
A Non-Monotone Tensor Method for Unconstrained Optimization
Problems

XIANJUN SHI
Tianjin University
School of Science

Department of Mathematics
Weijin Road 92, Tianjin

P.R. China.
shixianjun88@gmail.com

LEI YANG
Tianjin University
School of Science

Department of Mathematics
Weijin Road 92, Tianjin

P.R. China.
ylei@tju.edu.cn

YING ZHANG
Tianjin University
School of Science

Department of Mathematics
Weijin Road 92, Tianjin

P.R. China.
zhangyhit@yahoo.com.cn

Abstract: The tensor method for unconstrained optimization was first introduced by Schnable and Chow [SIAM
Journal on Optimization, 1 (1991): 293–315], where each iteration bases upon a fourth order model for the objec-
tive function. In this paper, we propose a tensor method with a non-monotone line search scheme for solving the
unconstrained optimization problem, and show the convergence of the method. We evaluate the proposed method
by several numerical examples, and compare the obtained numerical results with those by the modified Newton
method, the tensor method, and the monotone tensor method. Through the numerical results, we can see that the
new method is more effective than others for the problems we tested.

Key–Words: unconstrained optimization, non-monotone linear search, non-monotone tensor method.
AMS subject classifications 90C30, 65K05.

1 Introduction
In this paper, we propose a method, called the non-
monotone tensor method, for solving the uncon-
strained optimization problem

min
x∈Rn

f(x) for f : Rn → R (1)

where we assume that f is at least twice continuous-
ly differentiable and bounded below. One of the most
popular methods for solving (1) is the iterative algo-
rithm, where the sequence {xk} is generated by the
iterative scheme

xk+1 = xk + λkdk,

where dk is a direction in the k-th iteration and αk is
the corresponding step size. Then, in the k-th iteration
of the algorithm, the key is to find the direction dk and
the step size λk.

At first, one needs to find the iterative direction
dk. To achieve it, one of the traditional methods is
the Newton method which employs the quadratic ap-
proximation of f . However, one defect of Newton
method is that the Hessian matrix of objective func-
tion f must be nonsingular. Because of this, the New-
ton method is largely restricted when applied to prac-
tical problems. To overcome this defect, as we know
in [13], Schabel and Chow proposed a tensor method

for unconstrained optimization in 1991. The tensor
method improves the efficiency and accuracy of solv-
ing (1) compared with standard Newton method, espe-
cially, when ∇2f(x∗) is singular where x∗ stands for
the optimal point. In order to avoid the high cost of
expanding f(x) to the third or fourth order Taylor ex-
pansion, they used the second derivatives to approxi-
mate the third and fourth order tensor, and to approach
f(x) by the fourth degree polynomial. Then, Chow,
Eskow and Schnabel [6] worked out the homologous
software package. According to the method proposed
in [13], Bouaricha [2] applied it to large and sparse
unconstrained optimizations by taking advantage of
the sparse of Hessian matrix and some computational
techniques. At the same time, he also published the
corresponding software package in 1997 [1]. In ad-
dition, in 1984, Schnabel and Frank [14] first solved
the system of nonlinear equations by taking advantage
of tensor to approach function. In their experiments,
their algorithms improved the efficiency and reliabili-
ty over standard linear model obviously. Besides, they
also proved that this tensor method has order 1.16 lo-
cal convergence rate on some special situations. Sim-
ilarly, when this idea was applied to solve the non-
linear least square problems [4, 3], the tested results
indicated that tensor methods are significantly more
efficient and robust than standard methods on small
and medium-sized problems.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1006 Issue 11, Volume 11, November 2012

Secondly, one needs to choose a proper iterative
step size λk by some line search scheme. The ideal
line search rule is an exact one that satisfies:

f(xk + λkdk) = min
λ≥0

f(xk + λdk).

In fact, the exact value of λk above is difficult or even
impossible to reach in practice. So researchers focus
on the inexact line search scheme, which generally in-
cludes monotone line search and non-monotone line
search methods. In the monotone line search methods
(such as the Goldstein, Armijo and Wolfe line search
method), λk is chosen to keep f(xk +λkdk) < f(xk)
for all k, which is possible to restrict the searching
points in a creep along the bottom of a narrow curved
valley. However, the non-monotone line search over-
comes this obstacle to find a global optimum and im-
prove the speed of convergence especially for the cas-
es that the involving function is highly nonconvex and
has a valley in a small neighborhood of some points.

The earliest non-monotone line search scheme
was proposed by Grippo, Lampariello, and Lucidi for
Newton methods [9]. Then, many non-monotone line
search schemes were developed [7, 8, 15, 17]. Recent-
ly, Hu, Huang and Lu [10] proposed a non-monotone
line search algorithm which is to find the step size λk

such that{
f(xk + λkdk) ≤ Ck +

δλk∇f(xk)
T dk

2 ,
∇f(xk + λkdk)

Tdk ≥ σ∇f(xk)Tdk.
(2)

Here, δ, σ,mk are parameters satisfying 0 < δ < σ <
1, mk ∈ N+ and Ck is chosen as

Qk = 1 + ηk

mk−1∑
i=1

ηk−i,

Ck =
ηk
∑mk−1

i=1 ηk−if(xk−i) + f(xk)

Qk
,

where ηk ∈ [0, 1] is chosen at different conditions (Al-
gorithm 3.1 for details) and N+ stands for the set of
positive integers. But, they employed this line search
scheme in a Newton method. Similar non-monotone
line search schemes were also used in [11] for com-
plementarity problems and in [16] for variational in-
equality problems.

In this paper, we propose a non-monotone tensor
method for unconstrained optimization problem (1)
by combining the non-monotone line search scheme
above with the tensor method given in [13]. We
show the convergence of the proposed method under
mild assumptions. We evaluate the proposed method
by several numerical examples, and compare the ob-
tained numerical results with those by the modified

Newton method, the tensor method, and the mono-
tone tensor method. The preliminary numerical re-
sults demonstrate that the new method is more effec-
tive than others for the problems we tested.

The remainder of this paper is organized as fol-
lows. In Section 2, we will briefly introduce the con-
cepts of tensor and its operations, and then review the
techniques to propose the tensor model in [13] and
solve it. In Section 3, we will propose the concrete al-
gorithm of the non-monotone tensor method and dis-
cuss its global convergence. In Section 4, we will re-
port the numerical results for the non-monotone ten-
sor method, tensor method with monotone line search,
tensor method in [13] and modified Newton method,
respectively.

2 Tensor Model for Unconstrained
Optimization

In this section, we first introduce some basic concepts
and operations for tensor; and then, we introduce the
tensor method used to solve the unconstrained opti-
mization problem (1).

Definition 1 If A = (Ai1...im) satisfies Ai1...im ∈ R,
where ij = 1, . . . , nj for j = 1, . . . ,m, i.e., A ∈
Rn1×n2×···×nm , we call A an mth order real tensor.
Furthermore, if n1 = n2 = · · · = nm, we call A an
m-th order and n-dimensional square tensor.

From Definition 1, when m = 1 and m = 2, the
tensor A reduces to a vector and a matrix, respective-
ly. In addition, the mth-order (m ≥ 3) tensor is also
called a high-order matrix. We are about to give the
specific definition of the third and fourth order square
tensors.

Definition 2 Suppose that T ∈ Rn×n×n, V ∈
Rn×n×n×n and ζ, µ, ν, ω ∈ Rn. Then,

T · µνω =
n∑

i=1

n∑
j=1

n∑
k=1

Tijkµiνjωk;

(T · νω)i =

n∑
j=1

n∑
k=1

Tijkνjωk, i = 1, · · · , n;

V · ζµνω =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Vijklζiµjνkωl;

(V · µνω)i =

n∑
j=1

n∑
k=1

n∑
l=1

Vijklµjνkωl, i = 1, · · · , n,

and hence, T ·µνω ∈ R, T ·µν ∈ Rn, V · ζµνω ∈ R,
and V · µνω ∈ Rn. If ζ = µ = ν = ω holds, we
denote T · µνω by T · µ3 and V · ζµνω by V · µ4.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1007 Issue 11, Volume 11, November 2012

From the definition above, it is easy to realize that
the square tensor has many similarities with the square
matrix. Therefore, we can define the symmetry anal-
ogously.

Definition 3 If A is a tensor defined by Definition 1
and satisfies:

Ai1i2···im = Aj1j2···jm , 1 ≤ il, jl ≤ n with 1 ≤ l ≤ m,

where the indices j1j2 · · · jm is an arbitrary permuta-
tion of the indices i1i2 · · · im, we call A a symmetric
tensor.

The operations of tensor contain addition, scalar
multiplication and tensor multiplication. Addition be-
tween two tensors with the same order and dimension
means their corresponding elements add. Each ele-
ment of a tensor multiplies by a scalar is the scalar
multiplication between a scalar and a tensor.

Definition 4 Suppose that T ∈ Rn1×n2×···×np

and V ∈ Rm1×m2×···×mq . Then, ⊗ stand-
s for the tensor multiplication and T ⊗ V ∈
Rn1×n2×···×np×m1×m2×···×mq with

(T ⊗ V)i1i2···ipj1j2···jq = Ti1i2···ipVj1j2···jq .

Since the vector and matrix are special cases of
tensor, the multiplication is also appropriate for them.
There is a kind of tensor which is special and owns
available properties called rank-one tensor. They are
easy to be stored and operated with each other. The
detailed definition is presented as:

Definition 5 A tensor T ∈ Rn1×n2×···×np is called a
rank-one tensor, if there exist µ(i) ∈ Rni (1 ≤ i ≤ p)
satisfying Tj1···jp = µ

(1)
j1
· · ·µ(p)

jp
(1 ≤ ji ≤ ni for

1 ≤ i ≤ p), i.e., T = µ(1) ⊗ µ(2) ⊗ · · · ⊗ µ(p).

In the following, we introduce the tensor method
in [13] used to solve unconstrained optimization (1)
briefly, which is divided into the following three parts.

Part I: The model of tensor method

It is necessary to expand f(x) to a higher degree
polynomial to approach the objective function more
accurately, especially when ∇2f(x∗) is nonsingular.
In this paper, the monotone tensor method for uncon-
strained optimization is based upon the fourth order
tensor model

f(xc + d) = f(xc) +∇f(xc) · d+
1

2
∇f(xc) · d2

+
1

6
T · d3 + 1

24
V · d4 (3)

where xc represents the current iterative point,
∇f(xc) and ∇2f(xc) denote either these analyt-
ic derivatives, or finite difference approximations to
them, and T ∈ Rn×n×n and V ∈ Rn×n×n×n are sym-
metric rank-one tensors. The advantages of this model
are provided in [13].

Part II: Solutions of T and V :

Actually, in the model (3), we don’t need the third
or fourth order derivative of f . It is just the fourth or-
der expansion of f on the foundation of the second or-
der Taylor expansion. What we need is finding proper
tensors T and V to approach the value of f and∇f(x)
at previous iterates. While solving T and V , we re-
strict T and V to be symmetric and rank-one tensors,
which not only shrink the scope of them, but also re-
duce memory space during the computation. At the
same time, T and V satisfy the following system of
equations:

f(x−k) = f(xc) +∇f(xc) · sk
+1

2∇f(xc) · s
2
k

+1
6T · s

3
k +

1
24V · s

4
k,

∇f(x−k) = ∇f(xc) +∇2f(xc) · sk
+1

2T · s
2
k +

1
6V · s

3
k,

(4)

where k = 1, · · · , p (here, we set p ≤ n1/3), {x−k}
is the sequence of past linear independent iterative
points and sk = x−k − xc, sk ∈ Rn. Multiplying
the second equation of (4) by sk gives

∇f(x−k) · sk = ∇f(xc) · sk +∇2f(xc) · s2k
+
1

2
T · s3k +

1

6
V · s4k. (5)

Define the unknown quantities α = (αk)1≤k≤p, β =
(βk)1≤k≤p ∈ Rp as

αk = T · s3k, βk = V · s4k for k = 1, · · · , p. (6)

Then, from (4) and (5), we have the following systems
of two linear equations in two unknowns for each of
the p pairs αk and βk:

1
2αk +

1
6βk = ∇f(x−k) · sk −∇f(xc) · sk

−∇2f(xc) · s2k,
1
6αk +

1
24βk = f(x−k)− f(xc)

−∇f(xc) · sk − 1
2∇

2f(xc) · s2k
(7)

for k = 1, · · · , p. The system (7) is nonsingular, so αk

and βk have unique solution. Combining (6) and(7),
we know V and T satisfy

V · s4k = βk, T · s2k = ak, k = 1, · · · , p, (8)

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1008 Issue 11, Volume 11, November 2012

where

ak = 2(∇f(x−k)−∇f(xc)−∇2f(xc) · sk

−1

6
V · s3k), for k = 1, · · · , p. (9)

Theorem 6 Define P ∈ Rp×p by Pij =

(sTi sj)
4
, 1 ≤ i, j ≤ p and define τ ∈ Rp by

τ = P−1β. Then, the solution to

min
V ∈Rn×n×n×n

∥V ∥F
subject to V · s4k = βk, k = 1 · · · , p

and V is symmetric.

is

V =

p∑
k=1

τk(sk ⊗ sk ⊗ sk ⊗ sk), (10)

where ⊗ is defined in Definition 4.

Theorem 7 Define ak ∈ Rn (k = 1, · · · , p) as (9).
The solution to

min
V ∈Rn×n×n

∥T∥F
subject to T · s2i = ai, i = 1 · · · p

and T is symmetric.

is

T =

p∑
k=1

(bk ⊗ sk ⊗ sk + sk ⊗ bk ⊗ sk

+sk ⊗ sk ⊗ bk), (11)

where bk ∈ Rn, k = 1, · · · , p, {bk} is the unique
sequence of vectors which makes (11) satisfy T · s2i =
ai (i = 1, · · · , p) and ⊗ is defined in Definition 4.

The proofs of Theorems 6 and 7 can be found in
[13]. By these two theorems, we can get the concrete
forms of T and V .

Part III: Solution of the tensor model:

Substituting (10) and (11) into (3), the tensor
model can be expressed as:

f(xc + d)

= f(xc) +∇f(xc) · d+
1

2
∇f(xc) · d2

+
1

2

p∑
k=1

(bTk d)(s
T
k d)

2 +
1

24

p∑
k=1

τk(s
T
k d)

4.(12)

Let S ∈ Rn×p, whose kth column is sk, and the
{sk} be linearly independent. Before solving (12), we

take advantage of QR factorization of S to transform
(12) into two polynomials with p and n− p variables,
respectively. The concrete form is :

d = Wu+ Zt (13)

where Z ∈ Rn×(n−p) and W ∈ Rn×p which satis-
fy ZTS = 0, W TS = I , rank(Z) = n − p and
rank(W) = p. For convenience, from now on, we
use g and H instead of ∇f(xc) and ∇2f(xc). Then,
(12) are transformed into:

f(xc +Wu+ Zt)

= f(xc) + gTWu+ gTZt+
1

2
uTW THWu

+uTW THZt+
1

2
tTZTHZt

+
1

2

p∑
k=1

u2k(b
T
kWu+ bTkZt)

1

24

p∑
k=1

τku
4
k, (14)

and it is a second degree polynomial about t when u
is fixed. Here, we assume ZTHZ is positive definite.
Then, it is obvious that

t = −(ZTHZ)−1ZT (g +HWu+
1

2

p∑
k=1

biu
2
i) (15)

is the minimum of the function in (14) with respect to
the variable t.

Furthermore, substitute (15) into (14) to obtain a
fourth degree polynomial of u:

f0(u)

= f(xc) +
1

2
uTW THWu+

1

2

p∑
i=1

u2i (b
T
i Wu)

+
1

24

p∑
i=1

τiu
4
i

1

2
LTZ(ZTHZ)−1ZTL,

where L = (g+HWu+ 1
2

∑p
i=1 biu

2
i). Suppose that

u∗ is the minimum of the above function. Then, by
(15), we get t∗. Thus, we can obtain the optimal point
of (12) by

d∗ = Wu∗ + Zt∗. (16)

Particularly, if we set u = 0, then

d∗ = Zt∗ = −Z(ZTHZ)−1ZT g

= −Z(ZTHZ)−1ZT∇f(xc). (17)

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1009 Issue 11, Volume 11, November 2012

3 Algorithm and Convergence
In this section, we propose a non-monotone tensor al-
gorithm for unconstrained optimization problem, and
show the convergence of the algorithm. In the follow-
ing part, {x−m} for 1 ≤ m ≤ p represents a sequence
of past iterative points; k, dN and dT mean the num-
ber of iteration, the direction of Newton method and
the direction of Tensor method correspondingly. dT1

is the direction calculated by (16), and if we set u = 0

in (16), we get the direction dT0 by (17). λ(k)
T and λ

(k)
N

denote the step size for tensor direction and Newton
direction in the k-th iteration.

Algorithm 3.1 (Non-monotone tensor algorithm for
solving (1))

Step 0 Choose δ and σ such that 0 < δ < σ < 1,
η0 ∈ (0, 1) and eps > 0. Take the initial point
x0 ∈ Rn, and set C0 = f(x0). Let m0 = 1.
Choose an integer M ≥ 2. Set k = 0.

Step 1 Calculate ∇f(xk) and ∥∇f(xk)∥.
If ∥∇f(xk)∥ ≤ eps, stop.

Step 2 Calculate ∇2f(xk) and f(xk).
If det(∇2f(xk)) = 0, then dN = −∇f(xk);
otherwise, dN = −[∇2f(xk)]

−1∇T f(xk).

Step 3 If k = 0, then d = dT = dN ; otherwise,
choose p (p ≤ n1/3) latest points as the sequence
{x−m} (1 ≤ m ≤ p) and solve T and V by (11)
and (10). Calculate dT1 and dT0 through (16)
and (17). If ∇f(xk)TdT1 ≤ 0, then dT = dT1;
otherwise, dT = dT0.

Step 4 If k = 0, then find λk
N by (2) when d = dN ,

and set λk
T = λk

N ; otherwise, find λk
T by (2) when

d = dT , and λk
N by (2) when d = dN , respec-

tively.

Step 5 If f(xk + λk
NdN) ≤ f(xk + λk

TdT), then
xk+1 = xk + λk

NdN and d = dN ; otherwise,
xk+1 = xk + λk

TdT and d = dT .

Step 6 Set k = k+1 and mk = min{mk−1+1,M}.
If
∑mk−1

i=1 ηk−if(xk−i) ≥
∑mk−1

i=1 ηk−if(xk),
then set ηk = η0; otherwise,set ηk = 0. Set

Qk = 1 + ηk

mk−1∑
i=1

ηk−i,

Ck =
ηk
∑mk−1

i=1 ηk−if(xk−i) + f(xk)

Qk
.

Go back to Step 1.

Remark 8 In Step 4, which searching for the non-
monotone step size λT and λN , if the step size sat-
isfying scheme (2) does not exist (i.e., λ < m holds,
before λ satisfies (2), where m is a small constant such
as 10−10), we set λ = 0

Assumption 3.1 The objective function f is at least
twice continuously differentiable and bounded below.
Besides, ZTHZ is positive definite.

This assumption about continuous differentiability is
fundamental in unconstrained optimization solved by
derivative-based methods. Even though H(H =
∇2f(xc)) may be singular which is the main obstacle
for Newton method, ZTHZ can be both nonsingular
and positive definite only if rank(H) ≥ n − p. This
is the main superiority of tensor method in [13].

Theorem 9 (Property of Descending) Suppose that
Assumption 3.1 is satisfied. Then, the direction dT
defined in Step 3 will be descending, which means
∇f(xc)TdT ≤ 0.

Proof. From Step 3 of Algorithm 3.1 and (17), we get
dT0 = −Z(ZTHZ)−1ZT∇f(xc). And hence,

dT T
0 ∇f(xc)
= −∇f(xc)T [Z(ZTHZ)−1ZT]∇f(xc),

(18)

where Z ∈ Rn×(n−p). By the definition in (13), we
have the matrix Z is column full rank. This, together
with ∥∇f(xc)∥ ̸= 0 (terminate condition in Step 1),
implies that ZT∇f(xc) ̸= 0. Since, if we set F =
ZT∇f(xc), (18) can be written as

dT T
0 ∇f(xc) = −F T (ZTHZ)−1F,

and (ZTHZ)−1 is positive definite, it follows that
dT T

0 ∇f(xc) < 0.
By combining the above result with

dT T
1 ∇f(xc) ≤ 0 given in Step 3, we complete

the proof of this theorem. �

By Theorem 9, when d = dT holds, the non-
monotone line search scheme in Step 4 is finitely ter-
minational. In Algorithm 3.1, the Newton direction
dN = −[∇2f(xk)]

−1∇T f(xk) may not be descent
when ∇2f(xk) is not positive definite. If we suppose
the direction dN = −[∇2f(xk)]

−1∇T f(xk) is not
descent, by Remark 8, we will get λN = 0. And then
the Algorithm 3.1 is well defined.

In the following, we show the convergence of Al-
gorithm 3.1.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1010 Issue 11, Volume 11, November 2012

Lemma 10 Suppose that {xk} is generated by Algo-
rithm 3.1. Definite γk as

γk =

{
0 ηk = 0,
1 ηk = η0.

Then Ck is the convex combination of γk−1f(xk−1),
γk−2f(xk−2), · · ·, γk−M+1f(xk−M+1) and f(xk).

Proof. From the definition of Ck in Step 6 of Algorith-
m 3.1, we know that Ck is a convex combination of
f(xk−1), f(xk−2), · · ·, f(xk−M+1) and f(xk). Tak-
ing the situation ηi = 0 (k−M +1 ≤ i ≤ k− 1) into
account, we can conclude that Ck is a convex combi-
nation of f(xj) and f(xk), where j ∈ {k −M + 1 ≤
i ≤ k− 1; ηi ̸= 0}. Then, the lemma is proven. �

Theorem 11 Suppose that {xk} is generated by Al-
gorithm 3.1. Then, there exists a subsequence {yk}
which allows the corresponding values of objective
function to be descending. That is, f(yk) ≥ f(yk+1)
for any k ∈ N+.

Proof. Because f is bounded below from Assump-
tion 3.1, there exists a constant Mf > 0 such that
f(x) +Mf ≥ 0 for all x ∈ Rn. Without loss of gen-
erality, we assume f(x) ≥ 0 for all x ∈ Rn. In the
following proof process, it is reasonable for us to sup-
pose f(xk) > 0 for k ∈ N+(f(x∗) = 0 states x∗ is
the global optimal point) holds. Let {γk} be defined
by Lemma 10. To find the subsequence {yk}, we pick
every yk from set {xk, . . . , xk+M−2} for k ∈ N+,
where {xk} is the sequence generated by Algorithm
3.1. Concretely, for any k ∈ N+, we define yk as
follows:

yk = argmax
k≤j≤k+M−2

{γjf(xj)} if
k+M−2∑

i=k

ηi > 0, (19)

yk = xk+M−2 if
k+M−2∑

i=k

ηi = 0. (20)

Now let’s prove f(yk) ≥ f(yk+1) for any k ∈ N+.

◦ When
∑k+M−2

i=k ηi > 0 holds, we have

f(yk) = max
k≤j≤k+M−2

{γjf(xj)}.

If f(yk) ≥ f(xk+M−1), by the concrete defini-
tion of {yk}, we get

f(yk+1) = maxk+1≤j≤k+M−1{γjf(xj)}
≤ max{ max

k+1≤j≤k+M−2
{γjf(xj)}, f(xk+M−1)}

≤ max
k≤j≤k+M−2

{γjf(xj), f(yk)} = f(yk).

On the contrary, if f(yk) < f(xk+M−1), it is easy
to conclude

M−1∑
i=1

ηk+M−1−if(xk+M−1−i)

=
M−1∑
i=1

ηk+M−1−i(γk+M−1−if(xk+M−1−i))

≤
∑M−1

i=1 ηk+M−1−if(yk)

<
M−1∑
i=1

ηk+M−1−if(xk+M−1).

From Step 6 of Algorithm 3.1, we know ηk+M−1 =
0, and then

f(yk+1) = max
k+1≤j≤k+M−2

{γjf(xj)} ≤ f(yk).

◦ When
∑k+M−2

i=k ηi = 0 holds, it follows that γk+i =
ηk+i = 0 for i = 1, 2, · · · ,M − 2. From Step 6 of
Algorithm 3.1, we have ηk+M−1 = η0, γk+M−2 =
1 and Ck+M−2 = f(xk+M−2). Thus, by the defini-
tion of {yk} (19), we know f(xk+M−1) = f(yk+1).

In this case (ηk+M−2 = 0), (2) is equivalent to
monotone linear search which means f(xk+M−2) >
f(xk+M−1). Through the definition of yk (20), we
have

f(yk) = f(xk+M−2) and f(yk) > f(yk+1).

Therefore, we can find a subsequence {yk} which
allows the sequence {f(yk)} to be descending. �

Assumption 3.2 There exist two positive constants
c1 and c2 satisfying |∇f(xk)Td| = −∇f(xk)Td ≥
c1∥∇f(xk)∥2 and ∥d∥ ≤ c2∥∇f(xk)∥ (Here ∥ · ∥ s-
tands for the 2-norm).

Theorem 12 Suppose that Assumptions 3.1 and 3.2
are satisfied and set ρ =

δ(1−σ)c21
2Lc22

> 0. Then, the

inequality f(xk+1) ≤ Ck − ρ∥∇f(xk)∥2 holds.

Proof. By (2), we get

(∇f(xk + λkd)−∇f(xk))Td ≥ (σ − 1)∇f(xk)Td.

From Assumption 3.1,∇f(x) is Lipschitz continuous
and then

(σ − 1)∇f(xk)Td ≤ λkL∥d∥2,

which, together with ∇f(xk)Td ≤ 0 and σ < 1, im-
plies that

λk ≥
(1− σ)|∇f(xk)Td|

L∥d∥2
. (21)

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1011 Issue 11, Volume 11, November 2012

Combine Assumption 3.2 and (2); we have

f(xk+1) ≤ Ck +
δλk∇f(xk)Td

2

≤ Ck −
δλkc1∥∇f(xk)∥2

2
. (22)

|∇f(xk)Td|
L∥d∥2

≥ c1∥∇f(xk)∥2

Lc22∥∇f(xk)∥2
=

c1
Lc22

. (23)

Through (21) and (23), we have

λk ≥
(1− σ)c1

Lc22
. (24)

Substituting (24) into (22), we get the conclusion stat-
ed in the theorem. �

Lemma 13 Suppose that k ≥ 2M − 1 and f(x) ≥ 0.
Then, the inequality Ck ≤ f(yk−2M+2) holds.

Proof. Let {γk} be defined by Lemma 10. From the
definition of {yk} and the descending of {f(yk)} in
Theorem 11, there exists j ∈ {0, 1, · · · ,M−2}which
makes

f(yk−2M+2) = f(xk−2M+2+j) ≥ γDf(xD) (25)

holds for all D ≥ k − 2M + 2. Consider ηk, ηk−1,
· · ·, ηk−M+1. They can not be equal 0 at the same time
because of Step 6 in Algorithm 3.1.

Now, without losing generality, we consider the
worst situation ηk−M+1 = η0 and ηk = ηk−1 = · · · =
ηk−M+2 = 0. Then,

γk−M+1f(xk−M+1) = f(xk−M+1)

and from (25) and k −M + 1 ≥ k − 2M + 2

f(yk−2M+2) = f(xk−2M+2+j) ≥ f(xk−M+1),

where j ∈ {0, 1, · · · ,M − 2}. From Lemma 10, we
can conclude

f(yk−2M+2) ≥ f(xk−M+1) = Ck−M+1. (26)

On the other hand, because when ηk = ηk−1 = · · · =
ηk−M+2 = 0, (2) actually equals to monotone linear
search scheme, we have

Ck = f(xk) ≤ f(xk−1) ≤ f(xk−2) · · · ≤ f(xk−M+2)

≤ Ck−M+1 − ρ∥∇f(xk−M+1)∥2

≤ Ck−M+1. (27)

Combining (26) and (27), we will get the conclusion
of this lemma. �

Theorem 14 If Assumption 3.1 and k ≥ 2M − 1
holds, the sequence {xk} generated by Algorithm 3.1
satisfies

lim
k→∞

inf ∥∇f(xk)∥ = 0.

Proof. From the definition of {yk}, it follows
that yk = xk+j for one positive integer j ∈
{0, 1, · · · ,M − 2}. By Theorem 12, we have

f(yk) = f(xk+j) ≤ Ck+j−1 − ρ∥∇f(xk+j−1)∥2;

and by Theorem 11 and Lemma 13, we have

Ck+j−1 ≤ f(yk−2M+1), ∀j ∈ {0, 1, · · · ,M − 2}.

Thus,

f(yk) ≤ Ck+j−1 − ρ∥∇f(xk+j−1)∥2

≤ f(yk−2M+1)− ρ∥∇f(xk+j−1)∥2,

i.e.,

ρ∥∇f(xk+j−1)∥2 ≤ f(yk−2M+1)− f(yk).

Add them together for k = 2M−1, 2M, · · ·, and note
that f is bounded below and Theorem 11, we have

+∞∑
k=2M−1

ρ∥∇f(xk+j−1)∥2 < +∞.

Since ρ is a positive constant, we obtain that

lim
k→∞

inf ∥∇f(xk)∥ = 0

holds. �

4 Numerical Results
In this section we will report the results of numeri-
cal experiments to illustrate performance of Algorith-
m 3.1 from three aspects. In the first part, we will
give a specific example to prove Algorithm 3.1 has
a descending subsequence. Secondly, we will pro-
vide an example to indicate the advantages of non-
monotone tensor method comparing with monotone
tensor method. At last, sixteen experiments with four
methods are completed. All experiments are done at a
PC with CPU of 2.4GHz and RAM of 2.0GB, and all
codes are executed in MATLAB 7.8.0. In the follow-
ing numerical experiments, we choose the parameters
as δ = 2.0 × 10−4, σ = 0.1, η0 = 0.85, p = 1,
eps = 10−6 and M = 5.

In all numerical results, we use MNTM to stand
for the non-monotone tensor method (i.e., Algorithm

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1012 Issue 11, Volume 11, November 2012

3.1). If we set λ(k)
T = λ

(k)
N = 1 constantly in Algorith-

m 3.1, then it reduces to the tensor method [13] which
is represented by TM . Besides, if we set ηk = 0 for
all k, then Algorithm 3.1 changes to a monotone ten-
sor method abbreviated as MTM . When d = dN and
ηk = 0 for all k hold constantly, the Algorithm 3.1 be-
comes the modified Newton method which is denoted
as MNM in the following.

We test problem (1) where the objective functions
are respectively defined as follows:

1. EPF (Extended Penalty Function):

f(x) = 5× 10−5
n∑

i=1

(xi − 1)2 + (
n∑

i=1

x2i − 0.25)2.

Initial point x0 = [1, 2, · · · , n]T . fopt =
f([16676667 , . . . ,

1667
6667]) = 1.1249e − 4 when n = 4;

fopt = f([223
1410 , . . . ,

223
1410]) = 3.5437e − 4 when

n = 10; fopt = f([314
2349 , . . . ,

314
2349]) = 5.2539e − 4

when n = 14.

2. EF&RF (Extended Freudenstein & Roth Func-
tion):

f(x) =

2∑
i=1

[(−13x2i−1((5− x2i)x2i − 2)x2i)
2

+(−29 + x2i−1 + ((x2i + 1)x2i − 14)x2i)
2].

Initial point x0 = [1, 2, 1, 2]T , fopt = 0.

3. ETF (Extended Trigonometric Function):

f(x) =

n∑
i=1

[(n−
n∑

j=1

cosxj) + i(1− cosxi)− sinxi]
2.

Initial point x0 = [−0.5,−0.5, · · · ,−0.5]T , fopt = 0.

4. R1F (Raydan 1 Function):

f(x) =
n∑

i=1

i

10
(exi − xi).

Initial point x0 = [n, n, · · · , n]T , fopt =
∑n

i=1
i
10 .

5. R2F (Raydan 2 FunctionF):

f(x) =
14∑
i=1

(exi − xi).

Initial point x0 = [14, 14, · · · , 14]T , fopt = n.

6. EPF1 (Extended Powell Function 1):

f(x) = (x3 + 10x2)
2 + 5(x3 − x4)

2

+(x2 − 2x3)
2 + 10(x1 − x4)

4].

Initial point x0 = [4, 4, 4, 4]T , fopt = 0.

7. EPF2 (Extended Powell Function 2):

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
2

+10(x1 − x4)
4].

Initial point x0 = [4, 4, 4, 4]T , fopt = 0.

8. EM&CF (Extended Miele & Cantrell Function):

f(x) =

n/4∑
i=1

[(ex4i−3 − x4i−2)
2 + 100(x4i−2 − x4i−1)

6

+tan4(x4i−1 − x4i) + x84i−3].

Initial point x0 = [n, n, · · · , n]T , fopt = 0.

9. BTF (Broyden Tridiagonal FunctionF):

f(x) =

n∑
i=1

[(3− 2xi)xi − xi−1 − 2xi+1 + 1]2.

Initial point x0 = [n, n, · · · , n]T , fopt = 0.

Part I:
In this part, we use the NMTM to solve the un-

constrained optimization whose objective function is
defined as EPF (n = 4) to show the fact that Algorith-
m 3.1 generates a descending subsequence. The cor-
responding results are showed in Table 1, where k rep-
resents the number of iteration; fk stands for the value
of f in the kth iteration; ∥gk∥ represents the norm of
gradient gk = ∇f(xk) which determines whether the
algorithm terminates; the step with symbol ∗ means
that current iterative direction is the tensor direction
i.e., d = dT .

Through numerical results in Table 1, we notice
that the values of objective function are convergent.
And except for the tenth iteration, all values of objec-
tive function at iteration points are descending, which
confirms the result given in Theorem 11. In the third
iteration, the tensor direction is chosen, and this in-
dicates the tensor direction is better than Newton di-
rection on that iteration. Furthermore, in Part III, we
will find that the optimal solution of EPF (n = 4) can
not be get by MNM . That means the tensor direction
is essential to guarantee the convergence and improve
the speed of convergence on the foundation of Newton
direction.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1013 Issue 11, Volume 11, November 2012

Table 1: The numerical results by NMTM for EPF
(n = 4)

k(iteration) fk ∥gk∥
1 9.9731 23.3199
2 0.0435 0.5643
3 0.0011∗ 0.0585
4 1.3494e− 4 0.0075
5 1.2081e-4 1.5902e-4
6 1.2078e-4* 2.1671e-4
7 1.2080e-4* 8.5829e-5
8 1.2002e-4 0.0028
9 1.1749e-4 0.0018
10 1.1764e-4* 6.3558e-5
11 1.1689e-4 0.0021
12 1.1506e-4 0.0011
13 1.1475e-4* 4.2445e-5
14 1.1356e-4* 0.0017
15 1.1279e-4 4.9512e-5
16 1.1279e-4* 1.3127e-4
17 1.1274e-4 8.7595e-4
18 1.1253e-4 1.9818e-5
19 1.1252e-4 2.8725e-4
20 1.1249e-4 6.2588e-7

Part II:
In this part, we use both NMTM and MTM

to solve the unconstrained problem with a objective
function EPF (n = 14). The numerical results are dis-
played in Table 2, where x∗ = [314

2349 , . . . ,
314
2349] ∈ R14

stands for optimal point, ∥xk − x∗∥ measures the dis-
tance between the current iterative point and the op-
timal point, k represents the number of iteration; fk
stands for the value of f in the kth iteration; ∥gk∥ rep-
resents the norm of gradient gk = ∇f(xk) which de-
termines whether the algorithm terminates; the step
with symbol ∗ means that current iterative direction
is the tensor direction, i.e., d = dT . As we know, the
monotone line search scheme shrinks the scope of step
size due to guaranteing decreasing of objective func-
tion value. Here, we aim to show that non-monotone
line search scheme extends the searching scope and
reduces the iterations.

By comparing the results in Table 2, we can get
following conclusions. Firstly, it is easy to find that
the values of objective function decrease monotonous-
ly when EPF (n=14) is solved by MTM . On the con-
trary, the value of fk in the eighth step of NMTM
increases comparing with the seventh step. That is
the main difference between these two methods. Sec-
ondly, in the seventh step, the values of ∥xk − x∗∥
are the same, however, in the eighth step, the value

of ∥xk − x∗∥ by MTM is nearly as ten times larg-
er as that by NMTM . This shows the advantage of
NMTM comparing with MTM . Thirdly, it is obvi-
ous that {xk} generated by NMTM converges faster
than the one by MTM , which is evidently showed in
Table 2.

Part III:
All examples given above are calculated by

four different methods: MNM , TM , MTM and
NMTM . The numerical results are listed in Tables
3 and 4. In Tables 3 and 4, the dimension of each
example is given in column D; the total computation
time is given in column Time(s); Iter and TIter de-
note the total iterations and the iterations using tensor
direction. We use a symbol ”−” to express the method
fails to solve this example. The column Example de-
notes the abbreviations of examples above. In the col-
umn Error, we report ∥fk − fopt∥, where fk denotes
the objective function value in the kth iteration and
fopt denotes the minimal value of f .

From Tables 3 and 4, we find that MTM succeeds
to solve several experiments that MNM fails to solve
such as EPF (4) and EPF1(4). However, the key d-
ifference between them is using the tensor direction
as a descending direction in MTM , which indicates
the tensor direction is necessary to guarantee the con-
vergence. Especially, compared with the MNM , the
MTM for Example EPF(4) uses tensor direction on-
ly twice, but this is very pivotal to get the convergent
result. In fact, MNM fails to solve examples EPF(4),
EPF(14), EPF1(4) and EPF2(4), because of singulari-
ty of Hessian matrix in searching for Newton direc-
tions. This is the superiority of TM mentioned in
[13].

By contrasting TM with MTM , we are aware
of that adding monotone line search accelerates the
speed of convergence and reduces the iterations obvi-
ously except for the example ETF. Specifically, TM
fails to solve examples R1F(14) and R2F(14) but
MTM succeed. It is noticeable that when using TM
for EF&RF, {xk} does not converge to an optimal
point, which means TM also fails actually.

Contrast the results of NMTM with others. We
find that NMTM succeeds to solve all examples
above. In addition, from the result of example
EPF(14), we know adding non-monotone line search
improves the efficiency of algorithm with less itera-
tions and less time. Set EM&CF and BTF as exam-
ples. What is more important is that through non-
monotone line search, NMTM overcomes the weak-
ness of monotone line search that is restricting the
searching points in a creep along the bottom of a nar-
row curved valley. Then, NMTM can find a globally
optimal point for the examples, for which others can

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1014 Issue 11, Volume 11, November 2012

Table 2: The numerical results by NMTM and MTM
for EPF (n = 14)

k NMTM
fk ∥gk∥ ∥xk − x∗∥

1 12679 4784.8 10.1854
2 152.8521 175.6347 3.12
3 1.5060 5.9649 0.81015
4 5.5128e-4 0.0038 0.24457
5 5.3807e-4 0.0035 0.16015
6 5.3236e-4 0.0016 0.12964
7 5.3168e-4* 9.6659e-5 0.1297
8 5.7881e-4* 0.0148 0.015867
9 5.2548e-4 3.0554e-4 0.013667
10 5.2540e-4 1.4853e-4 0.0013913
11 5.2539e-4 2.0332e-6 3.9462e-4
12 5.2539e-4 3.0824e-7 2.119e-6
13
14
15
16
17
18

k MTM
fk ∥gk∥ ∥xk − x∗∥

1 12679 4784.8 10.1854
2 152.8521 175.6347 3.12
3 1.5060 5.9649 0.81015
4 5.5128e-4 0.0038 0.24457
5 5.3807e-4 0.0035 0.16015
6 5.3236e-4 0.0016 0.12964
7 5.3168e-4* 9.6659e-5 0.1297
8 5.2989e-4 0.0014 0.10403
9 5.2854e-4 0.0027 0.059177
10 5.2739e-4* 5.4680e-5 0.073174
11 5.2685e-4 0.0017 0.04404
12 5.2605e-4 0.0012 0.0282
13 5.2593e-4* 2.8538e-5 0.038056
14 5.2565e-4 6.7753e-4 0.019696
15 5.2542e-4 2.8189e-4 0.0056622
16 5.2540e-4 2.6841e-6 0.0035179
17 5.2539e-4 2.4831e-5 1.3403e-5
18 5.2539e-4 9.9380e-10 3.1258e-7

Table 3: Numerical results by TM and MTM

Example D Iter TIter Error Time(s)
EPF 4 30 10 1.30e-11 32.81
EPF 10 40 19 5.85e-14 64.35
EPF 14 43 26 4.58e-12 77.54

EF&RF 4 4 0 1.64e+3(-) 7.8
ETF 6 8 0 2.95e-15 10.3
R1F 6 11 2 1.33e-15 8.8
R1F 8 13 1 4.44e-16 11.53

T R1F 14 - - - -
M R2F 14 - - - -

EPF1 4 21 3 9.57e-11 23.5
EPF2 4 21 3 9.57e-11 24.4

EM&CF 4 - - - -
EM&CF 8 - - - -

BTF 10 - - - -
BTF 12 - - - -
BTF 14 - - - -
EPF 4 17 2 1.23e-14 25.45
EPF 10 18 4 2.48e-13 49.36
EPF 14 18 3 2.13e-15 63.93

EF&RF 4 - - - -
ETF 6 5 1 1.50e-16 10.98
R1F 6 6 0 1.33e-15 6.04
R1F 8 5 0 4.44e-16 7.09

M R1F 14 8 0 3.55e-15 14.23
T R2F 14 8 1 5.33e-15 34.56
M EPF1 4 9 0 7.65e-12 17.60

EPF2 4 9 0 7.65e-12 18.45
EM&CF 4 - - - -
EM&CF 8 - - - -

BTF 10 - - - -
BTF 12 - - - -
BTF 14 - - - -

not find, and improve the speed of convergence simul-
taneously. In fact, from the system of inequalities (2),
we know that the non-monotone line search contains
the monotone one (when ηk = 0 for all k). Therefore,
the NMTM method provides us more options.

Through Algorithm 3.1, NMTM will cost more
than the MNM because of calculating tensor direc-
tion during each iteration. So, it is reasonable that the
MNM costs less time than NMTM , TM and MTM
with the same iterations. At last, by all discussion-
s and data of those four tables, it is easy to conclude
that combining tensor method and non-monotone line
search is meaningful to improve efficiency of solving
unconstrained optimizations and makes more uncon-
strained optimization problems solvable.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1015 Issue 11, Volume 11, November 2012

Table 4: Numerical results by MNM and NMTM

Example D Iter TIter Error Time(s)
EPF 4 - - - -
EPF 10 19 0 8.07e-11 19.12
EPF 14 - - - -

EF&RF 4 - - - -
ETF 6 7 0 0 7.01
R1F 6 6 0 8.88e-16 6.32

M R1F 8 - - - -
N R1F 14 8 0 0 8.66
M R2F 14 8 0 1.78e-15 7.39

EPF1 4 - - - -
EPF2 4 - - - -

EM&CF 4 - - - -
EM&CF 8 - - - -

BTF 10 22 0 4.19e-30 24.50
BTF 12 - - - -
BTF 14 - - - -
EPF 4 20 7 9.10e-11 29.50
EPF 10 18 6 2.92e-14 41.91
EPF 14 12 2 2.32e-14 38.32

EF&RF 4 7 0 6.31e-30 33.32
ETF 6 5 1 1.50e-16 10.55

N R1F 6 6 0 1.33e-15 6.04
M R1F 8 5 0 4.44e-16 6.12
T R1F 14 8 0 3.55e-15 14.23
M R2F 14 8 1 5.33e-15 34.17

EPF1 4 9 0 7.65e-12 17.60
EPF2 4 9 0 7.65e-12 18.45

EM&CF 4 23 7 2.32e-10 85.47
EM&CF 8 27 4 1.66e-10 148.83

BTF 10 27 11 1.82e-18 56.87
BTF 12 24 11 1.17e-22 58.37
BTF 14 28 10 5.22e-23 82.79

5 Conclusion
In this paper we focused on the unconstrained op-
timization problem and proposed a method called
a non-monotone tensor method, which is a tensor
method combined with the non-monotone line search
scheme. This method possesses advantages of both
the tensor method and the non-monotone line search
scheme. Several numerical experiments show the ef-
fectiveness of the proposed method. We believe that
this method will show more superiorities when solv-
ing the practical problems in financial and engineering
areas, which is a topic of further research.

References:

[1] A. Bouaricha, A software package for large, s-
parse unconstrained optimization using tensor

methods, ACM T. Math. Softw. 3, 1997, pp. 81–
90.

[2] A. Bouaricha, Tensor methods for large sparse
unconstrained optimization, SIAM J. Optim. 7,
1997, pp. 732–756.

[3] A. Bouaricha and R. B. Schnabel, Algorithm
768: TENSOLVE: A software package for solv-
ing systems of nonlinear equations and nonlin-
ear least-squares problems using tensor method-
s, ACM T. Math. Softw. 23, 1997, pp. 147–195.

[4] A. Bouaricha and R. B. Schnabel, Tensor meth-
ods for nonlinear least squares problems, SIAM
J. Sci. Comput. 21, 1999, pp. 1199–1221.

[5] T. T. Chow, Derivative and Secant Tensor Meth-
ods for Unconstrained Optimization, Ph. D. the-
sis, University of Colorado, Computer Science
Department, 1989.

[6] T. T. Chow, E. Eskow and R. B. Schnabel, A
software package for unconstrained optimiza-
tion using tensor methods, ACM T. Math. Softw.
20, 1994 pp. 518–530.

[7] Y. H. Dai, On the nonmontone line search, J. Op-
tim. Theory Appl. 112, 2002, pp. 315–330.

[8] Y. H. Dai, A nonmonotone conjucate gradient al-
gorithm for unconstrained optimization, J. Syst.
Sci. Complex. 15, 2002, pp. 139–145.

[9] L. Grippo, F. Lampariello and S. Lucidi, A
nonmontone line search technique for Newton’s
method, SIAM J. Numer. Anal. 23, 1986, pp.
707–716.

[10] S. L. Hu, Z. H. Huang and N. Lu, A non-
monotone line search algorithm for uncon-
strained optimization, J. Sci. Comput. 42, 2010,
pp. 38–53.

[11] S. L. Hu, Z. H. Huang and P. Wang, A nonmono-
tone smoothing Newton algorithm for solv-
ing nonlinear complementarity problems, Opti-
m. Methods Softw. 24, 2009, pp. 447–460.

[12] N. Jorge, Theory of algorithms for uncon-
strained optimization, Acta. Numerica. 1, 1992,
pp. 199–242.

[13] R. B. Schnabel and T. T. Chow, Tensor meth-
ods for unconstrained optimization using second
derivatives, SIAM J. Optim. 1, 1991, pp. 293–
315.

[14] R. B. Schnabel and P.D. Frank, Tensor methods
for nonlinear equations, SIAM J. Numer. Anal.
21, 1984, pp. 815-843.

[15] Z. J. Shi and J. Shen, Convergence of non-
monotone line search method, J. Computat. Ap-
pl. Math. 193, 2006, pp. 397–412.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1016 Issue 11, Volume 11, November 2012

[16] N. Zhao and Z. H. Huang, A nonmonotone
smoothing Newton algorithm for solving box
constrained variational inequalities with a P0

function, J. Indus. Manag. Optim. 7, 2011, pp.
467–482.

[17] H. C. Zhang and W. H. William, A nonmono-
tone line search technique and its application to
unconstrained optimization, SIAM J. Optim. 14,
2004, pp. 1043–1056.

WSEAS TRANSACTIONS on MATHEMATICS Xianjun Shi, Lei Yang, Ying Zhang

E-ISSN: 2224-2880 1017 Issue 11, Volume 11, November 2012

