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Abstract: In this paper, we introduce parameters slε(X) and sl0(X) based on slices of Banach space X . Us-
ing these parameters we describe some new properties of Banach spaces related to normal structure, uniform-
ly non-squareness and others. In particular, we prove that if sl 2

3
(X) < 2, then X has normal structure, and

sl0(X) = ε0(X) where ε0(X) is the characteristic of convexity of X . In addition, we give much more results
about the modulus of NUC on X , and the modulus of UKK∗ on the dual space X∗ of X .
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1 Introduction
LetX be a normed linear space, and letB(X) = {x ∈
X : ∥x∥ ≤ 1}, S(X) = {x ∈ X : ∥x∥ = 1}, and
Bγ(0) = {x ∈ X : ∥x∥ < γ} be the unit ball, the unit
sphere, and open ball with radius γ of X respectively.
Let X∗ be the dual space of X .

A mapping T in a normed space X is called a non-
expansive if ∥Tx−Ty∥ ≤ ∥x− y∥ for any x, y ∈ X .

It is well known that a contractive mapping has u-
nique one fixed point on Banach space X . However, a
non-expansive mapping may have no fix point if X is
anyone Banach space. One of the remaining unsolved
questions is whether each non-expansive mapping on
bounded, closed, convex subset in reflexive Banach s-
pace has a fixed point. The question for non-reflexive
Banach space is false in general.

In order to study the existence of fixed point for
the non-expansive mapping, one divided the Banach
space X into the below types.

X is said to have the fixed point property if ev-
ery non-expensive self-mapping of a nonempty closed
convex subset of X has a fixed point.

X is said to have the weak fixed point property
if every non-expensive self-mapping of a nonempty
weak compact convex subset of X has a fixed point.

A dual space X∗ is said to have the weak* fixed
point property if every non-expensive self-mapping of
a nonempty weak* compact convex subset of X∗ has
a fixed point.

Brodskiı̆ and Mil’man [2] introduced the follow-

ing geometric concepts in 1948 to study the fixed
point properties under isometry which maps a weakly
compact set to itself:

Definition 1 A bounded and convex subsetK of a Ba-
nach space X is said to have normal structure if ev-
ery convex subsetH ofK that contains more than one
point contains a point x0 ∈ H , such that

sup{∥x0 − y∥ : y ∈ H} < d(H),

where d(H) = sup{∥x− y∥ : x, y ∈ H} denotes the
diameter of H .

A Banach space X is said to have normal struc-
ture if every bounded and convex subset ofX has nor-
mal structure.

A Banach space X is said to have weak normal
structure if for each weakly compact convex set K in
X has normal structure.

X is said to have uniform normal structure if
there exists 0 < c < 1 such that for any bounded
closed convex subset K of X that contains more than
one point, there exists x0 ∈ K such that

sup{∥x0 − y∥ : y ∈ K} < c · (d(K)).

For a reflexive Banach space, the normal structure and
weak normal structure coincide.

In 1965, Kirk [19] proved that if a Banach space
X has weak normal structure then it has weak fixed
point property, that is, every non-expansive mapping
from a weakly compact and convex subset of X into

WSEAS TRANSACTIONS on MATHEMATICS Satit Saejung, Ji Gao

E-ISSN: 2224-2880 1094 Issue 12, Volume 11, December 2012



itself has a fixed point. Since then much attention has
been focused on normal structure. Whether or not a
Banach space X has normal structure depends on the
geometry of the unit sphere S(X), or unit ball B(X).

The use of parameters to study normal structure
in a numerical manner is an important direction in
this field. For instance, the modulus of convexity δ(ε)
was introduced to study the relationship between con-
vexity and normal structure, the modulus of smooth-
ness ρ(τ) was introduced to study the smoothness and
normal structure, the parameters j(X), J(X), g(X)
and G(X) were introduced to study the relationship
between squareness and normal structure, the coeffi-
cient w(X) was introduced to study the relationship
between weakly null sequences and normal structure,
the modulus of noncompact convexity associated to
the measure of non-compactness β(A), where A is
a bounded set in X was introduced to study normal
structure, the modulus of U-convexity, U(ε) was in-
troduced to study the relationship between U-spaces
and normal structure, the parameter R(X) was intro-
duced to study the relationship between arc length of
S(X) and normal structure, the normal structure was
also studied by Pythagorean approach and so on in
many literatures and articles in the last fifty years. We
refer the interested readers to [3, 4, 5, 8, 9, 10, 11, 12,
13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28].

In this paper, we first introduce the concepts
slε(X) and sl0(X) based on slices of X in section
2. The relationship between this parameter and the
normal structure, uniformly non-squareness and other
properties are obtained. Among these new results we
prove that if sl 2

3
(X) < 2, then X has normal struc-

ture; and sl0(X) = ε0(X) where ε0(X) is the char-
acteristic of convexity of X . Then, based on theorem
2.11 in [27], some corollaries about modulus of NUC
on X , and modulus of UKK∗ on the dual space X∗

of X are also shown in section 3. Finally we consider
uniform normal structure in section 4.

2 Slices and Normal structure
Definition 2 ([8]) Let X be a Banach space. A
hexagon H in X is called a normal hexagon if the
length of each side is 1 and each pair of two opposite
sides are parallel.

Remark: The concept of normal hexagon is differ-
ent from the concept of regular hexagon in Euclidean
spaces. We may consider the normal hexagon as an
image of a regular hexagon under a bounded linear
mapping from an Euclidean space to a Banach space.

Lemma 3 ([8], [14]) Let X be a Banach space with-
out weak normal structure. Then for any 0 < δ < 1,
there are x1, x2, and x3 in S(X) satisfying

(i) x2 − x3 = x1;

(ii) ∥x1+x22 ∥ > 1− δ; and

(iii) ∥x3+(−x1)
2 ∥ > 1− δ.

The geometric meaning of the lemma is that if a
Banach space X fails to have weak normal structure
then there is an inscribed normal hexagon with four
sides are arbitrarily closed to the unit sphere S(X).

Definition 4 [6] Let D be a bounded subset of a Ba-
nach space X and suppose that f ∈ X∗, f ̸= 0. Let

M(D, f) = sup{⟨x, f⟩ : x ∈ D}.

If α > 0 then the set

S(D, f, α) ≡ {x ∈ D : ⟨x, f⟩ > M(D, f)− α}

is called the slice ofD determined by f and α, or more
briefly, a slice of D.

Lemma 5 [9] Let x, y ∈ B(X) and 0 < ϵ < 1 such
that ∥x+y∥

2 > 1 − ϵ, then for all 0 ≤ c ≤ 1 and
z = cx+(1−c)y ∈ [x, y], the line segment connecting
x and y, ∥z∥ > 1− 2ϵ.

Definition 6 Let B(X) the unit ball of X , and
f ∈ S(X∗), we define

slε(X) ≡ sup{d(S(B(X), f, ε)) : f ∈ S(X∗)},

and

sl0(X) ≡ infε→0 slε(X)

= infε→0{sup{d(S(B(X), f, ε)) : f ∈ S(X∗)}},

where d(H) is the diameter of set H .

It is clear that

(i) slε(X) is an increasing function. So, if ε1 ≤ ε2,
then slε1(X) ≤ slε2(X).

(ii) 0 ≤ slε(X) ≤ 2.

Theorem 7 If a Banach space X fails to have weak
normal structure, then sl0(X) ≥ 1.

Proof: Suppose X fails to have weak normal struc-
ture. For ε > 0, let δ = ε

2 , and x1, x2, and x3 in
S(X) satisfy three conditions in lemma 3 for δ > 0.

We have for any 0 ≤ t ≤ 1,
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∥t(−x1) + (1− t)x3∥ ≥ 1− 2δ = 1− ε

by lemma 5.
Let X2 be a two dimensional subspace of X s-

panned by x1, x2, and x3. Let

x∗3 ∈ S(X∗
2 ) such that ⟨x3, x∗3⟩ = 1

and

−x∗1 ∈ S(X∗
2 ) such that ⟨−x1,−x∗1⟩ = 1.

Then

⟨x2, x∗3⟩ ≥ 0 and ⟨x2,−x∗1⟩ ≤ 0.

Therefore, there exists an

x ∈ ̂x3,−x1 ⊆ S(X2) and an x∗ ∈ S(X∗)

such that

⟨x, x∗⟩ = 1 but ⟨x2, x∗⟩ = 0,

where ̂x3,−x1 be an arc on S(X2) from x3 to −x1
counter-clockwise.

Then for any 0 ≤ t ≤ 1,

⟨t(−x1) + (1− t)x3, x
∗⟩ = ⟨x3 − t(x1 + x3), x

∗⟩
= ⟨x3 − tx2, x

∗⟩ = ⟨x3, x∗⟩.

There is a 0 ≤ t1 ≤ 1, such that

αx = t1(−x1) + (1− t1)x3 for some α ≥ 0.

We have

⟨t1(−x1) + (1− t1)x3, x
∗⟩ = ⟨αx, x∗⟩

= ∥αx∥ ≥ 1− 2δ = 1− ε.

The geometrical meaning of the proof at this stage and
the line ⟨y, x∗⟩ = 1, y ∈ X2 is shown in the figure 1.

By using Hahn-Banach extension theorem, we
can extend x∗ ∈ S(X∗

2 ) to an f ∈ S(X∗).
So,

[−x1, x3] ⊆ S(B(X), f, ε).

Therefore

d(S(B(X), f, ε)) ≥ ∥x3 − (−x1)∥ = 1.

Since ε can be arbitrarily small, we have
sl0(X) ≥ 1. ⊓⊔

Theorem 8 If a Banach space X fails to have weak
normal structure, then sl 2

3
(X) ≥ 2.

Figure 1: The geometrical meaning of the proof at this
stage and the line < y, x∗ >= 1, y ∈ X2

Proof: Suppose X fails to have weak normal struc-
ture. For ε > 0, let δ, x1, x2, x3 in S(X) and X2 be
the same as in the proof of theorem 7.

Let

y(t) = −x1 + t(x2 + x1), 0 ≤ t ≤ 1,

then
∥−x1 + x2

2
∥ = ∥y(1

2
)∥ =

1

2
.

Let

z = −x1 + 2(x3 + x1) = x1 + 2(x2 − x1),

then z ∈ X2 \B(X2).
We first prove ∥y(t)∥ ≥ ∥ z3∥ ≥ 1

3 for any 0 ≤
t ≤ 1.

Since for any 0 ≤ t ≤ 1,

∥t(−x1) + (1− t)x3∥ ≥ 1− ε,

the line segment

[
−x1
1− ε

,
x3

1− ε
] ⊆ X2 \B(X2).

For 0 ≤ t ≤ 1
2 , let h > 0 such that

y(t)

h
∈ [

−x1
1− ε

,
x3

1− ε
].

then
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Figure 2: The geometrical meaning for ∥y(t)∥ ≥
∥ z3∥ ≥ 1

3

∥y(t)∥
h

≥ 1, ∥y(t)∥ ≥ h.

From the convexity of B(X),

h =
∥y(t)∥
∥y(t)h ∥

≥
∥−x1+x2

2 ∥
∥ x3
1−ε∥

=
1− ε

2
.

We have ∥y(t)∥ ≥ 1−ε
2 , for 0 ≤ t ≤ 1

2 .
We have

y(
2

3
) = −x1 +

2

3
(x2 + x1) =

1

3
z.

For both 1
2 ≤ t ≤ 2

3 and 2
3 ≤ t ≤ 1, from the convex-

ity of B(X), we have

∥y(t)∥ ≥ ∥z
3
∥ ≥ 1

3
.

The idea of the proof of ∥y(t)∥ ≥ ∥ z3∥ ≥ 1
3 for

any 0 ≤ t ≤ 1 is shown in the Figure 2.
We have

∥x1 + x2∥ ≥ 2− ε.

Let

x∗2 ∈ S(X∗
2 ) such that ⟨x2, x∗2⟩ = 1

and

−x∗1 ∈ S(X∗
2 ) such that ⟨−x1,−x∗1⟩ = 1.

Figure 3: < y, x∗ >= 1, y ∈ X2

Then ⟨
x1 + x2

2
, x∗2

⟩
≥ 0

and ⟨
x1 + x2

2
,−x∗1

⟩
≤ 0.

Therefore, there exists an

x ∈ ̂x2,−x1 ⊆ S(X2) and an x∗ ∈ S(X∗)

such that

⟨x, x∗⟩ = 1 but ⟨x1+x22 , x∗⟩ = 0,

where ̂x2,−x1 be an arc on S(X2) from x2 to −x1
counter-clockwise.

Then for any 0 ≤ t ≤ 1,

⟨t(−x1) + (1− t)x2, x
∗⟩ = ⟨x2 − t(x1 + x2), x

∗⟩
= ⟨x2, x∗⟩.

There is a 0 ≤ t1 ≤ 1, such that

βx = t1(−x1) + (1− t1)x2 for some β ≥ 0.

We have

⟨t1(−x1) + (1− t1)x3, x
∗⟩ = ⟨βx, x∗⟩ = β ≥ 1

3

= 1− 2
3 .

The geometrical meaning of the proof at this stage
and the line < y, x∗ >= 1, y ∈ X2 is shown in the
Figure 3.

By using Hahn-Banach extension theorem, we
can extend x∗ ∈ S(X∗

2 ) to an f ∈ S(X∗).
So,

[−x1, x2] ⊆ S(B(X), f, 23).
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Figure 4: < y, x∗ >= 1, y ∈ X2

Therefore

d(S(B(X), f, 23)) ≥ ∥x2 − (−x1)∥ ≥ 2− ε.

Since ε can be arbitrarily small, we have
sl 2

3
(X) ≥ 2. ⊓⊔

Definition 9 [18] A normed linear space is uniformly
nonsquare if there exists a δ > 0 such that for any
x, y ∈ S(X),

either ∥x+ y∥ ≤ 2(1− δ) or ∥x− y∥ ≤ 2(1− δ).

Theorem 10 If a Banach space X fails to be a uni-
formly nonsquare then sl0(X) = 2.

Proof: The proof is similar to the proof of theorem 7.
The geometrical meaning of the proof and the line

< y, x∗ >= 1, y ∈ X2 is shown in the Figure 4. ⊓⊔
Since uniformly nonsquare implies super-

reflexive, and super-reflexive implies reflexive, we
have:

Corollary 11 A Banach space X with sl0(X) < 2
is uniformly nonsquare, therefore X is super-reflexive
and then X is reflexive.

Corollary 12 A Banach space X with sl0(X) < 1
has normal structure.

Corollary 13 A Banach space X with sl 2
3
(X) < 2

has normal structure.

Let

δX(ϵ) = inf{1− ∥x+y∥
2 : x, y ∈ S(X), ∥x− y∥ ≥ ϵ}

where 0 ≤ ϵ ≤ 2 be the modulus of convexity of X
and

ε0(X) = sup{ε ≥ 0 : δX(ϵ) = 0}.

be the characteristic of convexity of X .(For example,
see [6].)

Theorem 14 For a Banach space X , sl0(X) =
ε0(X).

Proof: We first prove sl0(X) ≥ ε0(X).
For ε0(X) = 0, it is true.
Let ε0(X) > 0, for any η > 0, there are x, y ∈

S(X), such that

∥x− y∥ ≥ ε0(X)− η and

1− ∥x+y∥
2 ≤ η.

We have

∥x− y∥ ≥ ε0(X)− η and ∥x+y∥
2 ≥ 1− η.

By using the same idea of proof of theorem 7, we
get

sl0(X) ≥ ε0(X)− η.

Since η can be arbitrarily small, we have
sl0(X) ≥ ε0(X).

We next prove ε0(X) ≥ sl0(X).
For any η > 0, there is a slice S(B(X), f, η) such

that

d(S(B(X), f, η)) ≥ sl0(X), where f ∈ S(X∗).

Let x, y ∈ S(B(X), f, η) be such that ∥x− y∥ ≥
sl0(X) and X2 be a subspace of X spanned by x and
y. Then,

x+ y

2
∈ S(B(X), f, η)

and
∥x+ y∥

2
≥
⟨
x+ y

2
, f

⟩
≥ 1− η.

We get ∥x− y∥ ≥ sl0(X) and 1− ∥x+y∥
2 ≤ η.

Since η can be arbitrarily small, we have ε0(X) ≥
sl0(X).

This complete the proof. ⊓⊔
Since X is uniformly convex if and only if

ε0(X) = 0. We have

Corollary 15 X is uniformly convex if and only if
sl0(X) = 0.
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3 More results for UKK* and NUC
spaces with Normal Structure

Let co(xn) be the convex hull of the sequence {xn},
and let

sep(xn) ≡ inf{∥xn − xm∥ : n ̸= m}.

We also write w→ and w∗
→ for the weak and the

weak* convergence of the sequence respectively, and
write f(a−) for limε→a− f(ε) for a function f(ε).

We say an infinite sequence (xn) is an ε-
separation sequence if

∥xm − xn∥ ≥ ε for m ̸= n.

Let

µ(X) = sup{ε : B(X) contains an infinite
ε-separation sequence}

([1], [20]).

Definition 16 ([17]) A Banach space X is called an
NUC space (Nearly Uniform Convex space) if for any
ε > 0 there exists 0 < δ < 1 such that for any se-
quence {xn} ⊆ B(X) with sep(xn) ≥ ε it follows
that co(xn)

∩
Bδ(0) ̸= ∅.

Dowling et al. [7] introduced the concept of
UKK* spaces in 2008.

Definition 17 ([7]) Let X be a Banach space. The
dual spaceX∗ ofX is called a UKK* space (Uniform
Kadec–Klee* space) if for any ε > 0 there exists 0 <
δ < 1 such that for any sequence {fn} ⊆ B(X∗) with

fn
w∗
→ f and sep(fn) ≥ ε it follows that f ∈ Bδ(0)

for X∗.

Based on the concepts NUC and UKK*, Saejung
and Gao introduced the following two concepts into
the Banach space X and its dual space X∗ [27]:

Definition 18 Let X be a Banach space.

(i) For 0 < ε ≤ µ(X), let

NUC(ε) = 1− δ,

where δ is the smallest number in (0, 1] such that

co(xn)
∩
Bδ(0) ̸= ∅,

whenever {xn} ⊆ B(X) satisfies sep(xn) ≥ ε.

(ii) For µ(X) < ε ≤ 2, let NUC(ε) = 1.

Then the function NUC(ε) is called the NUC modu-
lus of X .

Definition 19 LetX∗ be a dual of a Banach spaceX .

(i) For 0 < ε ≤ µ(X∗), let

UKK∗(ε) = 1− δ,

where δ is the smallest number in (0, 1] such that

f ∈ Bδ(0),

whenever {fn} ⊆ B(X∗) satisfies fn
w∗
→ f and

sep(fn) ≥ ε.

(ii) For µ(X∗) < ε ≤ 2, let UKK∗(ε) = 1.

Then the function UKK∗(ε) is called the UKK*
modulus of X∗.

We obtain the following two results in [27]:

Theorem 20 If X is a Banach space with
NUC(1−) > 0, then X is reflexive.

Theorem 21 Let X be a Banach space such
that B(X∗) is weak* sequentially compact. If
UKK∗(( 1

µ(X∗))
−) > 1 − 1

µ(X∗) for X∗, then X has
weak normal structure.

By using the above two theorems for µ(X∗) = 1,
it is easy to obtain the following results:

(i) Let X be a Banach space such that B(X∗) is
weak* sequentially compact. IfUKK∗(1−) > 0
forX∗ and µ(X∗) = 1, thenX has weak normal
structure.

(ii) Let X be a Banach space such that B(X∗)
is weak* sequentially compact. If X
does not have weak normal structure then
UKK∗(( 1

µ(X∗))
−) < 1− 1

µ(X∗) for X∗.

(iii) Let X be a Banach space such that B(X∗) is
weak* sequentially compact. IfUKK∗(1−) > 0
for X∗ but X does not have weak normal struc-
ture then µ(X∗) > 1.

(iv) Let X be a Banach space with
NUC(( 1

µ(X∗))
−) > 1 − 1

µ(X∗) for X∗.
Then X has normal structure.

(v) Let X be a Banach space with NUC(1−) > 0
for X∗ and µ(X∗) = 1. Then X has normal
structure.

(vi) Let X be a Banach space without normal struc-
ture. Then NUC(( 1

µ(X∗))
−) < 1 − 1

µ(X∗) for
X∗.

(vii) Let X be a Banach space with NUC(1−) > 0
forX∗. IfX does not have normal structure, then
µ(X∗) = 1.
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4 Uniform Normal Structure
Let F be a filter on an index set I , and let {xi}i∈I be
a subset in a Hausdorff topological space X , {xi}i∈I
is said to converge to x with respect to F , denote by
limF xi = x, if for each neighborhood V of x, {i ∈
I : xi ∈ V } ∈ F .

A filter U on I is called an ultrafilter if it is maxi-
mal with respect to the ordering of the set inclusion.

An ultrafilter is called trivial if it is of the form
{A : A ⊆ I, i0 ∈ A} for some i0 ∈ I .

Remark: We will use the fact that ifU is an ultrafilter,
then

(i) for any A ⊆ I , either A ⊆ U or I \A ⊆ U ;

(ii) if {xi}i∈I has a cluster point x, then limU xi ex-
ists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let
l∞(I,Xi) denote the subspace of the product space
equipped with the norm ∥(xi)∥ = supi∈I ∥xi∥ <∞.

Definition 22 [29] Let U be an ultrafilter on I and
let

NU = {(xi) ∈ l∞(I,Xi) : lim
U

||xi|| = 0}.

The ultraproduct of {Xi}i∈I is the quotient space
l∞(I,Xi)/NU equipped with the quotient norm.

We will use (xi)U to denote the element of the
ultraproduct. It follows from remark (ii) above, and
the definition of quotient norm that

∥(xi)U∥ = lim
U

∥xi∥ (1)

In the following we will restrict our index set I to
be N, the set of natural numbers, and let Xi = X, i ∈
N for some Banach space X. For an ultrafilter U on
N, we use XU to denote the ultraproduct.

Lemma 23 ([29]) Suppose U is an ultrafilter on N
and X is a Banach space. Then

(i) (X∗)U = (XU )
∗ if and only if X is super-

reflexive; and in this case,

(ii) the mapping J defined by

⟨(xi)U , J((fi)U )⟩ = lim
U
⟨xi, fi⟩

for all (xi)U ∈ XU , is the canonical isometric
isomorphism from (X∗)U onto (XU )

∗.

Theorem 24 For any Banach space X with
sl0(X) < 2, and for any nontrivial ultrafilter U
on N , slε(XU ) = slε(X).

Proof: sl0(X) < 2 implies X is uniformly non-
square, so X is super-reflexive. We can use lemma
23.

SinceX can be isometrically embedded ontoXU ,
we have slε(X) ≤ slε(XU ).

To prove the reverse inequality, we may assume
that slε(X) > 0. For any η > 0 we choose an

f = (fi)U = S((XU )
∗),

and

(xi)U ∈ S(B(XU ), f, η), (yi)U ∈ S(B(XU ), f, η)

such that

∥(xi)U − (yi)U∥ ≥ slε(XU )− η.

We have

⟨(xi)U , f⟩ = lim
U
⟨xi, fi⟩ ≥ 1− η,

and
⟨(yi)U , f⟩ = lim

U
⟨yi, fi⟩ ≥ 1− η.

Without loss of generality, we may assume that
fi ∈ S((Xi)

∗) for all i ∈ N.
From remark (i) and (ii) of ultrafilter, equation (1)

and the paragraphs above, the sets:

J = {i ∈ N : ⟨xi, fi⟩ ≥ 1− η},

K = {i ∈ N : ⟨yi, fi⟩ ≥ 1− η},

and

M = {i ∈ N : ∥xi − yi∥ ≥ slε(XU )− η}

are all in U .
So the intersection J

∩
K
∩
M is in U too, and is

hence not empty.
Let i ∈ J

∩
K
∩
M and (Xi)2 be a two dimen-

sional subspace of X spanned by xi and yi, we have

xi, yi ∈ S(B((Xi)2), fi, η)

and

∥xi − yi∥ ≥ slε(XU )− η.

Hence slε(X) ≥ slε(XU )− η.
Since η can be arbitrarily small, slε(XU ) ≤

slε(X). ⊓⊔

Theorem 25 If X is a Banach space with sl0(X) <
1, then X has uniform normal structure.
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Proof: The idea of the proof is same as the proof of
theorem 4.4 in [9]. Suppose sl0(X) < 1,and X does
not have uniform normal structure, we find a sequence
{Cn} of bounded closed convex subset ofX such that
for each n,

0 ∈ Cn, d(Cn) = 1,

and

rad(Cn) = inf
x∈Cn

sup
y∈Cn

∥x− y∥ > 1− 1

n
.

Let U be any nontrivial ultrafilter on N, and let

C = {(xn)U : xn ∈ Cn, n ∈ N},

then C is a nonempty bounded closed convex subset
of XU .

It follows from the properties of Cn above that
d(C) = rad(C) = 1, so XU does not have normal
structure.

On the other hand, from theorem 24, sl0(XU ) =
sl0(X) < 1.

This contradicts theorem 7, and X must have u-
niform normal structure. ⊓⊔

If X is super-reflexive, then (X∗)U = (XU )
∗,

and X has uniform normal structure if and if XU has
normal structure. Since X can be embedded into XU ,
it is easy to see that NUC(ε) of X is greater than or
equal to NUC(ε) of XU . By using these facts we
can prove the following result about uniform normal
structure.

Theorem 26 If X is a Banach space with sl 2
3
(X) <

2, then X has uniform normal structure.

Theorem 27 Let X be a super-reflexive Banach s-
pace with NUC(1−) > 0 for XU . Then X has u-
niform normal structure.

Proof: IfX is a super-reflexive Banach space but fail-
s to have uniform normal structure, then XU fails to
have normal structure. From theorem 2.14 of [27], we
have NUC(1−) = 0 for XU . ⊓⊔
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