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Abstract: The intention of this research is to understand the behavior of the Cyprus Stock Market. Two time series
are used as representatives: the FTSE/CySE 20 and the General index. Both return series are characterized by the
presence of heavy tails and reject the Gaussian models. We use a-stable distributions to model the data. Although
statistical tests accept the null hypothesis empirical findings of FTSE/CySE 20 show that return distribution takes
the shape of a Gaussian distribution at 345 days and the tails appear to become less heavy for less frequent series.
Self-similarity is also explored and Hurst exponent is H ∈ (0.6, 0.65), showing persistent return time series.
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1 Introduction

The Cyprus Stock Exchange is the primary stock mar-
ket in Cyprus and is considered to be a small emerging
capital market with a very short history.

On March 29 1996, transactions start taking
place. The main index for this market is the Gen-
eral Price index. Alternatively, FTSE/CySE 20 is an-
other important index designed to provide a real-time
measure of the Cyprus Stock Market on which index-
linked derivatives can be traded. It was constructed
with the cooperation of the Cyprus Stock Exchange,
the Financial Times and the London Stock Exchange
in November 2000.

The aim of this paper is to provide valuable infor-
mation about possible models of the return series cal-
culated by the FTSE/CySE 20 and the General index.
In this sense, we add new knowledge to the scarce lit-
erature on the above regional market in an adequate
and efficient way as FTSE/CySE 20 is studied from
the entire spectrum of its operation and the General
index from the year 2005 to 2011. In our knowledge
there are no previous characterizations of distribution
or trajectory properties of the indices for the Cyprus
Stock Market.

In general, stock market modeling is an old
issue and has been approached with Gaussian models
(Brownian motion and Black-Schools option pric-
ing formula) which cannot detect the problems of
asymmetry, heavy tails, and persistence of shocks.
Empirical studies (Mandelbrot [16, 18]) show that real
log-returns are not Gaussian.

Stable models are an alternative to this problem,
being the most desirable because it takes advantage
of the generalized central limit theorem. The char-
acterization of being stable refers to stability under
addition: the distribution of appropriately normalized
sums of independent and identically distributed (i. i.
d.) stable distributions is the same as the distribution
of the summands. The key parameter of stable distri-
butions is the stability index (which is invariant under
convolution). Examples of stability analysis can be
found in Rachev [23] and Belov et al. [4]. The latter
analysis 26 international financial series focusing on
the issues of stability and self-similarity.

The main drawback of stable distributions is
the lack of closed forms of many probability
densities functions. The recent existence of reliable
computation packages to compute stable densities,
distribution functions and quantities makes possible
the use of stable models.

2 Tools and methods

Study of the two time series requires the following
steps to be done:
◦ The normality study.

◦ The study of a-stable distributions and the analysis
of infinite variance.

◦ Self-similarity analysis.
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2.1 Normality study

We study the normality by considering two ways:
Statistical tests such as the Jarque-Bera test and graph-
ical methods such as the QQ-plot and the comparison
of empirical distribution to normal one.

Jarque-Bera test

The Jarque-Bera test is used when the data
distribution is unknown and its parameters should be
estimated. It is a two-sided goodness-of-fit test and
the corresponding test statistic is

JB =
n

6

(
σ2 +

k − 3

4

)
where n is the sample size, σ is the sample skewness
and k is the sample kurtosis. For large sample sizes
n the test statistic is chi-square distributed with two
degrees of freedom.

QQ-plots

QQ-plot is a quantile-quantile plot of the
sample data quantiles against the theoretical Gaussian
quantiles. A normal distributed sample is almost
approximated by a straight line.

2.2 Stable distributions

Stable distributions are a rich class of probability dis-
tributions with characteristics of skewness and heavy
tails. Random variables with stable laws justify the
generalized central limit theorem which states that sta-
ble distributions are the only asymptotic distributions
for adequately scaled and centered sums of i. i. d. ran-
dom variables [13]. Mittnik and Rachev [21] make an-
other convincing argument for the accuracy of stable
data generating the process: it is unlikely that we will
discover the exact distribution from which observed
data is generated. However because stable distribu-
tions have domains of attraction, it is likely that ob-
served data will belong to the domain of attraction of
a stable law and therefore appear to be generated from
a stable distribution [9].

a-stable distributions need four parameters to be
completely described and are denoted as S(a, β, γ, δ).
The a parameter called is tail index and expresses the
properties of distribution tails. In general a ∈ (0, 2].
The β parameter expresses the asymmetry of distribu-
tion with β ∈ [−1, 1]. The parameters γ, δ are cor-
respondingly the scale with γ > 0 and location with
δ ∈ IR. In contrast to the probability density, which
does not exist in closed form for the majority of the
a-stable distributions, the characteristic function is al-
ways defined and given by the relation

Φ(t) = E(eitx)

Φ(t) =

{
e(−γ

a|t|a(1−iβsign(t) tan(πa
2 ))+iδt) if a ̸= 1

e(−γ|t|(1+iβsign(t)
2
π
log |t|)+iδt) if a = 1

Stable distributions form a closed family
under temporal aggregation, in other words, if
X1, X2, · · · , Xn is a sequence of i. i. d. ran-
dom variables with characteristic exponent a then
the distribution of any non-overlapping sum of
X1, X2, · · · , Xn is also a member of the stable class
with characteristic exponent a.

A stable random variable has the following prop-
erty, which may be stated in two equivalent forms:

1. If X1, X2, · · · , Xn are independent random
variables belonging to the S(a, β, γ, δ), then∑n
i=1Xi will be distributed as S(a, β, γn

1
α , nδ).

2. If X1, X2, · · · , Xn are independent random vari-
ables belonging to the S(a, β, γ, δ), then

n∑
i=1

Xi
d
=

{
n1/aXi + δ(n− n

1
a ), if a ̸= 1

nXi +
2
πβγn lnn, if a = 1

Examples of known distributions with closed-
form probability densities are the Gaussian
S(2, 0, γ, δ) with tail index a = 2, the Cauchy
S(1, 0, γ, δ) with a = 1 and Levy S(1/2, 1, γ, δ) with
a = 1/2. Let X have distribution S(α, β, γ, 0) with
a < 2. Then there exist two i. i. d. random variables
Y1 and Y2 with the common distribution S(α, β, γ, 0)
such that

X =

(
1 + β

2

) 1
α

Y1 −
(
1− β

2

) 1
α

Y2, if a ̸= 1

Let X1 and X2 be independent random variables
with S(α, βi, γi, δi), for i = 1, 2. Then X1 + X2 ∼
S(a, β, γ, δ) with

γ = (γa1 + γa2 )
1/a,

β =
β1γ

a
1 + β2γ

a
2

γa1 + γa2
,

δ = δ1 + δ2.

The pth moment is defined as
EXp =

∫∞
0 P (|X|p > y)dy for a random variable

X . This exists and is finite if and only 0 < p < a;
otherwise, it does not exist. Specifically, for all a < 2
(heavy tails) and −1 < β < 1, both tail probabilities
and densities are asymptotically power laws. One
consequence of heavy tails is that the non-existence
of each moment. If the smallest tail index is greater
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than 2, then the random variable has a finite variance;
when the index belongs to the interval (1, 2], the
random variable has a finite mean but an infinite
variance; finally, when its value is less than 1, the
random variable does not have a finite mean.

Therefore the stability of a given distribution is
checked with the method of infinite variance. This
method was proposed by Granger and Orr [10] and
Rachev [23] and tests the convergence of the sample
variance

S2
n = 1/n

n∑
i=1

(Xi − µn)
2, 1 < n < N <∞

as n → ∞. If X1, X2, · · · , Xn are i. i. d. random
variables with a distribution of finite variance then
S2
n → c, 1 < n < N < ∞ almost surely for a con-

stant such that 0 < c <∞.
A stochastic process (Xt, t ≥ 0) is stable

if all its finite dimensional distributions are stable.
Let (Xt, t ≥ 0) be a stochastic process, the pro-
cess is a-stable if and only if every linear combi-
nation

∑d
k=1 bkX(tk) is a-stable, where d ≥ 1,

t1, t2, · · · , td, b1, b2, · · · , bd are real numbers. A
stochastic process (Xt, t ≥ 0) is called the (standard)
a-stable Levy motion if:

1. X(0) = 0 (almost surely)

2. (Xt, t ≥ 0) has independent increments

3. Xt − Xs ∼ S
(
a, β, (t− s)

1
a , δ

)
, for any

0 ≤ s < t <∞ and 0 < a ≤ 2, −1 ≤ β ≤ 1.

According to the Property 3, an a-stable Levy mo-
tion has stationary increments. As a = 2 we have
the Brownian motion.

2.3 Self-similarity
The concept of self-similarity is based on the fact that
there are processes (for example fractional Brownian
motion) which exhibit the same behaviour at different
scales on space or time, allowing us to know long-
time behaviour from short time one. The reasons of
its existence arise from either high variability (in situ-
ations where increments are independent) and heavy-
tailed, as in stable Levy processes or strong depen-
dence between increments (as in fractional Brownian
motion). These two mechanisms for self-similarity
have been called the Noah effect and the Joseph ef-
fect, respectively by Mandelbrot [5, 19], being coex-
istent (heavy tails and strong dependence between in-
crements). Fractional stable processes [3, 24] provide
such examples. The index a of stability and the expo-
nent H of self-similarity satisfy the following relation
a = 1/H .

The most common definition of self-similar pro-
cesses is the following:

A continuous time process (Xt, t ≥ 0) is said to
be self-similar if there exists H > 0 such that for any
scaling factor c > 0, the processes (Xct, t ≥ 0) and
(cHXt, t ≥ 0) have the same law: Xct

d
= cHXt for

every t > 0, for every c > 0 and 0 ≤ H < 1. The
parameter H is called the self-similarity exponent of
the process X = (Xt, t ≥ 0).

The value of the Hurst exponent provides a mea-
sure of the serial correlation and Self-similarity. Valid
values range between 0 and 1. Specifically there are
the following classes:

• 0 < H < 0.5, H characterizes a process called
anti-persistent which tends to behave as follows:
increase of its value is more probably followed
by decrease and vice versa.

• H = 0.5 implies a random process (the Brown-
ian Motion) in which increase to its value is al-
most the same likely to be followed by decrease.

• 0.5 < H < 1, H characterizes a process called
persistent in which an increase of the value is
more probably followed by increase and vice
versa.

An example of the last class is the fractional
Brownian motion (Xt, t ≥ 0) with covariance
function given by the relation cov(Xs, Xt) =
1
2

(
t2H + s2H − (t− s)2H

)
, s ≤ t. Simulations

of different trajectories can be carried out by using of
Cholesky decomposition method. For H = 0.5 the
covariance is cov(Xs, Xt) = |t − s| indicating the
Brownian Motion as mentioned before.

Figure 1: The relation between Self-similar, Gaussian
and Levy stable process.
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In this paper, the calculation of the Hurst expo-
nent is made by using of the Selfis tool [25] according
to Karagiannis et al. [12]. This package estimates
the Hurst exponents with estimators which either em-
ploy time-domain methods or frequency-based meth-
ods. Time domain methods show a high degree of
correlation between separated data points for persis-
tent processes. In this case, we have the following
estimators

• R/S methods, ([17, 18, 27]),

• Absolute Value method ([27, 28]),

• Variance of Residuals ([22, 28]) and

• Aggregate Variance method ([27, 28]).

In frequency domain the same processes show a sig-
nificant level of power at frequencies close to zero.
Estimators in the frequency domain are the

• Periodogram ([8, 27, 28])

• Whittle [11] and

• Abry-Veitch [1].

The existence of numerous estimators is firstly justi-
fied by the asymptotic nature of the Hurst exponent
and secondly by the different properties of the time-
series which estimator looks at.

3 Results of the Cyprus stock indexes
The FTSE/CySE 20 series data and the General index
are available for download in Cyprus Stock Exchange
website [4]. FTSE/CySE 20 daily values covers the
period 2/1/2001 to 30/11/2011, the sample size is
N=2699 values. The General index includes data from
3/1/2005 to 30/12/2011, the sample size is N=1730
values. We pay more attention to the FTSE/CySE
20 data series due to the longest sample size. Both
samples exclude the weekend and holiday periods. In
order to study the properties of return data series we
compute the continuously compounded return series
rt. For the period t the financial series Xt defines the
continuously compounded return series rt as follows:

rt = ln

(
Xt

Xt−1

)
All computations were made with the MATLAB soft-
ware.

3.1 Results from descriptive statistics and
Jarque-Bera test

We begin the analysis by calculating the first four
statistics from the sample: mean standard deviation,
skewness and kurtosis (represented in Table 1). Ta-
ble 2 shows the correlation between the two data se-
ries. The skewness and excess kurtosis can give a hint
about how the empirical distribution and consequently
the distribution of the generated process differ from
the Gaussian one.

Table 1. Descriptive statistics and Jarque-Bera test

FTSE/CySE 20 Return series period
2/1/2001 to 30/11/2011

Mean -0,00088
C.l. 95%
(-0,0019, 0,0000)

Standard deviation 0,0228
C.l 95%
(0,02222, 0,023439)

Skewness 0,0947 S.E 0,04713
Excess Kurtosis 3,9884 S.E 0,09422
Jarque-Bera 1783.6816
test p-value 0,001*
General index Return series period

3/1/2005 to 30/12/2011
Mean -0.0007

C.l. 95%
(-0, 00174, 0,0005)

Standard 0,02606
C.l 95%

deviation (0,025132, 0,02686)
Skewness 0,084 S.E 0,059
Excess Kurtosis 3,352 S.E 0,118
Jarque-Bera 826.9036
test p-value 0.001*

Note: * at the significant level 0,05

Table 2. Correlation coefficient for the period
2005 to 2011

Spearman’s R
FTSE/CySE 20 1,000 0,304**
p-value 0,000
General index 0,304** l,00
p-value 0,00

Note: **Correlation is significant at the 0,01 level
(2-tailed).

Sample return series looks like to be positively
skewed but these are statistically insignificant. The
excess kurtosis which is the kurtosis minus three
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describes a leptokurtic distribution when its value
is positive. Because the values are positive and
statistically significant, we can conclude that the
distributions generated by the data probably have
positive excess kurtosis and therefore fat tails. Dis-
tributions with fat tails of returns decay slower than
those being Gaussian. This implies that return pro-
cesses are not a random walk. Lastly the Jarque-Bera
test with null hypothesis, the return series follows the
Gaussian distribution with unknown mean and vari-
ance against the alternative: the return series does not
follow a Gaussian distribution which suggests no nor-
mality for both return series.

Further evidence come from the QQ plot and the
empirical density, shown in Figure 2, 3, 4, and 5. The
QQ plots in Figure 2 and 3 show a deviation from the
straight line for the FTSE/CySE 20 and the General
index. The graphs reveal that both positive and neg-
ative shocks are responsible for the non-normality of
the series. The empirical distributions in Figure 4 and
Figure 5, (dashed line) show that the tails are much
fatter and the central part of the empirical density is
more peaked, than the Gaussian distribution. This pic-
ture is in accordance with the descriptive statistics in
Table 1 and the results of Jarque-Bera test.

The non-parametric correlation coefficient Spear-
man R measures the statistical dependence between
the two indices for the period 2005-2011 and has the
statistically significant value of 0.304 at the 0.01 level
as 0.00 < 0.01. Therefore we reject the null hypothe-
sis of no correlation.

Figure 2: QQ plot of the return series FTSE/CySE 20
return series against the Normal.

Although the FTSE/CySE 20 return data series do
not follow a Gaussian distribution, it is interesting to
check if one can measure time L which the distribu-

Figure 3: QQ plot of the return series General index
return series against the Normal.

tion is needed to reduce the kurtosis to 3 and to ac-
quire a symmetric probability density shape. For this
purpose, we consider the return series as a function of
lag L

rt(L) = L−1 ln

(
Xt+L

Xt

)
for L = 2, 3, 4, · · · .

The skewness and the kurtosis are considered to be

S(L) =
E
(
r3t (L)

)(
E(r2t (L))

)3/2
and

K(L) =
E
(
r4t (L)

)(
E(r2t (L))

)2 − 3.

We plot these functions against L and we conclude
that the skewness and the Kurtosis reaches the value 0
after 345 days, Figure 6.

3.2 Results from the a - stable distribution
In order to see the suitability of both data series for
a - stable distributions, we continue with the empir-
ical analysis of moments as a function of n when
n → ∞, (see Figure 7 and Figure 8). The analysis
of moments suggests that the variance looks to oscil-
late for the FTSE/CySE 20 and diverge for the Gen-
eral index. The graphs of the skewness are erratic and
slightly fluctuate around zero. Kurtosis diverges.

The estimations of parameters for the stable dis-
tributions were made by the regression method pro-
posed by Koutrouvelis [14]. The MATLAB software
was downloaded from the site of free routines by Veil-
lette [31]. The results are shown in Table 3.
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Figure 4: Empirical distribution of the FTSE/CySE 20
return series: dashed line, normal distribution: solid
line.

Table 3. Results of a-stable distribution and
Hypothesis tests

FTSE/CySE 20 General index
δ̂ -0.00091 -0.00099
γ̂ 0.01172 0.01375
β̂ -0.00465 -0.05903
â 1.53987 1.56451
Anderson- 1.665 1.969
Dalling (0.142)* (0.095)*
K-S test 0.0345 0.754335

(0.079)* (0.035571)*
Note: *at the significant level 0.05.

We check the fitted distribution laws by ap-
plying two hypothesis tests: Anderson-Darling and
Kolmogorov-Smirnov. Both tests are based on statis-
tics which compare the empirical distribution function
(EDF) of the sample with the hypothesized distribu-
tion F (x).

Anderson-Darling test has the feature that it is es-
pecially sensitive towards differences at the tails of
distributions. Second, there exist evidences about the
best capability to detect very small differences, even
between large sample sizes.

General index return and FTSE/CySE 20
data series give Anderson-Darling statistic
1.24097 and 1.97183 respectively. Their cor-
responding approximate p-values are 0.25217
and 0.09516. Anderson-Darling results for
the General index return series accept the law
S(1.56451,−0.05903, 0.01375,−0.00099);
whereas FTSE/CySE 20 the law

Figure 5: Empirical distribution of the General index
return series, dashed line: normal distribution: solid
line.

S(1.53987,−0.00465, 0.01172,−0.00091). Eval-
uation of the fitness of stable laws by using the
Kolmogorov-Smirnov test does not change the above
results. This test is more sensitive towards differences
at the central part of both distributions. Kolmogorov-
Smirnov test in the case of FTSE/CySE 20 returns
p − value = 0.079 at the significant level a = 0.05
accepting the null hypothesis. The General index
returns p − value = 0.35571 allowing to accept the
a-stable distribution.

Although both hypothesis tests accept the calcu-
lated a - stable distributions, empirical analysis of the
FTSE/CySE 20 return data does not keep constant the
index of stability at all levels of aggregation. The tail
index was found a = 1.53987 for daily returns and
a = 2 at the aggregated level of n = 345 days and
the result is inconsistent with the theory of a- stable
distributions.

Because of the relation H = 1/a, we expect
a Hurst coefficient close to H = 1/1.53987 =
0.6494 for the FTSE/CySE 20 return data and H =
1/1.56451 = 0.6392 for the General index.

3.3 Self-similarity results
All Hurst exponent estimates were calculated with
SELFIS tool (Table 4). The results show that the
estimators of Hurst exponent calculated by Aggre-
gate variance (97,03%), R/S (99,72%) and Variance
of residuals (99,27%) method have correlation coeffi-
cient above 97% and values larger than 0.5 indicating
significant dependence for the FTSE/CySE 20 index.
Results from the relation H = 1/a agree with those
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Figure 6: Skewness and Kurtosis as a function of L

Figure 7: Sample variance, skewness and Kurtosis for
FTSE/CySE 20.

of the R/S method although estimations of the param-
eter H come from two different methods. The cal-
culated results for the General index show the largest
correlation coefficient from the same methods: Ag-
gregate variance (95,85%), R/S (99,91%) and Vari-
ance of residuals (97,73%). In this case no estimator
agrees with the Hurst exponent calculated through the
stable model.

In both cases, Hurst exponent is greater than or
equal to 0.6 indicating that the data generated process
can be modeled by a persistent process perhaps from
an ARIMA model with appropriate serial correlation
or more accurately by the fractional Brownian motion.

Table 4. Estimators of the Hurst exponents

Figure 8: Sample variance, skewness and Kurtosis for
General index returns.

FTSE/CySE General
20 index

Ag. variance H = 0.576 H = 0.728
method Cor.coef.: Cor.coef.:

97.03% 95.85 %
R/S method H = 0.648 H = 0.606
method Cor.coef.: Cor.coef.:

99.72% 99.91 %
Absolute H = 0.82 H = 1.013
moments Cor.coef.: Cor.coef.:

38.91% 3.229 %
Periodogram H = 0.555 H = 0.482

Variance of H = 0.680 H = 0.729
res. method Cor.coef.: Cor.coef.:

99.27% 97.73 %

Abry-Veitch H = 0.581 H = 0.549
method 95% Con. Inter. 95% Con. Inter.

(0.544, 0.618) (0.492, 0.606)
Whittle H = 0.683 H = 0.564
estim. 95% Con. Inter. 95% Con. Inter.

(0.533, 0.588)% (0.525, 0.603) %

4 Conclusion
The goal of this research is to analyze the behav-
ior of the Cyprus Stock Market. The return data of
both FTSE/CySE 20 and the General index reject the
hypothesis of Gaussian distribution according to the
Jarque-Bera test at the significant level 0.05. They
show statistically significant kurtosis and fat tails.
Distributions with fat tails decay slower than a Gaus-
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sian, which implies return processes are not a random
walk.

We model the series with a-stable distribu-
tions based on their infinite variance and both
Anderson-Darling and Kolmogorov hypothesis tests
accept the null hypothesis. For the FTSE/CySE
20 daily return series we define the a-stable law
S(1.53987,−0.00465, 0.01172,−0.00091) with tail
index a = 1.53987 contrary to the fact that less fre-
quent return series show evidence of reduced kurto-
sis (Figure 6) and consequently increase to tail index.
Gencay et al. [7] have pointed out the phenomenon
of low tail index for more frequent returns and higher
for less frequent returns. Akgirav and Booth [2] con-
sider the above feature inconsistent with stable mod-
els of returns and one explanation may be that finan-
cial returns are not independent and identically dis-
tributed. The practical importance of this contradic-
tion has been reduced by Taleb [26]. Via this method
the estimated value of H = is 0.6494 > 0.5. The cal-
culation of the Hurst exponent using SELFIS tool and
the R/S estimator agrees with the previous result.

The General index is characterized by a smaller
sample size and both hypothesis tests give re-
sults of acceptance for the stable distribution
S(1.56451,−0.05903, 0.01375,−0.00099) with tail
index a = 1.56451. This method defines the value
H = 0.6392 for the Hurst exponent. Hence, it does
not agree with any estimator of the selfish tool. We
accept as the best estimator that given by the R/S
method with correlation coefficient: 99,91% and a
value H = 0.606 > 0.5.

In summary, the Cyprus Stock Market analysis
leads to non-Gaussian modeling. The a-stable mod-
els, although are acceptable from the hypothesis tests,
do not keep constant the tail index through aggregated
levels of time. At n = 345 days FTSE/CySE 20 is
characterized by the tail index of 2. Therefore, both
return data series are not independent. Self-similarity
analysis concludes a Hurst exponent H ∈ (0.6, 0.65)
clearly greater than 0.5 showing a positive serial cor-
relation. Our analysis shows appropriate ARIMA
models or fractional Brownian motion with positive
correlation.

References:

[1] P. Abry, D. Veitch, Wavelet Analysis of Long-
Range Dependence Traffic, IEEE Trans. Inform.
Theor., 44, 1998, pp. 2-15.

[2] V. Akgirav, G. Booth, The stable-law model of
stock returns, J. Business Econ. Stat., 6, 1988,
pp. 51-57.

[3] V. Anh C. Heyde, N. N. Leonenko, Dynamic
models of long-memory processes driven by
Levy noise, J. Appl. Probab., 39, 2002, pp. 730-
747.

[4] I. Belov, A. Kabasinskas, L. Sakalauskas,
A study of stable models of stock markets,
Inf. Technol. Control, 35, 2006, pp. 34-56.

[5] R. Cont. Long range dependence in financial
markets, In J. Levy-Vehel and E. Lutton (eds.),
Fractals in Engineering, Springer 2005, Lon-
don, pp. 159-179.

[6] Cyprus Stock exchange:
http://www.cse.com.cy/gr/marketdata/downloads.asp

[7] R. Gencay, M. Dacorogna, U. Muller, O. Pictet,
R. Olsen, An Introduction to High-Frequency Fi-
nance, Academic Press, London 2001.

[8] J. Geweke, S. Porter-Hudak, The estimation and
application of long memory time series models,
J. of Time Series Anal., 4, 1983, pp. 221-238.

[9] D. Ghose, K. F. Kroner, The relationship be-
tween GARCH and symmetric stable processes:
Finding the source of fat tails in financial data, J.
Empirical Finance, 2, 1995, pp. 225-251.

[10] C.W. Granger, D. Orr, Infinite variance and re-
search strategy in time series analysis, J. Amer.
Statist. Assoc., 67, 1972, pp. 275-285.

[11] R. Fox, M. S. Taqqu, Large-sample properties of
parameter estimates for strongly dependent sta-
tionary Gaussian time series, Annals of Statis-
tics, 14, 1986, pp. 517-532.

[12] T. Karagiannis, M. Faloutsos, M. Molle,
A User-Friendly Self-Similarity Analysis Tool,
ACM SIGCOMM Computer Communication Re-
view, 33, 2003, pp. 81-93.

[13] V. S. Koroliuk, N. I. Portenko, A. V. Skorokhod,
A. F. Turbun, Spravochnik po teorii verojatnos-
tej i matematicheskoj statistike, Nauka, 1985 (in
Russian).

[14] I. A. Koutrouvelis, Regression-type estimation
of the parameters of stable laws, J. Amer. Statist.
Assoc, 75, 1980, pp. 918-928.

[15] A. W. Lo, Long-term memory in stock market
prices, Econometrica, 59, 1991, pp. 1279-1313.

[16] B. Mandelbrot, The Pareto-Levy law and the dis-
tribution of income, International Economic Re-
vue, 1, 1960, pp. 79-106.

[17] B. Mandelbrot, The variation of certain specula-
tive prices, J. of Business, 36, 1963, pp. 394-419.

[18] B. B. Mandelbrot, M. S. Taqqu, Robust R/S anal-
ysis of long-run serial correlation, Statistic. In-
stitute, 48, 1979, pp. 69-104.

[19] B. Mandelbrot, Fractals and Scaling in Finance:
Discontinuity, Concentration, Risk, Springer,
New York, 1997.

WSEAS TRANSACTIONS on MATHEMATICS Athina Bougioukou

E-ISSN: 2224-2880 1083 Issue 12, Volume 11, December 2012



[20] T. Mikosch, G. Samorodnitsky, The supremum
of a negative drift random walk with dependent
heavy-tailed steps, Annals of Applied Probabil-
ity, 10, 2000, pp. 1025-1064.

[21] S. Mittnik, S. T Rachev, Modeling Asset returns
with alternative stable distributions, Economet-
ric Reviews, 12, 1993, pp. 261-330.

[22] C.K. Peng, S.V. Buldyrev, M. Simons, H.
E. Stanley, A.L. Goldberger, Mosaic organiza-
tion of DNA nucleotides, Physical Review E, 49,
1994, pp. 1685-1689.

[23] S. Rachev, S. Mittnik, Stable Paretian models in
Finance, John Wiley & Sons, New York, 2002.

[24] G. Samorodnitsky, M. S. Taqqu, Stable non-
Gaussian random processes, stochastic models
with infinite variance, Chapman & Hall, New
York–London, 2000.

[25] SELFIS Tool, http://www.cs.ucr.edu/tkarag
[26] N. Taleb, Finiteness of variance is irrelevant in

the practice of quantitative finance, Complex-
ity 14, 2009, pp. 66-76.

[27] M. S. Taqqu. V. Teverovsky, W. Willinger, Es-
timators for long-range dependence: an empiri-
cal study, Fractals, 3, 1995, pp. 785-798. Also
in Reprinted in C.J.G. Evertsz, H.O. Peitgen, R.
F. Voss (eds), Fractal Geometry and Analysis
World Scientific, Singapore 1996.

[28] M. S. Taqqu, V. Teverovsky, On estimating
long-range dependence in finite and infinite
variance series, 1996. In R. Adler, R. Fel-
dam, M. S. Taqqu (eds), A Practical Guide
to Heavy Tails: Statistical Techniques for An-
alyzing Heavy-Tailed Distributions, Birkhauser
1997, Boston, pp. 177-217.

[29] R. Adler, R. Feldman, M. S. Taqqu (eds),
A Practical Guide to Heavy Tails: Statistical
Techniques for Analyzing Heavy-Tailed Distri-
butions, Boston, 1998, pp. 177–217.

[30] V. Teverovsky, M. S. Taqqu, Testing for long-
range dependence in the presence of shifting
means or a slowly declining trend using a
variance-type estimator, J. Time Series Analysis,
18, 1997, pp. 279-304.

[31] M. S. Veillette, Alpha-Stable distributions
in MATLAB, http://math.bu.edu/people/mveillet
/html/alphastablepub.html

WSEAS TRANSACTIONS on MATHEMATICS Athina Bougioukou

E-ISSN: 2224-2880 1084 Issue 12, Volume 11, December 2012




