η5 + 3

2 η6 − 2 + 3 η − 3 η5
(54)

The volume fraction of spherical particles in the as-
semblage can be described as ϕ = (a/b)3 = η3. The
ΩH is represented as a function of ϕ as

ΩH = −2

3

2ϕ5/3 + 3

2ϕ2 − 2 + 3ϕ1/3 − 3ϕ5/3
(55)

3.2 Neale et al.’s cell model

Neale et al. [30] discussed what Sutherland and
Tan (1970) investigated analytically regarding the sed-
imentation characteristics of an isolated permeable
sphere and came to the principal conclusion that in-
ternal permeation could be neglected, even at overall
porosities in excess of 0.9. Neale et al. compared
several possible solutions for the problem of creep-
ing flow relative to an isolated permeable sphere, and
found that the most satisfactory solution was based
upon Brinkman’s extension of Darcy’s Law. This
solution was generalized, using Happel’s model, to
cover the problem of flow relative to a swarm of per-
meable spheres.

For mathematical simplicity, they introduced a
simple model that includes a permeable sphere of
radius a composed of homogeneous and isotropic
porous material of permeability κ. The fluid flow was
assumed to be steady and axi-symmetric. The spher-
ical particle was assumed to be stationary having its
center at the origin of spherical coordinates (r, θ, ϕ),
while the flow approaches in the +Z direction with
velocity V , as depicted in Fig. 5 The fluids outside
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Figure 5: Coordinate system for axi-symmetric fluid
flow relative to an isolated permeable sphere

and inside the permeable sphere were governed by
Navier-Stokes equation and Brinkman’s extension of
the Darcy equation as follows,

µ∇2u = ∇p, a < r < b (56a)

µ∗∇2u∗ − µ∗

κ
u∗ = ∇p∗, 0 < r < a (56b)

respectively, with continuity equations in correspond-
ing regions

∇ · u = 0, a < r < b (57a)
∇ · u∗ = 0, 0 < r < a (57b)

where u = (ur, uθ, uϕ), u∗ =
(
u∗r, u

∗
θ, u

∗
ϕ

)
; and µ,

µ∗, p, p∗, and κ∗ were defined as noted earlier with the
assumption of the axi-symmetric nature of the perme-
able sphere, the azimuthal coordinate ϕ may hence-
forth be suppressed. The boundary conditions were
expressed as follows:

lim
r→0

u∗r is finite (58a)

lim
r→0

u∗θ is finite (58b)

ur (a, θ) = u∗r (a, θ) (58c)
uθ (a, θ) = u∗θ (a, θ) (58d)
τrr (a, θ) = τ∗rr (a, θ) (58e)
τrθ (a, θ) = τ∗rθ (a, θ) (58f)
ur (b, θ) = V cos θ (58g)
τrθ (b, θ) = 0 (58h)

where τrr, τrθ , τ∗rr and τ∗rθ were defined by Eq. (10)
and Eq. (19).

To solve the governing Eqs. (56)-(57) with
boundary conditions of Eq. (58), we introduce stream
functions ψ and ψ∗ into Eq. (4) and Eq. (21), respec-
tively, which should satisfy the following ordinary dif-
ferential equations:

E4ψ = 0, a < r < b (59a)

E4ψ∗ − 1

κ
E2ψ∗ = 0, 0 < r < a (59b)

where E2 is defined in Eq. (6). By using the bound-
ary conditions of Eq. (58), the general solutions for ψ
and ψ∗ are expressed as follows:

ψ =
κV

2

(
A

ξ
+Bξ + Cξ2 +Dξ4

)
sin2(θ),

β < ξ < β/η (60a)

ψ∗ =
κV

2

[
E

ξ
+ Fξ2 +G

(
cosh ξ

ξ
− sin ξ

)
+H

(
sinh ξ

ξ
− cosh ξ

)]
sin2(θ),

0 < ξ < β (60b)

where ξ = r/
√
κ, β = a/

√
κ and η = a/b. Coeffi-

cients A,B,C,D,E, F,G and H in Eq. (60) are de-
termined by using boundary conditions from Eq. (58)
as follows:

A = − 1

JNEN

[
β5 + 6β3 − tanhβ

β

(
3β5 + 6β3

)]
(61)

B =
1

JNEN

[
3β3 + 2β3η5 + 30βη5

−tanhβ

β

(
3β3 + 12β3η5 + 30βη5

)]
(62)

C = −η B
β

− 1 (63)

D = −η
5A

β5
(64)

E = 0 (65)

F = − B

β3
− 10D (66)

G = 0 (67)

H =
1

JNEN

[
6β2 (sechβ)

(
1− η5

)]
(68)
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where

JNEN = 2β2 − 3β2 η + 3β2η5 − 2β2η6

+90β−2η5 + 42 η5 − 30 η6 + 3

−tanhβ

β

(
−3β2 η + 15β2η5

−12β2η6 + 90β−2η5

+72 η5 − 30 η6 + 3
)

(69)

Similarly, the dimensionless drag force is calculated
as follows:

ΩNEN =
2B

3β
(70)

where the subscript NEN of ΩNEN represents the
initials of the last names of Neale, Epster and Nader
[30].

3.3 Kim and Yuan’s cell model

Kim and Yuan (2005b) developed a model to evalu-
ate hydrodynamic cake resistance due to filtered ag-
gregates. An aggregate is modeled as a hydrodynam-
ically and geometrically equivalent solid core with a
porous shell. Creeping flow past a swarm of the com-
posite spheres was solved using Stokes’ equation and
Brinkman’s extension of Darcy’s law. They analyt-
ically calculated the dimensionless drag force ΩKY

exerted on the composite sphere. In certain limiting
cases, ΩKY converged to pre-existing analytical solu-
tions for (i) an isolated impermeable sphere (Stokes’
Model [40], (ii) an isolated uniformly porous sphere
(Brinkman’s Model [7]), (iii) an isolated composite
sphere (Masliya et al.’s Model [27]), (iv) a swarm of
impermeable spheres (Happel’s Model [16]), and (v)
a swarm of uniformly porous spheres (Neale et al.’s
Model [30]).

From a hydrodynamic point of view, the flow
through a uniform porous sphere can be categorized
into two representative types: a slow interior flow
driven by fluid pressure and a fast exterior flow due to
shear stress around the permeable sphere surface [43].
This phenomenon is more apparent in a fractal ag-
gregate whose central region is typically much denser
than its edge. Therefore, in their work, a fractal aggre-
gate characterized by its radius and fractal dimension
is simplified to an impermeable inner core and an uni-
formly permeable outer shell. Following Neale et al.’s
(1973a) approach, they positioned the simplified ag-
gregate at the center of the tangential stress-free cell
[30], applied proper boundary conditions, and calcu-
lated the hydrodynamic drag force exerted on a swarm
of the model aggregates.

A primary assumption used in this study is that a
solid spherical core surrounded by a uniformly porous

shell is hydrodynamically equivalent to a fractal ag-
gregate with radially varying permeability. For mathe-
matical convenience, the composite sphere is assumed
to be stationary having its center at the origin of spher-
ical coordinates (r, θ, ϕ), while the flow approaches in
the −Z direction with a constant velocity V . The ra-
dius of the impermeable core is a; the outer radius of
the porous shell with permeability κ is b (b > a); and
the radius of the hypothetical spherical cell of the free
tangential stress is c (c > b). The creeping flow of
Newtonian fluid with absolute viscosity µ is consid-
ered to be steady and axi-symmetric, as shown in Fig.
6.

+Z

r

ur

uθ

b

ca

θ

V

Approaching

fluid

Solid sphere

Uniformly

porous layer

Void space

Figure 6: Coordinate system for axi-symmetric fluid
flow relative to a composite sphere consisting of an
impermeable solid sphere and a porous shell with tan-
gential stress-free surface

The governing equations of incompressible New-
tonian creeping flow in the void space and the porous
shell covering the solid core are Stokes’ equation and
Brinkman’s extension of Darcy’s law, respectively,

µ∇2u = ∇p, b < r < c (71a)

µ∗∇2u∗ − µ∗

κ
u∗ = ∇p∗, a < r < b (71b)

with continuity equations of

∇ · u = 0, b < r < c (72a)
∇ · u∗ = 0, a < r < b (72b)

From the assumption of the axi-symmetric nature of
the permeable sphere problem, the azimuthal coordi-
nate ϕ was not considered. As we mentioned above,
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it has been proven that the continuity of the normal
stress is equivalent to that of the fluid pressure [14,
24], i.e.

p (b, θ) = p∗ (b, θ)

The boundary conditions are set as follows:

u∗r (a, θ) = 0 (73a)
u∗θ (a, θ) = 0 (73b)
u∗r (b, θ) = ur (b, θ) (73c)
u∗θ (b, θ) = uθ (b, θ) (73d)
τ∗rr (b, θ) = τrr (b, θ) (73e)
τ∗rθ (b, θ) = τrθ (b, θ) (73f)
ur (c, θ) = V cos θ (73g)
τrθ (c, θ) = 0 (73h)

where τrr, τrθ , τ∗rr and τ∗rθ were defined by Eq. (10)
and Eq. (19). To solve the governing equations (71)
with the boundary conditions (73), stream functions
ψ(r, θ) and ψ∗(r, θ) defined by Eqs. (4) and (21) are
used. Then the problem is to solve the following ordi-
nary differential equations:

E4ψ = 0, b < r < c (74a)

E4ψ∗ − 1

κ
E2ψ∗ = 0, a < r < b (74b)

where E2 is a partial differential operator defined by
Eq. (6). The functional form of ψ and ψ∗ are ex-
pressed as follows with valid radial regions:

ψ =
κV

2

(
A

ξ
+Bξ + Cξ2 +Dξ4

)
sin2(θ),

β < ξ < γ (75a)

ψ∗ =
κV

2

[
E

ξ
+ Fξ2 +G

(
cosh ξ

ξ
− sin ξ

)
+H

(
sinh ξ

ξ
− cosh ξ

)]
sin2(θ),

α < ξ < β (75b)

where ξ = r/
√
κ, α = a/

√
κ, β = b/

√
κ and γ =

c/
√
κ. Using the boundary conditions of Eqs. (73),

the coefficientsA−H are analytically solved, as given
in Appendix A.

Using the definition of the dimensionless drag
force ΩKY :

ΩKY (α, β, γ) =
2B

3β
(76)

they calculate some limiting cases of ΩKY :
(i) If α → β (or κ → 0) and c → ∞, then

Stokes’s equation is obtained, i.e.

lim
γ→∞

lim
α→β

ΩKY (α, β, γ) = ΩS = 1 (77)

(ii) If α → 0 and γ → ∞, then Brinkman’s
equation [7] is replicated, i.e.,

lim
γ→∞

lim
α→0

ΩKY (α, β, γ) = ΩB (78)

(iii) If γ → ∞, then Masliya’s expression [27] is
reproduced, i.e.,

lim
γ→∞

ΩKY (α, β, γ) = ΩM (79)

(iv) If α → β (or κ → 0) and η = c/b, then
Happel’s formula [16] is retrieved, i.e.,

lim
α→β

ΩKY (α, β, γ) = ΩH (80)

(v) If α → 0, then Neale et al.’s work [30] is
obtained, i.e.,

lim
α→0

ΩKY (α, β, γ) = ΩNEN (81)

The above comparison is summarized in the fol-
lowing figure.

a
o

Stoke, 1851

b

a
o

Masliya, et al, 1987

b

o

Brinkman, 1949

c

a
o

Happel, 1958

b

c

a
o

Kim & Yuan, 2005a

b

c

o

Neale, et al, 1973

=
=
=
=
=
=
=
=
=
=
⇒

c
→

∞
,
b
→

a

=
=
=
=
=
=
⇒

c
→

∞

=
=
=
=
=
=
=
=
=
=
⇒

c
→

∞
,
a
→

0

====⇒b → a
====⇒
a → 0

Figure 7: Comparisons between Kim & Yuan’s cell
model with a porous layer with the uniformly perme-
ability and other previous works

Appendix: Expressions of the coeffi-
cients from A to H of stream functions
in Kim and Yuan’s cell model

A = −Bβ2 − Cβ3 −Dβ5 + E + Fβ3

+(coshβ − β sinhβ)G
+(sinhβ − β coshβ)H

(82)
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B =
1

JKY

{[(
−9

2
αβ − 3

2
β α3

−3β4 +
9

2
α2

)
cosh∆

+

(
3

2
α3 − 9

2
β α2

+
9

2
α+ 3β3

)
sinh∆

]
C

+

[
15β3α+

(
−15

2
β3α

−30β4 +
45

2
β2α2

−5β6 − 15

2
β3α3

)
cosh∆

+

(
30β3 − 15

2
β3α2 +

45

2
β2α

+
15

2
α3β2 + 15β5

)
sinh∆

]
D

}

(83)

where

JKY = −6α+
(
−3 + 3α2

)
sinh∆(

3α+ 3β + 2β3 + α3
)
cosh∆

(84)

C =
1

C0

{[(
−1

3

(
12− 12α2

)
sinh∆

−1

3

(
−4α3 − 8β3 − 12β

−12α) cosh∆− 8α

)
γ5

+

(
−1

3

(
15β3α2 − 60β3 − 30β5

−15α3β2 − 45β2α
)
sinh∆

−1

3

(
60β4 − 45β2α2 + 15β3α

+5β3α3 + 10β6
)
cosh∆

+ 10β3α

)
γ2

−1

3

(
288β5 + 360β3 + 90β4α

+60β7 + 30β4α3

−360β3α2 − 18α2β5
)
sinh∆

−1

3

(
−360β3α− 168β6 − 6α3β5

+90α2β4 − 360β4 − 12β8

−18αβ5 − 120β3α3
)
cosh∆

− 240β3α− 72αβ5

]
D

+

[
−4α+

(
−2 + 2α2

)
sinh∆

+

(
2α+

4

3
β3 +

2

3
α3 + 2β

)
·

· cosh∆
]
γ3
}

(85)

where

C0 =

[(
2− 2α2

)
sinh (∆)

+

(
−2

3
α3 − 2α− 2β

−4

3
β3
)
cosh∆ + 4α

]
γ3

+
[(
−2β3 − α3 − 3α

+ 3β α2
)
sinh∆

+
(
2β4 − 3α2 + β α3

+3αβ) cosh∆] γ2

+
(
4β5 + 8β3 + 2α3β2

+6β2α− 2β3α2
)
sinh∆

+

(
−2β3α− 4

3
β6 + 6β2α2

−8β4 − 2

3
β3α3

)
cosh∆ + 4β3α

(86)

D =
1

D0

[(
−12β3 − 6β5 + 3β3α2

−9β2α− 3α3β2
)
sinh∆

+
(
2β6 + 12β4 − 9β2α2 + β3α3

+3β3α
)
cosh∆− 6β3α

]
γ

(87)

where

D0 =
[(
−6 + 6α2

)
sinh∆− 12α

+
(
2α3 + 6β + 4β3 + 6α

)
cosh∆

]
γ6

+
[(
9α− 9β α2 + 3α3 + 6β3

)
sinh∆

+
(
9α2 − 6β4 − 3βα3 − 9αβ

)
cosh∆

]
γ5

+
[
−108αβ5 − 360β3α− 30β7

+
(
−15β4α3 − 144β5

−180β3 + 180β3α2

+9α2β5 − 45β4α
)
sinh∆

+
(
−45α2β4 + 180β4 + 180β3α

+84β6 + 3α3β5 + 9αβ5

+60β3α3 + 6β8
)
cosh∆

]
γ

+
(
24β8 + 270β3α+ 60β6

−6β6α2 + 90β3α3 − 270α2β4

+36αβ5 + 12α3β5
)
sinh∆

+
(
−4β9 − 60β7 + 36α2β5

−6αβ6 − 90β4α3 − 270β4α− 2β6α3

+270β3α2
)
cosh∆ + 120αβ6

(88)
E = 20Dβ3 + 2B + 2Fβ3 (89)

F =
1

3

G coshα+H sinhα

α
(90)

G = −(α coshβ − sinhα)H

α sinhβ − coshα

− 15αβ2D + 3αC

α sinhβ − coshα

(91)
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and

H =
1

JKM

{[
9α2 sinhα− 9β α sinhβ

+
(
−9α− 6β3 − 3α3

)
coshα

+9α coshβ]C
+
[
45α2β2 sinhα+ 45αβ3 sinhβ

+45β2α coshβ
+
(
−45β2α− 30β5 − 15α3β2

−90β3
)
coshα

]
D
}

(92)
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