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Abstract: If P is a p-group for some prime p we shall write M (P ) to denote the set of all maximal subgroups of
P and Md(P ) = {P1, ..., Pd} to denote any set of maximal subgroups of P such that

∩d
i=1 Pi = Φ(P ) and d is

as small as possible. In this paper, the structure of a finite group G under some assumptions on the c-normal or
s-quasinormally embedded subgroups in Md(P ), for each prime p, and Sylow p-subgroups P of G is researched.
Some known results are generalized.
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1 Introduction

All groups considered in this paper are finite. Let G
be a group and let M (G) be the set of all maximal
subgroups of all Sylow subgroups of G. A interest-
ing topic in group theory is to study the influence of
the elements of M (G) on the structure of G. A typ-
ical result in this direction is due to Srinivasan [1].
He proved that G is supersolvable provided that ev-
ery member of M (G) is normal in G. This result has
been widely generalized. One direction of general-
ization is to replace the normality condition of maxi-
mal subgroups of Sylow subgroups by a weaker con-
dition; and the other direction of generalization is to
minimize the number of maximal subgroups of Sylow
subgroups. As a result, many interesting results have
been subsequently obtained by many authors ( for ex-
ample, see [7, 8, 10, 12, 24-42]). It has been particu-
larly observed that the property of normality for some
maximal subgroups of Sylow subgroups gave a lot of
useful information on the structure of groups.

A subgroup H of G is called s-quasinormal in
G provided H permutes with all Sylow subgroup-
s of G, i.e, HP = PH for any Sylow subgroup
P of G. This concept was introduced by Kegel in
[2] and has been studied extensively by Deskins [3]
and Schmidt [4]. More recently, Ballester-Bolinches
and Pedraza-Aquilera [5] generalized s-quasinormal
subgroups to s-quasinormally embedded subgroups.
A subgroup H of G is said to be s-quasinormally

embedded in G provided every Sylow subgroup of
H is a Sylow subgroup of some s-quasinormal sub-
group of G. In [5], Ballester-Bolinches and Pedraza-
Aquilera showed that, if every subgroup in M (G)
is s-quasinormally embedded in G, then G is super-
solvable. Assad and Heliel [6] showed that G is p-
nilpotent for the smallest prime p dividing |G| if and
only if all members of M (P ) are s-quasinormally
embedded in G, where P is a Sylow p-subgroup of G.
In the same paper, they showed that a group G belongs
to F , a saturated formation containing all supersolv-
able groups, if and only if there is a normal subgroup
H such that G/H ∈ F and every member of M (H)
is s-quasinormally embedded in G. In the paper [7],
the research in this direction has been continued fur-
ther by considering a subset Md(G) of M (G). In
[8], Li and Wang have proved that G ∈ F , a satu-
rated formation containing all supersolvable groups,
if and only if there is a normal subgroup H such that
G/H ∈ F and every member of M (F ∗(H)), where
F ∗(H) is the generalized Fitting subgroup of H , is
s-quasinormally embedded in G.

As another generalization of the normality, Wang
[9] introduced the following concept: A subgroup H
of G is called c-normal in G if there is a normal sub-
group K such that G = HK and H ∩ K ≤ HG,
where HG is the normal core of H in G. In [9], Wang
showed that G is supersolvable if every member of
M (G) is c-normal. Wang′s result has been general-
ized by some authors(see [10-14], etc). For example,

WSEAS TRANSACTIONS on MATHEMATICS Ping Kang

E-ISSN: 2224-2880 947 Issue 11, Volume 11, November 2012



Guo and Shum showed in [12] the following result.
Let p be the smallest prime dividing the order of G
and let P be a Sylow p-subgroup of G. If every mem-
ber of M (P ) is c-normal, then G is p-nilpotent. In
[14], Wei, Wang and Li showed that G ∈ F if there
is a normal subgroup H such that G/H ∈ F and if
every member of M (F ∗(H)) is c-normal in G. The
research on c-normal subgroups has formed a series,
which is similar to the series of s-quasinormal sub-
groups. However, the two series are independent of
each other. The aim of this article is to unify and im-
prove the results of [1], [5], [9] and some of [10].

If P is a p-group for some prime p we shall write
M (P ) to denote the set of all maximal subgroups of
P and Md(P ) = {P1, ..., Pd} to denote any set of
maximal subgroups of P such that

∩d
i=1 Pi = Φ(P )

and d is as small as possible.
Such subset Md(P ) is not unique for a fixed P in

general. We know that

|M (P )| = pd − 1

p− 1
, |Md(P )| = d, lim

d→∞

pd − 1

(p− 1)d
=∞,

so |M (P )| ≫ |Md(P )|.
In this paper, we study the influence of the mem-

bers of some fixed Md(P ) on the structure of group
G. Our results are more general.

A class F of finite groups is called a formation
if G ∈ F and N E G then G/N ∈ F ; and if
G/Ni(i = 1, 2) ∈ F then G/(N1 ∩ N2) ∈ F . If,
in addition, G/Φ(G) ∈ F implies G ∈ F , we call
F saturated. An interesting example is the class of all
supersolvable groups, which is denoted by U .

The following notation is used in the paper. If H
is a subgroup of the group G, then by HG we denote
the normal core of H in G, the largest normal sub-
group of G which is contained in H . Also, Gp always
denotes a Sylow p-subgroup of G, Φ(G) is the Frattini
subgroup of G. The rest of our notation and terminol-
ogy are standard. The reader may refer to ref.[23].

2 Basic definitions and preliminary
results

In this section, we give some results that are needed
in this paper.

Definition 1 [2] A subgroup H of G is called s-
quasinormal in G provided H permutes with all Sy-
low subgroups of G, i.e, HP = PH for any Sylow
subgroup P of G.

Definition 2 [5] A subgroup H of G is said to be
s-quasinormally embedded in G provided every Sy-
low subgroup of H is a Sylow subgroup of some s-
quasinormal subgroup of G.

Definition 3 [9] A subgroup H of G is called c-
normal in G if there is a normal subgroup K such
that G = HK and H ∩ K ≤ HG, where HG is the
normal core of H in G.

Remark 4 we will show that there are groups with
s-quasinormally embedded subgroups which are not
c-normal. Conversely, there are also groups with c-
normal subgroups which are not s-quasinormally em-
bedded. This means that there is no obvious general
relationship between these two notions.

Example 5 Every Sylow subgroup of any simple non-
abelian group is s-quasinormally embedded but not
c-normal

Example 6 Consider G = S4, the symmetric group
of degree 4. Take α = (34) and β = (123). Then G =
⟨α⟩A4 and ⟨α⟩ ∩ A4 = 1, and hence ⟨α⟩ is c-normal
in G. However ⟨α⟩ is not s-quasinormally embedded
in G. In fact, if ⟨α⟩ is a Sylow 2-subgroup of some s-
quasinormal subgroup K of G, then K⟨β⟩ is a group.
Since |K⟨β⟩ : ⟨β⟩| = 2, we have ⟨β⟩ ▹K⟨β⟩ and so
⟨α⟩⟨β⟩ = ⟨β⟩⟨α⟩, which is a contradiction.

Lemma 7 Suppose that U is an s-quasinormally em-
bedded subgroup of G and that K is a normal sub-
group of G. Then:

(a) U is s-quasinormally embedded in H when-
ever U ≤ H ≤ G;

(b) UK is s-quasinormally embedded in G and
UK/K is s-quasinormally embedded in G/K.

Lemma 8 [9] Let X ≤ H ≤ G and N EG. Then:
(a) If X is c-normal in G, then X is also c-normal

in H;
(b) If X is c-normal in G, then XN/N is c-

normal in G/N .

In order to prove our main theorem, we need the
following important lemma.

Lemma 9 [2] If H is an s-quasinormal subgroup of
the group G, then H/HG is nilpotent.

Lemma 10 [6] For a nilpotent subgroup H of G, the
following two statements are equivalent:

(a) H is s-quasinormal in G;
(b) The Sylow subgroups of H are s-quasinormal

in G.
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Lemma 11 [6] Let G be a group and let P0 be a max-
imal subgroup of P . Then the following two state-
ments are equivalent:

(a) P0 is normal in G;
(b) P0 is s-quasinormal in G.

The following Tate′s theorem will be used in the
proof of our Theorem 14

Lemma 12 [15] If P is a Sylow p-subgroup of G
and N E G such that P

∩
N ≤ Φ(P ), then N is p-

nilpotent.

Lemma 13 [16] Let N be a normal subgroup of a
group G(N ̸= 1). If N ∩ Φ(G) = 1, then the Fitting
subgroup F (N) of N is the direct product of minimal
normal subgroups of G that are contained in F (N).

3 Main results
Theorem 14 Let p be a prime dividing the order of
a group G, (|G|, p − 1) = 1, and let P be a Sylow
p-subgroup of G. Then the following statements are
equivalent:

(a) G is p-nilpotent;
(b) every member of some fixed Md(P ) is either

c-normal or s-quasinormally embedded in G.

Proof: Assume that the result is not true and let G be
a counterexample of minimal order. Let Md(P ) =
{P1, ..., Pd}. By hypothesis, each Pi is either c-
normal or s-quasinormally embedded in G. Without
loss of generality, let I1 be the subset of {1, ..., d} such
that every Pi(i ∈ I1) is c-normal in G and I2 is the
subset such that every Pi(i ∈ I2) is s-quasinormally
embedded in G. We prove the theorem by the follow-
ing claims:

(1) Op′(G) = 1.
Set N = Op′(G). Consider the quotien-

t group G/N . We know that PN/N is a Sylow p-
subgroup of G/N , NG/N (PN/N) = NG(P )N/N
and M (PN/N) = {P1N/N, ..., PmN/N}. Now, by
Lemma 7 and Lemma 8, we see easily that G/N sat-
isfies the condition. If Op′(G) > 1, then G/Op′(G) is
p-nilpotent and hence G itself is p-nilpotent, a contra-
diction. Thus claim (1) holds.

(2) G/PiG is p-nilpotent for all i ∈ I1, where
PiG is the core of Pi in G.

In this case, Pi is a c-normal subgroup of G. We
know that there exists a normal subgroup Ki of G such
that G = PiKi and Pi ∩Ki = PiG. Hence,

G/PiG = Pi/PiG ·Ki/PiG, Pi ∩Ki = PiG.

Therefore,

|Ki/PiG|p = |G : Pi|p = |P : Pi| = p.

As p is the smallest prime dividing |G|, we know that
Ki/PiG is p-nilpotent by Burnside′s theorem. There-
fore, Ki/PiG has a normal Hall p′-subgroup H/PiG.
We see that H/PiG is also a normal Hall p′-subgroup
of G/PiG because Ki/PiG is normal in G/PiG. It
follows that G/PiG is p-nilpotent for all i ∈ I1.

For every Pi(i ∈ I2), there exists an s-
quasinormal subgroup Hi of G such that Pi is a Sylow
p-subgroup of Hi.

(3) G/HiG is p-nilpotent for all i ∈ I2, where
HiG is the core of Hi in G.

In fact, As Hi is an s-quasinormal subgroup of G
and Pi is a Sylow p-subgroup of Hi, it follows that
Hi/HiG is s-quasinormal in G/HiG, and the Lemma
9 asserts that Hi/HiG is nilpotent. Hence, Hi/HiG is
an s-quasinormal nilpotent subgroup of G/HiG. By
Lemma 10, every Sylow subgroup of Hi/HiG is s-
quasinormal in G/HiG. Since PiHi/HiG is a Sy-
low p-subgroup of Hi/HiG, it follows that PiHi/HiG

is s-quasinormal in G/HiG. Thus, Lemma 11 indi-
cates that PiHi/HiG is normal in G/HiG. Therefore,
PiHiG EG. Noting that Pi is a Sylow p-subgroup of
Hi, we have Pi ≤ HiG. Therefore, |G/HiG|p = p.
Now, as p is the smallest prime dividing |G|, by
Burnside′s theorem, we see that G/HiG is p-nilpotent
for each i ∈ I2, which proves (3).

Let

N = (
∩
i∈I1

PiG)
∩

(
∩
i∈I2

HiG).

(4) N is p-nilpotent.
First, as all PiG and HiG are normal in G, we get

N E G. Second, we consider the subgroup P ∩ N .
Recall that Pi is a Sylow p-subgroup of HiG and Pi ≤
P , so P ∩HiG ≤ Pi. Moreover, Pi ≤ P ∩HiG. We
have P ∩HiG = Pi. Therefore,

P ∩N = (
∩
i∈I1

PiG)
∩

(
∩
i∈I2

HiG ∩ P )

= (
∩
i∈I1

PiG)
∩

(
∩
i∈I2

Pi)

= Φ(P ).

Applying Lemma 12, we know that N is p-nilpotent.

(5) Final contradiction.
Now, N possesses a Hall p′-normal subgroup Np′

such that N = NpNp′ , where Np is a Sylow p-
subgroup of N . Then, Np′ char N E G, so Np′ is
normal in G, and hence, Np′ ≤ Op′(G). It follows
by Op′(G) = 1 that Np′ = 1. Consequently, N is
a normal p-subgroup of G, and so, N = P ∩ N =

WSEAS TRANSACTIONS on MATHEMATICS Ping Kang

E-ISSN: 2224-2880 949 Issue 11, Volume 11, November 2012



Φ(P ). Also, note that the class of p-nilpotent groups
is a formation, by steps (2) and (3), we have G/N
must be p-nilpotent. It follows that G/Φ(P ) is p-
nilpotent. Moreover, by III, 3.3 Hilfs-Satz in [20],
Φ(P ) ≤ Φ(G), so G/Φ(G) is p-nilpotent. It follows
that G would be p-nilpotent, contrary to the choice of
G. ⊓⊔

Corollary 15 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P ) is
either c-normal or s-quasinormally embedded in G,
then G has a Sylow tower of supersolvable type.

Proof: Let p be the smallest prime dividing |G| and P
a Sylow p-subgroup of G. By hypothesis, every mem-
ber of Md(P ) is either c-normal or s-quasinormally
embedded in G. In particular, G satisfies the condi-
tion of Theorem 3.1, so G is p-nilpotent. Let U be the
normal p-complement of G. By Lemmas 7 and 8, U
satisfies the hypothesis. It follows by induction that
U , and hence G possess the Sylow town property of
supersolvable type. ⊓⊔

The following corollaries are immediate from
Theorem 14 and Corollary 15

Corollary 16 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is c-normal in G, then G is
p-nilpotent.

Corollary 17 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is normal in G, then G is p-
nilpotent.

Corollary 18 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is s-quasinormally embedded
in G, then G is p-nilpotent.

Corollary 19 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is s-quasinormal in G, then
G is p-nilpotent.

Corollary 20 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is quasinormal in G, then G
is p-nilpotent.

Corollary 21 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G.
If every member of M (P ) is either c-normal or s-
quasinormally embedded in G, then G is p-nilpotent.

Corollary 22 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G.
If every member of M (P ) is either c-normal or s-
quasinormal in G, then G is p-nilpotent.

Corollary 23 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of M (P ) is either c-normal or quasi-
normal in G, then G is p-nilpotent.

Corollary 24 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is c-normal in G, then G is
p-nilpotent

Corollary 25 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is normal in G, then G is
p-nilpotent.

Corollary 26 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is s-quasinormally embed-
ded in G, then G is p-nilpotent.

Corollary 27 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is s-quasinormal in G, then
G is p-nilpotent

Corollary 28 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is quasinormal in G, then G
is p-nilpotent.

Corollary 29 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G.
If every member of Md(P ) is either c-normal or s-
quasinormal in G, then G is p-nilpotent.

Corollary 30 Let p be the smallest prime dividing the
order of G and let P be a Sylow p-subgroup of G. If
every member of Md(P ) is either c-normal or quasi-
normal in G, then G is p-nilpotent.

Corollary 31 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P )
is c-normal in G, then G has a Sylow tower of super-
solvable type.

Corollary 32 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P ) is
normal in G, then G has a Sylow tower of supersolv-
able type.
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Corollary 33 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P ) is
s-quasinormally embedded in G, then G has a Sylow
tower of supersolvable type.

Corollary 34 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P )
is s-quasinormal in G, then G has a Sylow tower of
supersolvable type.

Corollary 35 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P ) is
quasinormal in G, then G has a Sylow tower of super-
solvable type.

Corollary 36 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P ) is
either c-normal or s-quasinormally embedded in G,
then G has a Sylow tower of supersolvable type.

Corollary 37 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P ) is
either c-normal or s-quasinormal in G, then G has a
Sylow tower of supersolvable type.

Corollary 38 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of M (P )
is either c-normal or quasinormal in G, then G has a
Sylow tower of supersolvable type.

Corollary 39 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P )
is c-normal in G, then G has a Sylow tower of super-
solvable type.

Corollary 40 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P ) is
normal in G, then G has a Sylow tower of supersolv-
able type.

Corollary 41 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P ) is
s-quasinormally embedded in G, then G has a Sylow
tower of supersolvable type.

Corollary 42 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P )
is s-quasinormal in G, then G has a Sylow tower of
supersolvable type.

Corollary 43 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P )
is quasinormal in G, then G has a Sylow tower of su-
persolvable type.

Corollary 44 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P ) is
either c-normal or s-quasinormal in G, then G has a
Sylow tower of supersolvable type.

Corollary 45 Suppose that G is a group. For each
Sylow subgroup P of G, if every member of Md(P )
is either c-normal or quasinormal in G, then G has a
Sylow tower of supersolvable type.

Theorem 46 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is either c-normal or s-quasinormally
embedded in G. Then G is p-nilpotent.

Proof: It is easy to see that the theorem holds when
p = 2 by Theorem 14, so it suffices to prove the the-
orem for the case when p is odd. Suppose that the
theorem is not true, and let G be a counterexample of
the smallest order. We have the following claims:

(1) Op′(G) = 1.
In fact, Op′(G) ̸= 1. Consider the quotient group

G/Op′(G). By Lemma 7 and Lemma 8, we see easily
that G/Op′(G) satisfies the condition of the theorem.
It follows that G/Op′(G) is p-nilpotent by the choice
of G. Hence G itself is p-nilpotent, which is a contra-
diction. Thus claim (1) holds.

(2) If P ≤ H ≤ G, then H is p-nilpotent.
Noting that NH(P ) ≤ NG(P ), we have NH(P )

is p-nilpotent. By Lemma 7 and Lemma ??, H satis-
fies the hypotheses of the theorem. By the choice of
G, H is p-nilpotent, as desired.

(3) G = PQ, where Q is a Sylow q-subgroup of
G, q ̸= p.

By the choice of G, G is not p-nilpotent. In the
light of a result of Thompson (Corollary in Ref. [21]),
there exists a nontrivial characteristic subgroup T of
P such that NG(T ) is not p-nilpotent. Choose T
such that the order of T is as large as possible. Since
NG(P ) is p-nilpotent, we have NG(K) is p-nilpotent
for any characteristic subgroup K of P satisfying
T < K ≤ P . Now, T char P ENG(P ), which gives
T E NG(P ). Therefore, NG(P ) ≤ NG(T ). By (2),
we get NG(T ) = G, and hence, T = Op(G). Apply-
ing the result of Thompson again, we have G/Op(G)
is p-nilpotent; therefore, G is p-solvable. Thus, for
any q ∈ π(G) with q ̸= p, there exists a Sylow q-
subgroup Q of G such that PQ is a subgroup of G. If
PQ < G, then PQ is p-nilpotent by (2), contrary to
the choice of G. Consequently, PQ = G, as desired.

(4) Final contradiction.
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We now make use of the above claims to finish
our proof. As Op′(G) = 1, we have Op(G) > 1.
Let N be a minimal normal subgroup of G contained
in Op(G). If N ≤ Φ(P ), then N ≤ Φ(G) by III,
3.3 in Ref. [20], and the quotient group G/N satis-
fies the hypotheses of the theorem, thus G/N is p-
nilpotent by the choice of G. It follows that G/Φ(G)
is p-nilpotent, and hence, G is p-nilpotent, which is
a contradiction. Thus, N ≤ Φ(G) cannot happen,
so N 
 Φ(G). Because Φ(P ) =

∩d
i=1 Pi, where

Pi ∈ Md(P ), without loss of generality, we may
assume that N 
 P1. Put N1 = N ∩ P1. Then
|N : N1| = |N : N ∩ P1| = |NP1 : P1| = |P :
P1| = p. Also, by hypotheses, P1 is c-normal or S-
quasinormally emdedded in G.

We claim that N is a cyclic subgroup of order p.
Case 1. If P1 is c-normal in G, then there exists

a normal subgroup K of G such that G = P1K and
P1 ∩K = 1. Since N is a minimal normal subgroup
of G with N 
 P1, we have N ≤ K. Thus N1 = 1
and N is a cyclic subgroup of order p.

Case 2. If P1 is s-quasinormally embedded in G,
then there exists an S-quasinormal subgroup H of G,
such that P1 ∈ Sylp(H). Thus, HQ is a subgroup of
G. As N EG, we have

N1 = N ∩HQEHQ,

and it follows that

N1 E ⟨HQ,N⟩ = G.

Moreover, since N is a minimal normal subgroup of
G, we have N1 = 1, and N is a cyclic subgroup of
order p.

Now, NP1 = P and N ∩ P1 = 1. By W.
Gaschutz′s Theorem (I, 17.4 in Ref. [20]), there ex-
ists a subgroup M of G such that G = NM and
N ∩ M = 1. Of course, N 
 Φ(G). By Lemma
2.13, we have Op(G) = R1 × · · · × Rr, where Ri,
i = 1, ..., r, are minimal normal subgroups of G of
order p. Therefore, we get

P ≤
r∩

i=1

CG(Ri) = CG(Op(G)).

Moreover, by Theorem 9.3.1 in Ref. [22] and (3),
CG(Op(G)) ≤ Op(G), it follows that P = Op(G),
and so, G = NG(P ). Now, we apply the hypothe-
ses that NG(P ) is p-nilpotent to conclude that G is
p-nilpotent. This is a contradiction, which completes
the proof. ⊓⊔

The following corollaries are immediate from
Theorem 46

Corollary 47 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is c-normal in G. Then G is p-nilpotent.

Corollary 48 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is normal in G. Then G is p-nilpotent.

Corollary 49 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is s-quasinormally embedded in G. Then G is
p-nilpotent.

Corollary 50 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is s-quasinormal in G. Then G is p-nilpotent.

Corollary 51 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is quasinormal in G. Then G is p-nilpotent.

Corollary 52 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is either c-normal or s-quasinormally embed-
ded in G. Then G is p-nilpotent.

Corollary 53 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member
of M (P ) is either c-normal or s-quasinormal in G.
Then G is p-nilpotent.

Corollary 54 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
M (P ) is either c-normal or quasinormal in G. Then
G is p-nilpotent.

Corollary 55 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is c-normal in G. Then G is p-nilpotent.

Corollary 56 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is normal in G. Then G is p-nilpotent.
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Corollary 57 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
some fixed Md(P ) is s-quasinormally embedded in
G. Then G is p-nilpotent.

Corollary 58 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is s-quasinormal in G. Then G is p-
nilpotent.

Corollary 59 Let p be a prime dividing the order of
a group G and P be a Sylow p-subgroup of G. As-
sume that NG(P ) is p-nilpotent and every member of
some fixed Md(P ) is quasinormal in G. Then G is
p-nilpotent.

Corollary 60 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is either c-normal or s-quasinormal in
G. Then G is p-nilpotent.

Corollary 61 Let p be a prime dividing the order of a
group G and P be a Sylow p-subgroup of G. Assume
that NG(P ) is p-nilpotent and every member of some
fixed Md(P ) is either c-normal or quasinormal in G.
Then G is p-nilpotent.

Remark 62 In proving our Theorem 3.33, Corollary
3.34, · · ·, Corollary 3.48, the assumption that NG(P )
is p-nilpotent is essential. To illustrate the situation,
we consider G = A5 and p = 5. In this case, s-
ince every maximal subgroup of Sylow 5-subgroup of
G is 1, we see that every maximal subgroup of Sylow
5-subgroup of G is c-normal and s-quasinormally em-
bedded in G, but G is not 5-nilpotent.

Theorem 63 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume
that every member of some fixed Md(P ) is either c-
normal or s-quasinormally embedded in G. Then G
is p-supersolvable.

Proof: Assume that the result is not true and let G be
a counterexample of minimal order. Let Md(P ) =

{P1, ..., Pd} with Φ(P ) =
∩d

i=1 Pi. We shall finish
the proof by the following claims:

(1) Op′(G) = 1 and Φ(Op(G)) = 1.

This follows from the choice of G, as in the proof
of Theorem ??

(2) Every G-chief factor contained in Op(G) is
cyclic.

As G is p-solvable and Op′(G) = 1, we have
Op(G) > 1. Thus, we can find a minimal normal
subgroup N of G contained in Op(G). If N ≤ Φ(P ),
then N ≤ Φ(G), and the quotient group G/N satis-
fies the hypotheses of the theorem, by the minimal-
ity of G, G/N is p-supersolvable. As the class of
p-supersolvable groups is a saturated formation, we
have G is p-supersolvable, which is a contradiction.
Thus, N 
 Φ(P ). We may assume that N 
 P1. Let
N1 = N ∩ P1. Then, |N : N1| = p. By hypotheses,
P1 is c-normal or S-quasinormally emdedded in G.

We claim that N is a cyclic subgroup of order p.
Case 1. If P1 is c-normal in G, then there exists

a normal subgroup K of G such that G = P1K and
P1 ∩K = 1. Since N is a minimal normal subgroup
of G with N 
 P1, we have N ≤ K. Thus N1 = 1
and N is a cyclic subgroup of order p.

Case 2. If P1 is s-quasinormally embedded in G,
then there exists an s-quasinormal subgroup H of G,
such that P1 ∈ Sylp(H). Thus, HQ is a subgroup of
G. As N EG, we have

N1 = N ∩HQEHQ,

and it follows that

N1 E ⟨HQ,N⟩ = G.

Moreover, since N is a minimal normal subgroup of
G, we have N1 = 1, and N is a cyclic subgroup of
order p.

Consequently, N ∩ P1 = 1. By W. Gaschutz′s
Theorem (I, 17.4 in Ref. [20]), there exists a subgroup
M of G such that G = NM and N ∩M = 1. Of
course, N 
 Φ(G). Now, we can apply Lemma 13
to conclude that Op(G) is a direct product of normal
subgroups of G of order p. Thus, (2) follows.

(3) Final contradiction.
Since G/CG(Ri) is a cyclic group of order p− 1,

of course,

G/

r∩
i=1

CG(Ri) = G/CG(Op(G))

is p-supersolvable. On the other hand, as G is p-
solvable and Op′(G) = 1, by Theorem 9.3.1 in Re-
f. [22], CG(Op(G)) 6 Op(G). Thus, G/Op(G) is
p-supersolvable. Now, claim (2) implies that G is p-
supersolvable, the proof is then finished. ⊓⊔

The following corollaries are immediate from
Theorem 63

Corollary 64 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is c-normal in G. Then G is
p-supersolvable.
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Corollary 65 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is normal in G. Then G is
p-supersolvable.

Corollary 66 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is s-quasinormally embedded
in G. Then G is p-supersolvable.

Corollary 67 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is s-quasinormal in G. Then
G is p-supersolvable.

Corollary 68 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is quasinormal in G. Then G
is p-supersolvable.

Corollary 69 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. As-
sume that every member of M (P ) is either c-normal
or s-quasinormally embedded in G. Then G is p-
supersolvable.

Corollary 70 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume
that every member of M (P ) is either c-normal or s-
quasinormal in G. Then G is p-supersolvable.

Corollary 71 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of M (P ) is either c-normal or quasi-
normal in G. Then G is p-supersolvable.

Corollary 72 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of Md(P ) is c-normal in G. Then G is
p-supersolvable.

Corollary 73 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of Md(P ) is normal in G. Then G is
p-supersolvable.

Corollary 74 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of Md(P ) is s-quasinormally embed-
ded in G. Then G is p-supersolvable.

Corollary 75 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of Md(P ) is s-quasinormal in G. Then
G is p-supersolvable.

Corollary 76 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume that
every member of Md(P ) is quasinormal in G. Then
G is p-supersolvable.

Corollary 77 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume
that every member of Md(P ) is either c-normal or s-
quasinormal in G. Then G is p-supersolvable.

Corollary 78 Let G be a p-solvable group for a prime
p, and let P be a Sylow p-subgroup of G. Assume
that every member of Md(P ) is either c-normal or
quasinormal in G. Then G is p-supersolvable.

Remark 79 The hypothesis that G is p-solvable in
Theorem 63, Corollary 64, · · ·, Corollary 78 cannot
be removed. To illustrate the situation, we consider
for example the group G = A5, the alternating group
of degree 5. Clearly 1 is the maximal subgroup of any
Sylow 5-subgroup of G and F5(G) = 1. However, G
is not 5-supersolvable.

4 Conclusion
The results explained in the previous sections show
that the method that we replace conditions for all max-
imal subgroups of Sylow subgroups of G by condi-
tions referring to only some of maximal subgroups of
Sylow subgroups of G in order to investigate the struc-
ture of a finite group is very useful. Results of this
type are interesting since they can be used to simplify
the proofs of new or known properties related to max-
imal subgroups of Sylow subgroups of G. In addition,
there are many other generalizations of the normali-
ty, for example, c∗-normality in [35]; π-quasinormally
embedded subgroups in [8]; SS-quasinormal sub-
groups in [19]; X-semipermutable subgroups in [25].
As an application, we may consider using the above
special subgroups to characterize the structure of fi-
nite groups.
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