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Abstract: Based on the related literatures, a new dynamic Cournot duopoly game model in exploitation of a re-
newable resource with bounded rationality players is built up. The local stable region of Nash equilibrium point is
obtained through using the theory of bifurcations of dynamical systems. It is found that increasing the output ad-
justment speed parameters of the system can affect the stability of Nash equilibrium point and lead chaos to occur.
Its complex dynamics is demonstrated by the way of plotting the bifurcation diagrams, computing and plotting the
Lyapunov exponents, plotting phase portraits and calculating the fractal dimension. Furthermore, the chaos can
be respectively controlled by making use of the straight-line stabilization method, parameters adjustment method
and time-delayed feedback method. The derived results have important theoretical and practical significance to the
exploitation of renewable resource.
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1 Introduction

In 1963, chaos was first discovered by Lorenz [1]
when he made numerical simulation of atmospheric
convection. He found that the deterministic Lorenz
equations appear aperiodic and chaotic solutions
which are sensitive dependence on the initial datum.
Lorenz called this kind of solution as chaotic solu-
tion. His work opened a prelude to research the chaos.
However, the foundation of chaos was in 1975 when
Li and Yorke [2] published their paper titled ”Pe-
riod three implies chaos” in the journal of ”American
Mathematical Monthly”. From then on, chaos has be-
come a new science, which reveals the evolution from
order to disorder. Till now, there has been no common
definition of chaos in the mathematics. Li and Yorke
[2], and Devaney [3] respectively gave two different
definitions of chaos, which are the usual definition of
chaos. Computation of the Lyapunove exponent is an
important quantitative indicators to measure system
dynamics, which represents the system in the phase
space between the adjacent tracks of convergence or
divergence in the average exponent rate. Wolf etc. [4]

provided a method to calculate the Lyapunov expo-
nent of dynamic systems. Refs. [5, 6, 7] are the recent
research papers on theory of chaos. Benedicks and
Viana [5] proved that there are no ”holes” in the basin
of attraction: stable manifolds of points in the basin
is generic for the SRB (Sinai-Ruelle Bowen) measure
of the attractor. Stewart [6] convinced that there is no
doubt of the existence of the Lorenz attractor. Tucker
[7] gave an algorithm which is based on a partition-
ing process and used of interval arithmetic with di-
rected rounding to compute rigorous solutions for a
large class of ordinary differential equations. As a ex-
ample, he proved that the Lorenz equations support a
strange and robust attractor. Base on a combination
of normal form theory and rigorous computations, he
confirmed the flow of the equations admits a unique
SRB measure, whose support coincides with the at-
tractor.

In 1980s, chaos theory was firstly introduced into
the economic research. Chaotic economists make use
of the basic mathematic theory of chaos to improve
the existing models of economic phenomena. The
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economic system is whether a chaotic system is a very
hot topic in the economic field. Bifurcation theory
based on difference equation has been applied in all
branches of area [8]. In recent years, a considerable
amount of research has been done. H. N. Agiza [9]
and Michael Kopel [10] have considered bounded ra-
tionality and established duopoly Cournot model with
linear cost functions. From then on, the model has
been extended to multi-oligopolistic market. Gian
Italo Bischi et al.[11] suppose that firms determine
their output based on the reaction functions, that is, all
the players take adaptive expectation. H. N. Agiza and
A. A. Elsadany [12] have improved the model which
contains two-types of heterogeneous players: bound-
edly rational player and adaptive expectation player.
Jixiang Zhang et al. [13] have further improved the
model with nonlinear cost functions. A. A. Elsadany
[14] has studied a triopoly game with 0.5-th power in-
verse demand function and bounded rational players.
Hongxing Yao et al. [15] have analyzed a triopoly
game with isoelastic demand function and fully het-
erogeneous players: bounded rational player, adap-
tive player and naive player. Akio Matsumoto and
Yasuo Nonaka [16] have researched the complexity
of Cournot model with linear cost functions on com-
plementary goods. Junhai Ma and Weizhuo Ji [17]
have reported and considered a Cournot model in elec-
tric power triopoly with nonlinear inverse demand and
cost functions. Junhai Ma and Xiaosong Pu [18] have
considered a triopoly market which has quadratic in-
verse demand function, and where the firms have cu-
bic total cost functions. Guanhui Wang and Junhai Ma
[19] have studied the complexity of multi-enterprise
cournot game model in the supply chain. Fang Chen
et al. [20] have used Bertrand triopoly model with
linear demand functions to study the competition in
Chinese telecommunications market. Zhihui Sun and
Junhai Ma [21] have introduced a Bertrand triopoly
model with nonlinear demand functions in Chinese
cold rolled steel market, and researched the complex-
ity and the control of the model. Junling Zhang and
Junhai Ma [22] have investigated a Bertrand game
model with four oligarchs and different decision rules.
Refs. [23, 24, 25] have researched delayed nonlin-
ear Bertrand game models in the insurance market.
M. T. Yassen and H. N. Agiza [26] have considered
a Cournot duopoly game and the model with delayed
bounded rationality. In these literatures, adjustment
speed or other parameters are taken as bifurcation pa-
rameters, and complex results such as period doubling
bifurcation, unstable period orbits, chaos are found.
The subject has been extensively explored in other ar-
eas such as Refs. [27, 28, 29].

On the basis of a dynamical multi-team Cournot
game in exploitation of a renewable resource [30]

writen by S. S. Asker, we establish a new dynamic
Cournot duopoly game model in exploitation of a re-
newable resource with bounded rationality players.
This duopoly model is closer to the economic reality
is worth promoting in the oligopoly market. Suppose
the inverse demand function is linear, and the cost
functions are nonlinear. In this model, the bounded
rational players regulate output speed according to
marginal profit, and decide their output. We obtain
the stable region about the output adjustment speed
parameters by way of theoretical analysis and numer-
ical simulation. It is found that the output adjustment
speed causes the chaos to happen at a definite range. It
has an important theoretical and applied significance
to further research the complexity of new nonlinear
dynamical system.

The structure of this paper is as follows. In Sec-
tion 2, a new nonlinear dynamic Cournot duopoly
game model in exploitation of a renewable resource
with bounded rational players is described. In Section
3, we investigate the stability and dynamic character-
istics of the model. We analyze the existence of the
Nash equilibrium point, local stability and bifurcation
of the equilibrium points. Its dynamics of complexity
is described via computing and plotting the Lyapunov
exponents, phase portraits, sensitive dependence on
initial conditions by numerical simulations, and com-
puting the fractal dimension. In Section 4, chaos con-
trol of the model is considered with the straight-line
stabilization method, parameters adjustment method
and Time-delayed feedback method. Finally, the re-
sults are summarized.

2 The Model
Suppose that there are two representative oligopoly
enterprises X1 , X2 in exploitation of a renewable
resource. The enterprise Xi(i = 1, 2) makes the
optimal output decision, and suppose the t-output is
qi(t)(i = 1, 2). At each period t, the price P (t) is
determined by the total output QT (t) = q1(t)+ q2(t).

According to Ref. [30], the linear inverse demand
function is

P (t) = a− bQT (t) (1)

The cost function of the enterprise Xi(i = 1, 2)
is as follows

Ci(t) = ci +
diq

2
i (t)

QT (t)
(2)

The profit of the enterprise Xi(i = 1, 2) is

πi(t) = [a− bQT (t)]qi(t)− ci −
diq

2
i (t)

QT (t)
(3)
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We propose the enterprise Xi(i = 1, 2) takes
bounded rational strategy. The game between the en-
terprises is a continuous and long-term repeated dy-
namic process, the dynamic adjustment of the output
of the playerXi(i = 1, 2) in this duopoly game model
can be expressed as follows:

qi(t+ 1) = qi(t) + αiqi(t)
∂πi(t)

∂qi(t)
(4)

Where αi(i = 1, 2) is the output adjustment speed
parameter.

Combining Eqs. (3), (4), a new dynamic Cournot
duopoly game in exploitation of a renewable resource
with bounded rationality players is obtained. This
model can be given as follows:

q1(t+ 1) = q1(t) + α1q1(t)[a− bQT (t)

−bq1(t)− 2d1q1(t)
QT (t) +

d1q21(t)

Q2
T (t)

],

q2(t+ 1) = q2(t) + α2q2(t)[a− bQT (t)

−bq2(t)− 2d2q2(t)
QT (t) +

d2q22(t)

Q2
T (t)

]

(5)

3 Dynamic features of system (5)
In this game model, the enterprises make the optimal
output decision to gain the maximum profit, and reg-
ulate output based on their marginal profit of last pe-
riod. If the marginal profit is positive, one firm can
increase its output at the next period to increase the
profit. On the contrary, when the marginal profit is
negative, one firm is able to decrease its output at
the next period to increase the profit. As the ability
of the decision-makers is distinct, their output adjust-
ment speed is different, which affects the results of
competition. So, the output adjustment speed param-
eter αi(i = 1, 2) plays a important role on the game
results. We will analyze the effect of αi(i = 1, 2) on
system (5) in the following section.

3.1 The equilibrium point and stability re-
gion

In system (5), αi(i = 1, 2) is taken as variable, and
the other parameters are as follows: a = 3.2, b =
0.96, d1 = 0.23, d2 = 0.27.

We can calculate the partial differentiation of the
profit and let it be equal to 0 to derive the Nash equi-
librium. The fixed points of system (5) satisfy the fol-
lowing algebraic equations:

q1[a− bQT − bq1 − 2d1q1
QT

+
d1q21
Q2

T
] = 0,

q2[a− bQT − bq2 − 2d2q2
QT

+
d2q22
Q2

T
] = 0

(6)

We can see that the solutions of the algebraic
equations are independent of parameter αi(i = 1, 2).
For models in economics, only non-negative equilib-
rium solution makes sense.

The Eqs. (6) are solved
and three meaningful fixed points
p1(1.059951, 1.032162), p2(0, 1.526042),
p3(1.546875, 0) are obtained. In this paper,
we only consider the Nash equilibrium point
p1(q

∗
1 = 1.059951, q∗2 = 1.032162), and denote

Q∗
T = q∗1 + q∗2 .

The Jacobian matrix at Nash equilibrium point
can be derived as follows:

J1 =

(
1 + j11 j12
j21 1 + j22

)
, (7)

where

j11 = α1q
∗
1(−2b− 2d1

Q∗
T
+

4d1q∗1
Q∗2

T
− 2d1q∗21

Q∗3
T

),

j12 = α1q
∗
1(−b+

2d1q∗1
Q∗2

T
− 2d1q∗21

Q∗3
T

),

j21 = α2q
∗
2(−b+

2d2q∗2
Q∗2

T
− 2d2q∗22

Q∗3
T

),

j22 = α2q
∗
2(−2b− 2d2

Q∗
T
+

4d2q∗2
Q∗2

T
− 2d2q∗22

Q∗3
T

)

(8)

Then, we can get the characteristic polynomial

λ2−(2+j11+j22)λ+(1+j11)(1+j22)−j12j21 = 0
(9)

According to the Jury test [31], the necessary and
sufficient condition of the local stability of Nash equi-
librium is the following three conditions which are
satisfied.

1− (2 + j11 + j22) + (1 + j11)(1 + j22)− j12j21 > 0,
1 + (2 + j11 + j22) + (1 + j11)(1 + j22)− j12j21 > 0,

(1 + j11)(1 + j22)− j12j21 < 1
(10)

By solving the above equations, local stable region of
Nash equilibrium point can be got. It is bounded in
the region of hyperbolic plane with positive (α1, α2)
as shown in Fig. 1. The meaning of the stable re-
gion is that whatever initial output are chosen by two
companies in the local stable region, they will even-
tually arrive at Nash equilibrium output after a finite
games. It is worth studying that the enterprises ac-
celerate the output adjustment speed parameters to in-
crease their profits. Output adjustment speed param-
eters do not change the Nash equilibrium point, but
once one party is adjusting output speed too fast and
pushing αi(i = 1, 2) out of the stable region, the sys-
tem will become unstable and fall into chaos. We use
numerical simulation method to analyze the character-
istics of nonlinear dynamical system with the change
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Figure 1: The stable region of system (5) at Nash equi-
librium point

of αi(i = 1, 2). To better knowing of the dynamic
characters of the system, numerical simulations such
as the bifurcation diagrams, strange attractors, Lya-
punov exponents, sensitive dependence on initial con-
ditions and fractal structure will be investigated.

3.2 The effect of output adjustment speed

The stability of Nash equilibrium point will change
if company X1 accelerates output adjustment speed
and pushes out of the stable region. Fig. 2 shows
a one-parameter bifurcation diagram with respect to
α1 when α2 = 0.67. With output adjustment
speed parameter α1 increasing, the output evolution of
duopoly starts with equilibrium state, through period
doubling, and ends with chaotic state. We can see that

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

α
1

q
1

q
2

Figure 2: Bifurcation diagram of system (5) with α1 ∈
[0, 1] when α2 = 0.67

Nash equilibrium point is stable for 0 < α1 < 0.6503,
that is, output of the three firms is in the equilibrium

0 0.2 0.4 0.6 0.8 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

α
1

Lyp1

Lyp2

Figure 3: The Lyapunov exponents of system (5) with
α1 ∈ [0, 1] when α2 = 0.67

state. With α1 increasing, the stability of equilibrium
point changes, output go through period-doubling bi-
furcation and eventually come into chaos. Comput-
ing and plotting the Lyapunov exponents is one of the
most efficient way to analyze the quantitative char-
acter of the dynamic system. The largest Lyapunov
exponent is positive when the system is in a chaotic
state. In addition, the positive Lyapunov exponent is
larger, the system is more obviously in a chaotic state.
Fig. 3 shows the corresponding Lyapunov exponents.
0.6503 < α1 < 0.9021 is a range of 2-cycle output
orbit as shown in Fig. 4. For α1 > 0.9021, output
doubling occurs again. 0.9021 < α1 < 0.9510 is
a range of 4-cycle output orbit as shown in Fig. 5.
0.9510 < α1 < 0.9560 is a range of 8-cycle output
orbit as shown in Fig. 6. While 0.9560 < α1 < 1,
system (5) falls into chaos. Fig. 7 shows chaos at-
tractor at initial point (q10 = 0.6, q20 = 0.9) when
(α1 = 0.987, α2 = 0.67).

Similarly, Fig. 8 shows a one-parameter bifurca-
tion diagram with respect to α2 when α1 = 0.72, and
Fig. 9 shows the corresponding Lyapunov exponents.
We can see that Nash equilibrium point is asymptot-
ically stable for 0 < α2 < 0.5944. 0.5944 < α2 <
0.8741 is a domain of 2-cycle output orbit as shown
in Fig. 10. 0.8741 < α2 < 0.9301 is a domain
of 4-cycle area of output orbit as shown in Fig. 11.
0.9301 < α2 < 0.9441 is a domain of 8-cycle output
orbit as shown in Fig. 12. For 0.9441 < α2 < 1,
system (5) goes into a chaotic state. Fig. 13 illustrates
chaos attractor at initial point (q10 = 0.6, q20 = 0.9)
when (α1 = 0.72, α2 = 0.97).

The system is sensitive dependence on initial data
when it is in a chaotic state, that is to say, a slight
difference between initial values can lead to a great
effect on the game results. Figs. 14, 15 show
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Figure 4: Phase portrait of system (5) for (α1 =
0.66, α2 = 0.67)
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Figure 5: Phase portrait of system (5) for (α1 =
0.92, α2 = 0.67)
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Figure 6: Phase portrait of system (5) for (α1 =
0.956, α2 = 0.67)
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Figure 7: Phase portrait of system (5) for (α1 =
0.987, α2 = 0.67)
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Figure 8: Bifurcation diagram of system (5) with α2 ∈
[0, 1] when α1 = 0.72
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Figure 9: The Lyapunov exponents of system (5) with
α2 ∈ [0, 1] when α1 = 0.72
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Figure 10: Phase portrait of system (5) for (α1 =
0.72, α2 = 0.596)
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Figure 11: Phase portrait of system (5) for (α1 =
0.72, α2 = 0.885)
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Figure 12: Phase portrait of system (5) for (α1 =
0.72, α2 = 0.932)
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Figure 13: Phase portrait of system (5) for (α1 =
0.72, α2 = 0.97)

the relationships between output and time to verify
whether system (5) depends on initial datum sensi-
tively. Firstly, they are indistinguishable, with the
time passing, the difference between them is huge.
For (α1 = 0.987, α2 = 0.67) and (α1 = 0.97, α2 =
0.72), it further proves that system (5) is in a chaotic
state. When the system is in a chaotic state, the market
will be damaged, and it is difficult for the companies
to make long-term plan. Therefore, each action from
companies may cause enormous loss.
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q
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Figure 14: The two orbits of q1-coordinates for initial
points are (0.6, 0.9) and (0.601, 0.9)

Fractal dimension is taken as another criterion to
judge whether the system is in a chaotic state. There
are many ways to define the fractal dimension, but
none of them can be treated as the universal one. Ac-
cording to [32], the following definition of fractal di-
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Figure 15: The two orbits of q2-coordinates for initial
points are (0.6, 0.9) and (0.6, 0.901)

mension is adopted.

d = j −
∑j

1 λi
λj+1

, (11)

where λ1 > λ2 >, ..., λn are the Lyapunov expo-
nents, and j is the maximum integer for which sat-
isfies

∑j
1 λi > 0 and

∑j+1
1 λi < 0. If λi ≥ 0, i =

1, 2, ..., n, the d = n. If λi < 0, i = 1, 2, ..., n, then
d = 0.

The Lyapunov exponents of system (5) are λ1 =
0.144942, λ2 = −0.378793 for (α1 = 0.97, α2 =
0.72). As the largest Lyapunov exponent λ1 is posi-
tive, it indicates system (5) is in a chaotic state. Fractal
dimension demonstrates that the chaotic motion has
self-similar structure. The fractal dimension of sys-
tem (5) is d = 1 − λ1

λ2
= 1.3826. The fractal dimen-

sion manifests the space density of the strange attrac-
tor [33]. The larger the dimension of the chaotic at-
tractor is, the bigger the occupied space is. The fractal
dimension of the 2D system (5) is more than 1, so the
occupied space is big and the structure is tight, which
can be seen in Fig. 7.

4 Control of the system (5)
From above section, we can see that system (5) will
become unstable and eventually fall into chaos with
the output adjustment speed increasing. When chaos
occurs, all the players will be harmed and the market
will be damaged. Thus, nobody will be able to make
good strategies and decide reasonable output. To avert
the risk, it is a good ideal for duopoly to maintain
at Nash equilibrium output. There are many meth-
ods can be used to control or anticontrol bifurcations

and chaos. For the details, one can see relevant Refs.
[34, 35, 36, 37, 38, 39, 40].

In this section, the chaos can be controlled by the
means of the straight-line stabilization method, pa-
rameters adjustment method and time-delayed feed-
back method, respectively.

4.1 Straight-line stabilization method

Recently, Ling Yang et al. [34] and Haibo Xu et al.
[35] proposed a new chaos control method which is
called the straight-line stabilization method.

Denote

δ =

(
δ1
δ2

)
= (µI − J1)

(
q1(t)− q∗1
q2(t)− q∗2

)

=

(
[µ− (1 + j11)](q1(t)− q∗1)− j12(q2(t)− q∗2)
−j21(q1(t)− q∗1) + [µ− (1 + j22)](q2(t)− q∗2)

)
.

(12)
Where |ν| < 1 is the feedback control parameter and
other parameters are the same as above.

Added the external control signal (12) to the sys-
tem (5), the controlled system is as follows

q1(t+ 1) = q1(t) + α1q1(t)[a− bQT (t)

−bq1(t)− 2d1q1(t)
QT (t) +

d1q21(t)

Q2
T (t)

] + δ1,

q2(t+ 1) = q2(t) + α2q2(t)[a− bQT (t)

−bq2(t)− 2d2q2(t)
QT (t) +

d2q22(t)

Q2
T (t)

] + δ2

(13)
It can be seen from Fig. 16, for α1 = 0.987, α2 =

−1 −0.8 −0.6 −0.4 −0.2 0
1

1.01
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q
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q
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Figure 16: Bifurcation diagram with µ ∈
[−1, 0.04895], and α1 = 0.987, α2 = 0.67

0.67, controlled system (13) stabilized at Nash equi-
librium point when −1 < µ < 0.04895. It reveals that
the chaos control of the model can be realized while
the perturbation is very small.
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4.2 Parameters adjustment method

Parameters adjustment method is also used to control
the effect of parameter αi(i = 1, 2) on system (5).

The controlled system can be expressed as fol-
lows:

q1(t+ 1) = (1− k)[q1(t) + α1q1(t)(a− bQT (t)

−bq1(t)− 2d1q1(t)
QT (t) +

d1q21(t)

Q2
T (t)

)] + kq1(t),

q2(t+ 1) = (1− k)[q2(t) + α2q2(t)(a− bQT (t)

−bq2(t)− 2d2q2(t)
QT (t) +

d2q22(t)

Q2
T (t)

)] + kq2(t)

(14)
where k is an adjustment parameter and other param-
eters are the same as above. From Fig. 17, for
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Figure 17: Bifurcation diagram with k ∈ [0, 1], and
α1 = 0.72, α2 = 0.97
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Figure 18: Bifurcation diagram with α2 ∈ [0, 1], and
α1 = 0.72, k = 0.1

α1 = 0.72, k = 0.1, we can see that with control pa-
rameter increasing, that the system is gradually con-
trolled at 8-cycle, 4-cycle, 2-cycle and at fixed point.

If k > 0.2168, controlled system (14) stabilized at the
Nash equilibrium point.

When k = 0.1, the stable region of α2 expands
from the original 2-cycle bifurcation point 0.5944 (in
Fig. 8) to 0.7483 (in Fig. 18), which indicates that
once system is controlled, chaos can be delayed or
completely eliminated.

4.3 Time-delayed feedback method

Added time-delay feedback (T = 1 ) to the first equa-
tion of system (5), the controlled system is as follows:

q1(t+ 1) = q1(t) + α1q1(t)[a− bQT (t)

−bq1(t)− 2d1q1(t)
QT (t) +

d1q21(t)

Q2
T (t)

]

+ν1(q1(t)− q1(t− 1)),
q2(t+ 1) = q2(t) + α2q2(t)[a− bQT (t)

−bq2(t)− 2d2q2(t)
QT (t) +

d2q22(t)

Q2
T (t)

]

(15)
where ν1 is the control coefficient .

For the purpose of studying the stability of system
(15), we rewrite system (15) as a third dimensional
system in the form



x(t+ 1) = q1(t),
q1(t+ 1) = q1(t) + α1q1(t)[a− bQT (t)

−bq1(t)− 2d1q1(t)
QT (t) +

d1q21(t)

Q2
T (t)

]

+ν1(q1(t)− x(t)),
q2(t+ 1) = q2(t) + α2q2(t)[a− bQT (t)

−bq2(t)− 2d2q2(t)
QT (t) +

d2q22(t)

Q2
T (t)

]

(16)
The Jacobian matrix of system (16) at the Nash

equilibrium point p∗ is The Jacobian matrix at Nash
equilibrium point can be represented by the following
form:

J2 =

 0 1 0
−ν1 1 + j11 + ν1 j12
0 j21 1 + j22

 , (17)

Moreover, the characteristic polynomial of sys-
tem (16) is:

λ3 +B2λ
2 +B1λ+B0 = 0 (18)

where

B2 = −(2 + j11 + j22 + ν1),
B1 = (1 + j11 + ν1)(1 + j22)− j12j21 + ν1,
B0 = −ν1(1 + j22)

(19)
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The necessary and sufficient conditions for the lo-
cal stability of Nash equilibrium can be gained by Jury
test [31] as follows:

1 +B2 +B1 +B0 > 0,
1−B2 +B1 −B0 > 0,

B2
0 − 1 < 0,

|B2
0 − 1| > |B1 −B2B0|

(20)
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Figure 19: The stable region of system (16) at Nash
equilibrium point
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Figure 20: Bifurcation diagram with ν1 ∈
[−0.2825, 1.3287], and α1 = 0.987, α2 = 0.67

Through computing the above equations, local
stable region of Nash equilibrium point can be ob-
tained. It is bounded hyperbolic plane region with
positive (α1, α2, ν1). If α2 held fixed, the stable re-
gion in the phase plane of (α1, ν1) can be obtained,
such as the stable region of (α1, ν1) is shown in Fig.
19 when α2 = 0.67. The Nash equilibrium is sta-
ble for the values of (α1, ν1) inside the stable re-
gion. Likewise, the stable regions in the phase plane
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Figure 21: Chaos attractor of system (16) for (α1 =
0.987, α2 = 0.67, ν1 = 0.22)

of (α2, ν1) and (α1, α2) with α1 and ν1 respectively
hold fixed can also be obtained, which are omitted
here. Fig. 20 shows the bifurcation diagram with
ν ∈ [−0.2825, 1.3287] and α1 = 0.987, α2 = 0.67
to show the stable region of (α1, ν1). Fig. 21 shows
chaos attractor of system (16) for (α1 = 0.987, α2 =
0.67, ν1 = 0.22).

5 Conclusion
In this paper, a dynamical nonlinear duopoly game in
exploitation of a renewable resource is established.
We have investigated the local stability of equilib-
ria, bifurcation and chaotic behaviors of the duopoly
game. We have found that bifurcation, chaos and
other complex phenomena occur with the output ad-
justment speed parameter increasing. The oligopoly
market will became unstable and fall into chaos if
output adjustment speed parameter out of the sta-
ble region. The duopoly output stable at the Nash
equilibrium point can be respectively realized by
the straight-line stabilization method, parameters ad-
justment method and time-delayed feedback method
when the system under a chaotic state. For the tra-
ditional non-renewable energy is being depleted, the
development of renewable resource is an inevitable
choice. It has a very theoretical and practical signifi-
cance to research the complexity of new nonlinear dy-
namical system. The obtained results give a light for
companies in exploitation of the renewable resource
to make strategies of output and exploit renewable re-
sources, and are helpful for the government to formu-
late relevant policies to the adjustment of economic
structure.
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