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Abstract: The hub location problem is important in the selection of technological networks, such as computer,
cellular, or wireless sensor networks. These modern communication networks must be dynamically set as triggered
by changes in external conditions; the nodes deplete their batteries and go out of service. For this reason, it is
necessary to update the available data in order to determine which nodes can be used as hubs. The dynamic location
problem requires a short solution time in despite of optimality. Heuristic methods are used for their simplicity and
they are easy to package in the firmware. The central aim of this work is to design a heuristic method that will
obtain a good feasible solution in a reasonable amount of time. The methodology proposed for the heuristic method
consists of obtaining the optimum solution of the relaxed problem, followed by rounding this solution to a 0 or 1
value. The strategy developed for rounding the calculations is to first use a measure, called attractive force, for
each node and then to define those nodes more attractive as hubs. Finally, an integer programming model is solved
for assigning the nodes to the selected hubs. An interesting result is that the hubs selected by the optimal solution
of the relaxed problem are always between the nodes that have the major attractive force. The heuristic algorithm
is well established for problems with 10, 20, 25, 50 and 100 nodes. So, mixing two levels of difficulty we obtain
four problems.
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1 Introduction

The problem of designing communications networks
requires in some applications the solution of an
optimal facility location problem; for instance, the
ideal location of communication equipment and the
location of transmission lines. Let us consider, for
example, a network in which the nodes are computers
and the edges are physical lines or wireless signal
transmissions. For this case, it is necessary to decide
how many and which of the computers will be con-
nected to each hub. Another example is the location
of antennas for cellular telephones, in which the
goal is to optimize signal traffic for the user. In this
paper, we discuss a subclass of problems in network
design, where the nodes act as consolidation points
for flows between such nodes. This type of facility is
known as a hub. Hubs are places where flows, such
as air cargo or communications, are concentrated.
All of the traffic that is exchanged between nodes
must be routed through one o more hubs which can
be completely or partially interconnected. There are
several variants of hub location problems, see for
instance Campbell [1] for a comprehensive review of
hub location problems.

1.1 Preliminaries

The exact number of required hubs, the location of
hub and nodes, and the use of simple or multiple con-
nections are just few examples of the variables that
must be determined. In addition, the hubs may have
capacity, cost, or location constraints that must be sat-
isfied for a feasible network design. In this work, we
focus on a particular variant of the hub location prob-
lem, known as the simple hub location problem with
a node capacity constraint. We will refer to this prob-
lem as the Capacitated Single Allocation Hub Loca-
tion Problem, denoted by CSAHLP. The choice of the
problem originates from a design application involv-
ing a digital wireless equipment network.

Let us consider a network of antennas as shown
in Figure 1. In this network, the antennas need to
send to, and receive flows from other nodes in the net-
work. In the figure, the problem of communication
has been solved by connecting all nodes. This solution
is known as a completely connected network; and, as
it is shown in the figure, this solution requires dedi-
cated communication arcs to all of the combinations.
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Figure 1. A network full connected

A more efficient way from the point of view of
the number of arcs of communication, is using a flow
concentrator node in which case the communication
arc are greatly reduced. This concept is shown in Fig-
ure 2. In a network that uses concentrators for con-
veying the communication flows, these concentrator
nodes should have the capability to concentrate and
re-transmit. In the case shown in Figure 2, for exam-
ple, all flows requiring to be transmitted pass through
node 3, so this node needs to have a greater capacity
than normal. This generates the idea of networks with
limited capacity. The transmission costs also may
vary when using a node or another as a hub. Thus, in
an antenna array where there are physical difficulties
associated with the transmission, for instance derived
from interferences, this makes that certain nodes are
preferable to others for use as hubs. This is modeled
as the cost of using or not a node as a hub.

Figure 2. A network configured using hubs

Moreover, if the costs of using a hub are not too
high in relation to the communication costs, there may
be gains in the total cost if hubs are used. The decision
of how many hubs must be used can also use included
in the modeling and resolution of the problem.

Given the limited capacity of concentration of the
antennas, it is necessary to introduce constraints on
the node capacity and to determine the quantity of re-
quired antennas since there is a cost associated with
the antenna use to be considered. In order to complete
the communication between antennas, the model must
decide what node will be use as a hub. Additionally,
the model must assign the connections of nodes to
hubs and account for the cost of transmission in each
case. The cost of transmission between hub nodes is
called the transmission cost, and the cost of transmis-
sion between a hub node and a target node is called
the distribution cost. In this paper we are interested in
the p-hub median problem. In this, there are p nodes
that are selected as hubs while the remaining nodes
are connected to the latter, such that the total cost of
flow transportation is minimized.

1.2 Review of the literature

If the nodes need to connect to one or more hubs, we
speak of ”single allocation” (SA) or ”multiple alloca-
tion” (MA), respectively. On the other hand, if there
are constraints that indicate that the transport flow be-
tween nodes or hubs is limited to certain maximum
or minimum flows, we say that the problem is ”Ca-
pacitated” (C), otherwise, it is said to be ”uncapaci-
tated” (U). The uncapacitated single allocation p-hub
median problem (USApHMP) was first formulated by
O‘Kelly [2]. Whereas, Campbell [3] formulated the
first mixed integer linear programming (MILP) model
for the uncapacitated multiple allocation p-hub me-
dian problem (UMApHMP).

By using a similar version, Campbell [4] formu-
lated the USApHMP as a mixed integer programming
(MIP) problem and he also made versions of the ”sin-
gle allocation” and ”multiple allocation” of the ”un-
capacitated hub location problem”. Ernst and Kr-
ishnamoorthy [5] developed a new MIP model for
the USApHMP using less variables and constraints.
With a similar approach the same authors [6] made
the ”multiple allocation” version of the Hub Median
Problem (HMP). Some studies restrict the amount of
flow through the connections between hubs. Camp-
bell [4] introduced capacities to the HLP with ”sin-
gle allocation” and ”multiple allocation”, framing the
problems of CSAHLP and USAHLP. Ernst and Kr-
ishnamoorthy [7] proposed two MIP models for the
CSAHLP problem, where the second model required
fewer constraints and variables.

There are several recent works on the location
problem of simple hub assignments that are worth
mentioning. Marcus Randall discussed solutions for
the CSAHLP problem by using ant-colony meta-
heuristics [7]. Chen Chen et al. [9] developed a
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heuristic for CSAHLP and compared it with simu-
lated annealing (SA). Costa [10] produced a unique
and interesting approach for CSAHLP problems by
using bi-criteria. The approach used in these work
does not use capacity constraints on the flow; instead,
it uses a second objective function to minimize the
CPU time. In this paper, we work with the CSAHLP-
N model, which corresponds to the model reformu-
lated by Ernst and Krishnamoorthy [4]. The original
CSAHLP-C model is modified by changing the main
variable X, which shows the percentage of flow from
an origin node to a final node, to the variable Y. This
new variable represents the amount of flow from the
origin and over the route through the hubs.

Some additional equations were modified from
the original formulation. The most important ad-
vantage of the new CSAHLP-N model with respect
to CSAHLP-C is the reduction in the problem size
and the CPU time. In 2008, Chen [11] developed
a heuristic algorithm based on simulated annealing.
Computational results indicate that the present heuris-
tic outperforms the simulated annealing method. An
Ant Colony System Hybridized with a Genetic Algo-
rithm for the Capacitated Hub Location Problem was
presented by Sun et al. [12], they deal with a ca-
pacitated asymmetric allocation hub location problem
(CAAHLP). A review of the state of the art published
by Alumur and Kara [13] showed the increasing in-
terest of the OR community for improving the power
of the algorithms in order to solve big problems in
few seconds. Contreras et al.[14] presented the Tree
of Hubs Location Problem. They propose an integer
programming formulation for the problem and present
some families of valid inequalities that reinforce the
formulation; in this paper we give an exact separation
procedure for them.

2 Mathematical Formulation
The following is the formulation used in this paper of
the p-hub Problem in CSAHLP-N version.

2.1 Formulation CSAHLP-N
Minimize∑

i∈N

∑
k∈N

di,kZi,k(χOi + δDi)

+
∑
i∈N

∑
k∈N

∑
l∈N αdk,lY

i
k,l +

∑
k

FkZk,k

subject to

1)
∑
k∈N

Zk,k = 1 ∀i ∈ N

2) Zi,k ≤ Zk,k ∀i, k ∈ N

3)
∑
i∈N

OiZi,k ≤ τkZk,k ∀k ∈ N

4)
∑
l∈N

Y i
k,l −

∑
l∈N

Y i
l,k = OiZi,k −∑

j∈N
Wi,jZj,k∀i, k ∈ N

5) Zi,k ∈ {0, 1} ∀i, k ∈ N

6) Y i
k,l ≥ 0∀i, k, l ∈ N

Where the variables of the model are:
Y i
k,l : is the flow per unit time unit from node i

through hubs k y and l
Zi,k: is a binary variable equal to 1 if the optimal

route includes nodes i and k; 0 otherwise.
The data of the model are:
dk,l : distance between nodes i and k;
τk: flow capacity of the node k;
χ: unitary recollection cost;
α : unitary transportation cost;
δ : unitary distribution cost;
Oi: outgoing material flow from node i;
Di: incoming material flow to node i;
Fk: cost of using node k as a hub;
Wi,j : flow of material from node i to node j.
N : set of all nodes.
Equation (1) forces the assignment of a unique

route from any node i is used to constraint the decision
variableZ; equation (2) is used to select node hubs for
each flow; . Equation (3) bounds restricts the use of
nodes to their capacity limitations. Equation (4) is the
difference equation for node i on node k, where the
demand and the supply of the nodes are determined
by the location Zj,k; . Equation (5) defines Zj,k as
binary, and Equation (6) defines Y as a real positive
variable that includes 0.

The proposed model has an integer variable Zi,k

and a real variable called Y i
k,l that correspond to the

flow from node i to hubs k and l, respectively. Zi,k =
1 indicates that node i is connected by node k, and
Zi,k = 1 indicates that node i is a hub. This formu-
lation therefore corresponds to an mixed integer pro-
gramming mixed problem (MIP) problem.

2.2 Relaxing the CSAHLP-N formulation
If the variables Zi,k are relaxed such that they take
real values between zero and one, this model becomes
a problem of linear programming (LPPPL) problem.
In this case, the variable Zi,i measures the degree to
which node i has the potential to be a hub. In this
paper, it is assumed that this potential is a measure
of the attraction of the node to be used as hub. For
this reason, it is designated as the ”attractive force”.
Now, we will focus on the relaxed problem CSAHLP-
N, letting PR) be the relaxed problem:
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PR)
Minimize∑

i∈N

∑
k∈N

di,kZi,k(χOi + δDi)

+
∑
i∈N

∑
k∈N

∑
l∈N αdk,lY

i
k,l +

∑
k

FkZk,k

With the following: (1), (2), (3), (4) and (6) of the
original problem as expressed in 2.1.

5’) 0 ≤ Zi,k ≤ 1 ∀i, k ∈ N

2.3 Formulation CSAHLP-C

Minimize∑
i∈N

∑
j∈N

∑
k∈N

∑
j∈N

Wi,jCi,j,k,lXi,j,k,l +
∑
k∈N

Zk,k

subject to

1)
∑
k∈N

∑
l∈N

Xi,j,k,l = 1 ∀i, j ∈ N

2) Zi,k ≤ Zk,k ∀i, k ∈ N

3)
∑
j∈N

∑
l∈N

(Wi,jXi,j,k,l +Wj,iXj,i,l,k) = (Oi +

Di)Zi,k,∀i, k ∈ N

4)
∑
i∈N

OiZi,k ≤ τjZj,k∀i, k ∈ N

5) Zi,k ∈ {0, 1} ∀i, k ∈ N

6) 0 ≤ Xi,j,k,l ≤ 1 ∀i, j, k, l ∈ N
Skorin-Kapov et al. [10] note that constraint (3)

is very weak. Hence, to obtain useful lower bounds
from the LP relaxations, they replace (3) by the pair
of constraints :

7)
∑
l∈N

Xi,j,k,l = Zi,k ∀i, j, k ∈ N

8)
∑
k∈N

Xi,j,k,l = Zj,l, ∀i, j, l ∈ N

The new formulation is denoted as CSAHLP-LP.
Unfortunately these constraints make the formulation
very large. In practical terms, it means that solving
the LP relaxation for problems with more than 20
nodes becomes too slow.

3 Heuristic attraction force algo-
rithm (HAFA)

3.1 Attraction force of a node
The force of attraction of a node represents a mea-
sure of the incoming and outgoing flows of a node.
It was made a linear correlation study between these

Table 1: Correlation of evaluation 9)

Problem Coefficient
of correlation

20LL 0.415
20LT 0.536
20TL -0.249
20TT -0.267
25LL 0.432
25LT -0.383
25TL -0.253
25TT -0.307

flows and the variable Zi,j obtained from the resolu-
tion of the relaxed problem, in order to obtain a re-
lated variable that was accurate and easily obtainable.
The model used is as follows:

9)Zi,i = α0+α1∗(
∑
j∈N

Wi,j∗di,j+
∑
j∈N

Wj,i∗dj,i)

This model is based on the idea that the amount of
flow, weighted by the distance, of each flow, is asso-
ciated with the force of attraction of the node and this
node has its related variable in the diagonal of the ma-
trix Z. For validating this intuitive idea, we conducted
experiments with problems of reduced size, namely
problems with 20 and 25 nodes. We run a linear cor-
relation model as the one shown above. This was
estimated for the problems of 20 and 25 nodes from
the test data ’AP data’ from the public OR-library up-
loaded by Beasley [15]. The results are shown in Ta-
ble 1.

The results showed in the table 1 suggest that
there is a correlation between the attraction force of
the hubs over the rest of the nodes and the value of the
relaxation problem. The attraction force of a node is a
measure of the proportion of the total flow that would
be assigned to this node if it was defined as a hub.
This measure is calculated in the different iterations
of the heuristic algorithm with results of the relaxed
problems. The intuitive idea, it is that the node that
receives more flow is a good candidate to be a hub.
In addition we use another intuitive idea, that a good
solution is one which minimizes the numbers of hubs
serving all of the flows. In order to consider this fact
we divided the first measure by the number of hubs.

The attraction force of a node a(i), is the average
between the pure attraction force and relative attrac-
tion force. The pure attraction force is the sum of all
proportions of the flow that would be assigned to this
node using Zi,j of the optimalum solution of the re-
laxed problem. The normalized attraction force is the
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pure attraction force divided by the numbers of uti-
lized hubs used. The flow chart and pseudo code of
the heuristic are shown below. The inputs are the clas-
sic input of the hub and spoke problem. The outputs
correspond to the optimalum solution.

3.2 Flowchart of the HAFA

The algorithm has three stages perfectly defined, in
the first problem three relaxed problems are solved, in
the first, which we call the base case, we solve the re-
laxed problem without adding additional constraints
and the attraction force of the problem is measured,
which is used to calculate the number of hubs that to
meet the requirements of the problem. After two sub-
problems are solved, one with an additional hub and
other with a hub less than in the base case. In the
second stage, the problem with smaller value of the
objective function,is selected and the number of hubs
of this problem will be the number of hub to use in the
solution of the problem. In the third stage, fixed num-
ber of hubs in the amount defined in the second stage
and the original problem is solved fixing the number
of hubs.

First Stage : Solving three relaxing problem
Input: d, O, D, F and τ

1. Solve the linear problem PR and two
new linear problems that we call

P+
R and P−

R

2. In the problems PR , P+
R

and P−
R we define the

normalized attractive force
3. In the problems PR , P+

R

and P−
R wedefine the value of

the normalized relative attractive
4. Let a0i ,a+i and

a−i the averages between
fi and ri

5. Let P ∗ be the problem that shows
the minimum value of the optimal solution

Let v∗ be this value and let
x∗ = (Z, Y ) be the optimum solution

Second Stage : Finding the Optimum
Solution

1. If P ∗ = PR then we make N = N0

and ai = a0i
2. If P ∗ = P+

R then we make N = N0 + 1
and ai = a0i + 1

3. If P ∗ = P−
R then we make N = N0 − 1
and ai = a0i − 1

Third Stage : Solving an integer
problem

1. We define the set I with the N nodes that
have the greatest value of the variable

ai
2. Solve the original MIP problem adding the

following constraints :
∀i ∈ I: Zi,i = 1 and

∀i /∈ I Zi,i = 0

3.3 Heuristic algorithm
HAFA ROUTINE
INPUT: W,d, F, α, χ, δ, τ
OUTPUT:X∗

int

1) Solve the linear problem PR. Let Zo ∈ Rnxn

be the matrix of the optimalum solution of this
problem and let N0 be the number of hubs a pri-
ori, which we will improve within the heuristic
algorithm.

N0 = ⌈
∑
i∈N

Z0
i,i⌉

Let Z0 be the matrix Z obtained of the opti-
malum solution of the problem PR).
2) Then we solve two new linear problems, that
we call P+

R and P−
R respectively. The problem

P+
R is formed with the problem PR adding the

constraint ∑
i∈N

Zi,i = N0 + 1.

By doing this we force that the model to assigns
N0 + 1 nodes.

The problem P−
R is formed with the PR by

adding the constraint
∑
i∈N

Zi,i = N0 − 1. And

now we force the model such in order that it as-
signs N0 − 1 nodes.

Let Z∗
+ and Z∗

− be the matrix Z obtained of the
optimalum solution of the problems P+

R and P−
R

respectively.

3) In the problems PR , P+
R and P−

R we define
f0, f+i and f−i as the value of the normalized
attractive force for the node i.

f0i =

∑
j∈N

Z0
j,i

n

f+i =

∑
j∈N

Zj,i
∗
+

n
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f−i =

∑
j∈N

Zj,i
∗
−

n

4) In the problems PR, P+
R and P−

R we define r0i ,
r+i and r−i as the value of the normalized relative
attractive force for the node i.

r0i =

∑
j∈N

Z0
j,i

N0

r+i =

∑
j∈N

Zj,i
∗
+

N0 + 1

r−i =

∑
j∈N

Zj,i
∗
−

N0 − 1

5) Let a0i , a+i and a−i be the averages between fi
and ri :

a0i =
f0i + r0i

2

a+i =
f+i + r+i

2

a−i =
f−i + r−i

2

We will call these forces, normalized attractive
forces average.

6) Let P ∗ be the problem that show the mini-
mum value of the optimalum solution between
problems PR, P+

R + P−
R .

Let v∗ be this value. Let x∗ = (Z, Y ) be the
optimum solution of the problem P ∗.

If P ∗ = PR then we makeN = N0 and ai = a0i ,
if P ∗ = P+

R then we make N = N0 + 1 and
ai = a+i if P ∗ = P−

R then we makeN = N0−1

and ai = a−i

Then we define the set I with the N nodes that
have the greatest value of the variable ai.

Solve the original MIP problem adding the next
constraints : ∀i ∈ I , Zi,i = 1 ∀i /∈ I, Zi,i = 0.

Let x∗int = (Z, Y ) be the optimum solution of
this problem.

END SUBROUTINE

3.4 A bound for the integrality gap

The following theorem provides a bound for the inte-
grality gap, which is a measure of the maximum errors
that can be committed by using the proposed heuristic.

Theorem 1 Let v∗ be the optimum solution of the in-
teger problem and let v∗R be the optimum value of the
relaxed problem. Then we define the integrality gap.

The integrality gap of the CSAHLP-N is:

gap = v∗ − v∗R

Then

gap ≤ N2 maxi,k{di,k {χOi + δDi}}
+N3 αmaxk,l{dk,l τk + τk}
+
∑
k

Fk − 2 (N0 − 1) mink{Fk}

Proof: In the optimal solution of the relaxed problem
PR the cost of transport is equal to the cost of opera-
tion of the hubs, that is:∑
i∈N

∑
k∈N

{di,kZi,k{χOi + δDi}}+
∑
i∈N

∑
k∈N

∑
l∈N

αdk,lY
i
k,l

=
∑
k

{FkZk,k}

The left hand side of the equality is the cost of
transport and the right hand side corresponds to the
operation cost. Then the value of the objective func-
tion at the optimal solution is:

v∗R = 2
∑
k

FkZk,k

with 0 ≤ Zi,k− ≤ 1 ∀i, k ∈ N .
Lower bounding:

v∗R ≥ 2 min
k

{Fk}
∑
k

Zk,k

The lowest value of
∑
k∈N

Zk,k = N0 − 1

Then v∗R ≥ mink{Fk}(N0 − 1)
For other size:

v∗ =
∑
i∈N

∑
k∈N

{di,kZi,k{χOi + δDi}}

+
∑
i∈N

∑
k∈N

∑
l∈N

αdk,lY
i
k,l +

∑
k

FkZk,k

and
Zi,k ≤ 1 ∀i, k ∈ N
Y i
k,l ≤ τk ∀i, k, l ∈ N,
Zk,k ≤ 1 ∀k ∈ N,

bounding

v∗ ≤
∑
i∈N

∑
k∈N

{di,k{χOi + δDi}}

+αN
∑
k∈N

∑
l∈N

dk,lτk +
∑
k

Fk
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and bounding

di,k{χOi+δDi} ≤ max{di,k{χOi+δDi}} ∀i, k ∈ N

and
dk,lτk ≤ max{dk,lτk} ∀k, l ∈ N,

we have

v∗ ≤
∑
i∈N

∑
k∈Nmax{di,k{χOi + δDi}}

+αN
∑
k∈N

∑
l∈N

max{dk,lτk}+
∑
k

Fk

then

v∗ ≤ N2maxi,k{di,k{χOi + δDi}}
+αN3maxk,l{dk,lτk}+

∑
k Fk

and finally

gap ≤ N2 maxi,k {di,k {χOi + δDi}}
+αN3 maxk,l{dk,l τk}
+
∑

k Fk − 2 (N0 − 1) mink{Fk}

end proof.
It is possible that this bound is was not a tight

bound, but it shows that the gap decreases as when
N0 grows.

Conversely as N0 is related to the attraction force
of all nodes, we can establish that the gap decreases
when the attraction force of all nodes grows.

Since the integrality gap relates with the complex-
ity of solving the integer linear programming prob-
lem, then we can conjecture that the attraction force
of all nodes is a measure of the complexity of solving
the integer linear programming problem.

4 Computational experiments

In order to test the heuristic algorithm, a data set de-
noted ‘AP data’was used. The data set belongs to
the public library in the OR-library posted by Beasley
[15]. The authors Ernest and Krishnamoorthy [5]
posted this collection. The data include capacity con-
straints and costs on nodes. We show the characteris-
tics of every instance of the utilized test problem.

The name of each instance consists of the number
of nodes followed by two characters: the first is the
type of cost and the second is the capacity type. The
characters LL designates low cost and relaxed capac-
ity, the characters LT designates low costs and tight
capacity, the characters TL designates high costs and
relaxed capacity while the characters TT represents
high cost and tight capacity.

Table 2 shows the results of the HAFA for
CSAHLP-N.During the benchmarking, we solved two

Table 2: Results of the HAFA for CSAHLP-N

Code CPU Object. Hubs Error
pro- Time function selected %
blem m:s dollars
10LL 00:00 224,250 4,5,10 0.00
10LT 00:00 250,992 1,4,5,10 0.00
10TL 00:00 263,399 4,5,10 0.00
10TT 00:00 263,399 4,5,10 0.00
20LL 00:00 250, 0221 7,14 6.53
20LT 00:01 259,755 4, 6, 142 2.46
20TL 00:00 271, 8921 7,19 2.82
20TT 00 : 053 296,035 1,10,19 0.00
25LL 00:15 238,978 8,18 0.00
25LT 00:26 286,200 9, 14, 16, 252 3.56
25TL 00:01 310,317 9,23 0.00
25TT 00 : 203 352,070 9,12,14 1.06
40LL 00:20 242.167 14, 29 0.09
40LT 06 : 553 272.218 14,26,30 0.00
40TL 03:36 298,919 14,19 0.00
40TT 05 : 273 354,874 14, 19, 40 0.00
50LL 00:35 238, 5731 15, 35 0.02
50LT 00:24 273,382 6,26,32,46 0.18
50TL 00:34 331,511 3,27,45 3.92
50TT 13:13 424,125 12, 25, 26 1.60
100LL 14:52 246,714 29,64,73 0.00
100LT 29:12 265,932 29, 71,95 3.62
100TL 16:44 362,950 44, 52 0.00
100TT 40:56 465,213 5, 34, 86, 95 0.00

Notes: (1) The allocation is not optimal (2) The hub
assigned is not optimal (3) CPU time becomes

versions of the problem: CSAHLP-N version and
CSAHLP-C version.

Table 3 shows the results of HAFA for the
CSAHLP-C. First we used the CSAHLP-N version
and solved problems containing up to 100 nodes. The
obtained solution and the selected hubs correspond to
the optimal solution for the instances from 10LL to
100LL.

The instances that are not optimal are marked
with an asterisk. Then we used the CSAHLP-C ver-
sion of the problem and solved problems containing
up to 25 nodes. As said before, this formulation is
very large and solving problems with more than 25
nodes was impossible.

As shown in Figure 3, we can see that the CPU
time rapidly increases for the problems with formu-
lation CSAHLP-C, while the problems with formu-
lation CSAHLP-N increase slowly. This exponential
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Table 3: Results of the HAFA for CSAHLP-C

Code CPU Object. Hubs Error
pro- Time function selected %
blem m:s dollars
10LL 00:20 224,250 4,5,10 0.00
10LT 01 : 491 250,992 1,4,5,10 0.00
10TL 00:21 263,399 4,5,10 0.00
10TT 00:18 263,399 4,5,10 0.00
20LL 04:08 234,690 7,14 6.53
20LT 03:48 253,517 10, 14 2.46
20TL 04:08 271,128 7,19 2.82
20TT 06:11 296,035 1,10,19 0.00
25LL 20:41 238,978 8,18 0.00
25LT 22:37 279,991 9, 12, 252 1.31
25TL 25:05 316,327 14, 232 1.94
25TT 16:14 359,043 8, 14, 252 3.06

Notes: (1) An unfeasible case, (2) The selected nodes
are not optimal.

growth in the CPU time in the formulation CSAHLP-
C is caused by the explosive growth in the number of
variables and in the number of constraints.

Figure 3. CPU-time of CSAHLP-C vs
vs CSAHLP-N in seconds

In this formulation every flow between two nodes
uses four indexes in the variable X. For this reason
the numbers of variables grows exponentially with the
numbers of nodes. Thus, we did not prove the set
problem for 30 o more nodes with the formulation
CSAHLP-C.

As mentioned earlier, this heuristic is based on
the relaxation of the integer variables for finding a
solution by linear programming for the original lin-
ear IP problem and then for determining a number of
hubs to be used in the final solution. Subsequently,
this amount of hubs is used for solving the associated
IP problem. The structure of the problems for which
the method was applied, corresponds to the type of lo-

cation problems. A proof of this is that the objective
function is made out of two terms: one that represents
the cost of transport between nodes and the other rep-
resenting the cost of using a certain number of nodes
as concentrators. For this reason, it is very reasonable
to think that this algorithm can be applied to the reso-
lution of location problems.

5 Conclusion
This work developed a heuristic algorithm to find a
solution for the CSAHLP problem. Two formula-
tions were proved CSAHLP-C y CSAHLP-N. For the
CSAHLP-C only three size of nodes were proved: 10,
20 and 25 nodes. For problems with more nodes, the
CPU time was very large. For the CSAHLP-N, six
size of nodes were proved: 10, 20, 25, 40, 50 and 100
nodes. The obtained CPU times are interesting and
the gaps are small in most of the cases. The heuris-
tic is fast and it approaches the optimal solution for
most types of problems. The heuristic is very sim-
ple because it only needs mathematical operations and
could be packaged in the firmware. This work intro-
duced a new concept, called the attractive force. This
is a measure of the likelihood of a node to become a
candidate hub. This measure is made by using a mix
of characteristic nodes that are placed into the linear
programming problem.

This kind of heuristic is based on relaxing some
constraints and reformulating the original problem in
such a manner that it is easier to solve than the orig-
inal one. The decision variables of this problem are
then transformed into new equations that constrain the
solution space for the new problem. Again, we must
make the decision variable and transform it to a new
constraint for the next problem. We can state that it
takes a circular form to obtain the result, and in most
cases, it is possible to find the optimal solution.

A comparison of our heuristic algorithm with
the meta-heuristic approach, shows that our approach
sometimes finds the optimal solution, while the opti-
mal solution is never found in the meta-heuristic ap-
proach, only a quasi-optimal solution is found. The
useful concept of ‘Total Attractive Force’measures the
necessary capacity to cover the flow demand at a min-
imum cost. This allows us to use the ‘Total Attrac-
tive’as a first approach to find the optimal number of
hubs, since the cost function is quadratic and convex.

The complexity of an algorithm is measured by
the number of iterations that uses in the worst case to
solve any problem. The iterations can be elementals
operations, matricial operations or others algorithms.
The complexity of this algorithm we will measure
using the simplex algorithm for linear programming
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and the Branch and Bound algoritm (B& B) for inte-
ger programming. For this reason, the complexity of
this algorithm is bounded by a term with three com-
ponents, associated with the three problems solved.
First, a linear problem (LP) is solved. Second, two
linear problems fixing the number of hubs are solved.
Finally, one MIP problems (MIP) with fixed numbers
of hubs are solved. Then the number of iterations
of the heuristic algorithm proposed is in the order of
3LP +1B&B. Although mixed integer programs are
not polynomial problems, in practical terms, the com-
putational complexity and CPU time is reduced by fix-
ing the nodes that will be assigned as hubs.Although is
not possible to sure that the complexity of this heuris-
tic procedure is lower than the complexity of the orig-
inal problem, is possible to show that the number of
integer variables that match the heuristic proposed in
the CSAHLP-N formulation is lower than the inte-
ger variables of the original problem. In the origi-
nal problem there are n2 + n3 integer variables while
in the heuristic proposed, the algorithm uses a ma-
trix of nXn where only a few variables are not zero,
then number of integer variables is hXn + hXn2 with
h ≤ n. h corresponds to the number of hub in the
final solution. So, the complexity is reduced strongly.

This methodology can be extended to other prob-
lems with similar characteristics, such as location, set
covering, and network problems. In the heuristic, the
resolution of a LP problem is necessary, when we
relax the integer variables. This is done using the
simplex algorithm, which is not very efficient for big
problems. Thus, a future research direction is to re-
duce the times of resolution of the LP problem by us-
ing some heuristic algorithm of faster convergence.

Another area of improvement of the heuristic is
the step seven. In this step a linear integer program-
ming problem is solved. This problem correspond to
the original problem in which there have been fixed
the variable corresponding to the values of the diago-
nal of the matrix Z, with ones or zeros.
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