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Abstract: Orthogonal least trimmed absolute deviation (OLTAD) estimator of the multiple linear errors-in-variables
(EIV) model is presented. We show that the OLTAD estimator has the high breakdown point and appropriate prop-
erties. A new decimal-integer-coded genetic algorithm(DICGA) and Fast-OLTAD method for solving OLTAD
estimators are also proposed. Computational experiments of the OLTAD estimator of the multiple linear EIV
model on benchmark data and synthetic data are provided. The results indicate that the DICGA and Fast-OLTAD
methods perform well in dealing with high leverage outliers in reasonable computational time.
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1 Introduction
The multiple errors-in-variables (EIV) model is just
the regression model with both dependent and inde-
pendent variables being subject to error. Studies on
multiple EIV model aroused many investigators’ in-
terest in recent decades. The sensitivity of linear EIV
model to outliers has been noticed, and robust meth-
ods have been developed. The work includes the
S [2]and M estimator [3],the robust PCA method [4],
weighted orthogonal regression method [5], least
trimmed squares estimator [6], fast and robust estima-
tion [7], t-type estimator [8] for EIV model. However,
these robust methods are too complicated, especially
in computation. Simple robust method is needed so
that it can be applied to more practical problems.

In this paper, we propose a new and simple robust
method for multiple linear EIV model, which is called
orthogonal least trimmed deviation(OLTAD) estima-
tor. In section 2, we give the definition, properties and
computing complexity analysis of OLTAD estimator
for multiple linear EIV model . In section 3, we give a
basic introduction to genetic algorithm and develop an
algorithm by using decimal-integer-coded genetic al-
gorithm(DICGA) that is computationally feasible for
large size samples to compute the OLTAD estima-
tor for the multiple EIV model. Since the objective
function of the OLTAD estimator is continuous, non-
differentiable and non-convex, showing multiple lo-
cal minima, so the computation of the OLTAD esti-
mator is laborious according to the direct optimiza-

tion method. In fact, although Jung (2007) proposed
a fast algorithm for the the orthogonal least trimmed
squares(OLTS) estimator in a multiple EIV regres-
sion, our OLTAD estimator is easier to be computed
than the OLTS estimator. The reason is detailed in
section 2. In addition, we also propose a Fast-OLTAD
algorithm for computing the OLTAD estimator. In the
final sections 4 and 5, simulations and a numerical ex-
ample are given to illustrate the effectiveness of the
OLTAD estimator. From a numerical example, we
observed that the OLTAD estimator gives very useful
influence information about observations in multiple
EIV model.

2 The Orthogonal Least Trimmed
Absolute Deviation Estimator of
Multiple Linear EIV Model

2.1 The Definition of OLTAD Estimator
In statistics, EIV models are regression models that
account for measurement errors in the independent
variables. In contrast, standard regression models as-
sume that those regressors have been measured ex-
actly, or observed without error,i.e. those models ac-
count only for errors in the dependent variables, or
responses.

When the independent variables have been mea-
sured with errors, estimators based on the standard
assumption leads to inconsistent estimates, meaning
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that the parameter estimates do not tend to the true
values even in very large samples. For simple linear
regression the effect is an underestimate of the coef-
ficient, known as the attenuation bias. In non-linear
EIV models, the direction of the bias is likely to be
more complicated.

In this paper, we consider the multiple linear EIV
model as follows{

yi = [1 xT
i ]β + εi

Xi = xi + ui
(i = 1, 2, · · · , n.) (1)

where β = [β0, β1, · · · , βp]T ∈ Rp+1, β0 is an
intercept term, (XT

i , yi)
T , i = 1, 2, · · · , n. are

observations, The p dimensional vectors xi =
(xi1, xi2, · · · , xip)T are unknown design points and
(εi,u

T
i ), i = 1, 2, · · · , n are independently dis-

tributed model statistical errors.
For estimated regression coefficients β̂1, · · · , β̂p

and an estimated intercept β̂0, we denote the orthog-
onal residuals

ri(β̂0, β̂1, · · · , β̂p)

=
yi−(β̂0+β̂1xi1+···+β̂pxip)√

1+β̂2
1+β̂2

2+···+β̂2
p

Further, let ui:n denote the i-th order statistic of n
numbers u1, · · · , un. The high-breakdown estimator
we consider is defined as follows:

Definition 1 Let ri be the i-th orthogonal residual de-
termined by a multiple linear EIV model with param-
eters β̂0, · · · , β̂p and a given data set Z. The orthog-
onal least trimmed absolute deviation (OLTAD) esti-
mator is given by

OLTAD(Z) = argmin
β̂0,··· ,β̂p

hp∑
i=1

{|r1| , · · · , |rn|}i:n (2)

where hp with [n/2] 6 hp 6 n is a parameter influ-
encing the estimation.

Let us consider the global robustness of the
OLTAD estimator. This is the finite-sample version
of breakdown point, introduced by Donoho & Huber
. The breakdown point of an estimator T (W ) with a
sample W is defined as

ϵ∗(T ) = min{m
n
| sup

W̃

∥T (W )− T (W̃ )∥ = ∞}

where W̃ is obtained by replacing m observations by
arbitrary points.

Roughly speaking, the breakdown point is the
smallest fraction of the contaminated data to make the

estimator useless. The breakdown point of the least
trimmed squares(LTS) method equals about 1/2 as the
sample size n goes to the infinity. Rousseeuw & Leroy
(Chapter 3) [18].

The OLTAD estimator is an h-sample estima-
tor, so the following proposition is evident. Taking
h ≈ n/2 the OLTAD estimator has a 50% break-
down points, it means that the OLTAD estimator is
also a high breakdown estimator – see also Rousseeuw
& Leroy (Chapter 3) [18]. Although both OLTS
and OLTAD estimators are high breakdown estimator,
OLTAD estimator computation needn’t C-Step unlike
OLTS estimator. So, the computation time of OLTAD
estimator is fewer, i.e., the computation of OLTAD es-
timator is faster.

2.2 Necessary Conditions for the Optimal
Solution of Orthogonal Least Absolute
Deviation Estimator

For the convenience of the discussion, we adopt dif-
ferent samples data character in this part. We discuss
the problems in Rp, and draw the conclusions. In the
next subsection, these conclusion will be used for the
basement of the new algorithms.

Let G = {xi|xi = (xi1, xi2, · · · , xip)T ∈
Rp, i = 1, 2, · · · ,m} is data consisting of m samples
in Rp, wi is weight of the i-th sample.

We search a hyperplane αTx + β = 0, with
∥α∥ = 1 in Rp, such that

S(α, β) =
m∑
i=1

wi

∣∣αTxi + β
∣∣ (3)

getting minimum value .
To ensure the uniqueness of the fitting hyper-

planes, we assume that rank([x1,x2, · · · ,xm]) > p.
If rank([x1,x2, · · · ,xm]) = p, then the only op-
timal hyperplane is determined by x1,x2, · · · ,xm.
Next, the proof is under the following condition
rank([x1,x2, · · · ,xm]) > p.

Theorem 2 (Existence of Optimal Hyperplane)
There exists α̂, β̂ such that

S(α̂, β̂) = min
α,β

m∑
i=1

wi|αTxi + β|.

Proof: There exists hypersphere

Sr = {x|xTx = r2, r > 0} (4)

in Rp, makes G ⊂ U(O, r).
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Because if exists optimal hyperplane, it must be
overlapped with hypersphere, so it only need check
wether existing optimal hyperplane or not in them.

∀x0 ∈ Sr, then xT
0 x0 = r2, we make tangent

hyperplane xT
0 x = r2 through the point x0 in the

hypersphere, shift this tangent hyperplane and a series
of tangent hyperplanes xT

0 x+b = (−r2 6 b 6 r2)
are obtained. Thus, all tangent hyperplanes through
the hypersphere are hp : xT

0 x + b = 0,−r2 6 b 6
r2,x0 ∈ Sr, and the weights sums from the points in
G to hyperplane hp is

S(α, β) = S(
xT0√
xT0 x0

,
b√
xT
0 x0

)

=

m∑
i=1

wi

∣∣xT
0 xi + b

∣∣√
xT
0 x0

(5)

Because the definition domain Sr× [−r, r] of S(α, β)
is a bounded and closed set in Rp+1, and S(α, β) is
continuous function on Sr × [−r, r],S(α, β) can ob-
tain the minimum on Sr × [−r, r] based on multiple
continuous function’s properties, i.e. there exists α̂, β
make S(α, β) obtain the minimum.

Theorem 3 In Rp, if the optimal hyperplane α̂Tx +

β̂ = 0 pass through p− 1 points in G, then it at least
pass through another point in G.

Proof: Here,we use reduction to absurdity method to
prove this theorem.

In Rp, if the optimal hyperplane

α̂Tx+ β̂ = 0

only pass through p− 1 points in G, then we may as-
sume that the optimal hyperplane equation is xp = 0,
otherwise, the optimal hyperplane equation can be re-
duced to xp = 0 by include translate and rotate trans-
formations.

Set the points in the optimal hyperplane G as fol-
lows:

(x11, x12, · · · , x1p−1, 0), (x21, x22, · · · , x2p−1, 0),

· · · , (xp1, xp2, · · · , xpp−1, 0)

(6)

Because a p− 1 dimension hyperplane can be de-
termined by p points, the p points can be placed on the
p − 1 dimension hyperplane by coordinate transform
methods {

xp = 0,
x1 = 0.

and
x1 = (0, x12, · · · , x1p−1, 0),
x2 = (0, x22, · · · , x2p−1, 0),

· · · ,
xp = (0, xp2, · · · , xpp−1, 0)

(7)

We may assume that the points above and below
the hyperplane xp = 0 are xp+1, xp+2, · · · , xt and
xt+1, xt+2, · · · , xm in G respectively. When p+ 1 6
i 6 t, xip > 0, while t + 1 6 i 6 m, xip < 0.
The sum of orthogonal distances from points in G to
optimal hyperplane is

S((0, 0, · · · , 1), 0) =
m∑
i=1

wi |xip|

=
t∑

i=p+1

wixip −
m∑

i=t+1

wixip

(8)

Let hyperplane xp = tan θ · x1 in Rp, the
x1,x2, · · · ,xp are in the hyperplane xp = tan θ ·
x1. Hence, there exists δ > 0, ∀θ ∈ (−δ, δ), the
points xp+1,xp+2, · · · ,xt and xt+1,xt+2, · · · ,xm

still stay at the two side of the plane xp = tan θ · x1,
i.e. when p + 1 6 i 6 t, xip > tan θ · xi1 and
when t + 1 6 i 6 m, xip < tan θ · xi1. Now, the
sum of weights orthogonal distances from the points
of G to the optimal hyperplane xp = tan θ · x1, i.e.
tan θ · x1 − xp = 0 is

S((tan θ, 0, · · · , 0,−1), 0)

=

m∑
i=1

wi
| tan θ · xi1 − xip|√

1 + tan2 θ

=
1√

1 + tan2 θ
[

t∑
i=p+1

wi(xip − tan θ · xi1)−

m∑
i=t+1

wi(xip − tan θ · xi1)]

= cos θ[
t∑

i=p+1
wi(xip − tan θ · xi1)

−
m∑

i=t+1
wi(xip − tan θ · xi1)]

=
t∑

i=p+1
wi(cos θ · xip − sin θ · xi1)

−
m∑

i=t+1
wi(cos θ · xip − sin θ · xi1)

= cos θ(
t∑

i=p+1
wixip−

m∑
i=t+1

wixip)

− sin θ(
t∑

i=p+1
wixi1−

m∑
i=t+1

wixi1)

(9)

Since θ = 0, xp = 0 is the optimal hyperplane,
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thus

[S((tan θ, 0, · · · , 0,−1), 0)]′θ |θ=0

= [− sin θ(
t∑

i=p+1
wixip−

m∑
i=t+1

wixip)

− cos θ(
t∑

i=p+1
wixi1−

m∑
i=t+1

wixi1)]|θ=0

= −(
t∑

i=p+1
wixi1−

m∑
i=t+1

wixi1) = 0

(10)

Thus,when ∀ θ ∈
◦
∪(0, δ), there is

S((tan θ, 0, · · · , 0,−1), 0)

= cos θ(
t∑

i=p+1
wixip−

m∑
i=t+1

wixip)

<
t∑

i=p+1
wixip−

m∑
i=t+1

wixip

= S((0, 0, · · · , 1), 0)

(11)

this result is inconsistent with that xp = 0 is the opti-
mal hyperplane. So, this theorem is proved.

Theorem 4 (necessary conditions 1) The optimal hy-
perplane α̂Tx+ β̂ = 0 in Rp at least pass through p
points in G.

Proof. (1) If the optimal hyperplane α̂Tx + β̂ = 0
pass through p−1 points, Then by theorem 2, it should
pass through p points in G.
(2) If the optimal hyperplane α̂Tx + β̂ = 0 only
pass through t , 0 6 t < p − 1 points in G ,
then we pick the other p − 1 − t different points
in the optimal hyperplane which were labeled as
xm+1,xm+2, · · · ,xm+p−1 and in the m+p−1 points
x1,x2, · · · ,xm, xm+1,xm+2, · · · ,xm+p−1, the hy-
perplane α̂Tx + β̂ = 0 is still optimal and pass
through p−1 points in m+p−1 points, it at least pass
through another point belonging to G in the m+p−1
points set,thus, it at least pass through k + 1 points in
G, the results are inconsistent with each other. This
finishes the proof.

Theorem 5 (necessary conditions 2) If the optimal
hyperplane α̂Tx + β̂ = 0 in Rp pass through t(p 6
t < m) points xi1 ,xi2 , · · · ,xit in G, then rank of
vector group xi2 − xi1 ,xi3 − xi1 , · · · ,xit − xi1 is
r = p− 1

Proof. If the rank of vector group r < p − 1, then
they can make a r dimension hyperplane, the points
xi1 ,xi2 , · · · ,xit lie in the r dimension hyperplane.
So, these points can be placed on the p−2(r 6 p−2)

dimension hyperplanes
{

xp = 0
x1 = 0

. From the pro-

cess of theorem 2, α̂Tx + β̂ = 0 is not the optimal
hyperplane, they are inconsistent with each other. So,
this theorem is proved.

From Theorem 4 and Theorem 5, we can find that
when p < m, the optimal hyperplane at least pass
through the p points xi1 ,xi2 , · · · ,xit in G , and the
rank of the vector group xi2−xi1 ,xi3−xi1 , · · · ,xit−
xi1 is p− 1.

Thus, if fitting the optimal hyperplane of G =
{x1,x2, · · · ,xm} by the orthogonal least deviation
criterion, it only requires being searched in the hyper-
planes determining by p points in G. The number of

p− 1-dimension hyperplanes is
(
m

p

)
at most and the

number of the optimal hyperplanes is also
(
m

p

)
at

most.
For example, for four vertices of regular tetrahe-

dron, its each face is the optimum plane. For fixed p,
with m increasing, the computational complexity of
the algorithm is O(mp).

2.3 Properties of OLTAD Estimator

Assume also that any p × p submatrix of X is non-
singular; in this case we say that observations are in
general position. Then the finite sample breakdown
point of the OLTAD estimator in the regression model
(2) satisfies ϵ∗(β̂OLTAD) = ([(n− p)/2] + 1)/n.
Consequently it has a 50% asymptotic breakdown
point.

Cui(1997) proved strong consistency and asymp-
totic normality of orthogonal least absolute devia-
tion(OLAD) estimator [20] in linear EIV regression
model. However, his proof is long and complicated.
Thus, we will do theoretical research on the strong
consistency and asymptotic normality of OLTAD es-
timator in future.

In general, random sampling technique and boot-
strap method, such as [21] and [22]. Therefore,
in this place, we can use a jackknife estimator for
the asymptotic covariance matrix of the slope vector
β̂OLTAD. The jackknife estimator can be written by

1

n− 1

n∑
i=1

(β̂OLTAD,(i) − β̂OLTAD,(•))

(β̂OLTAD,(i) − β̂OLTAD,(•))
T

(12)

where β̂OLTAD,(i) is the OLTAD estimator with
the i-th observation omitted and β̂OLTAD,(•) =

1
n

n∑
i=1

β̂OLTAD,(i).
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2.4 Computing Complexity Analysis of
OLTAD Estimator

From the definition of OLTAD estimator, we can find
that if we compute all the least absolute deviation esti-

mators based upon all possible
(
n

h

)
subset from data

set Z, compare all the arg
β̂0,··· ,β̂p

h∑
i=1

{|r1| , · · · , |rn|}i:n,

then the best fitting estimator corresponding the mini-

mum of all arg
β̂0,··· ,β̂p

h∑
i=1

{|r1| , · · · , |rn|}i:n always ex-

ists.
Unfortunately, the computation of these estima-

tors is quite hard. More precisely, the best fitting
estimator with the exact fit property are NP-hard to
compute depending on n and h. When accepting
the widely believed assumption that the complexity
classes NP and P are not equal [10], we therefore have
no hope to compute exact solutions for large high di-
mensional data sets. Therefore, the computation of
these estimators is a very challenging and interesting
problem.

It is well known that the LTS estimator is given
by the least squares estimator for the h-subset whose
sum of squared residuals is a minimum. In the lin-
ear EIV regression model, the exact algorithm is a full

search algorithm for all
(
n

h

)
subsets in the orthogonal

regression model. Practically, this algorithm works
if the number of observations is less than 30. Some
approximate algorithms have been proposed. One of
them is the PROGRESS algorithm by Rousseeuw &
Leroy [18] which is a resampling algorithm. Hawkins
D.M [16] introduced a feasible set algorithm for the
LTS estimate that in a random h-subset it exchanges
one observation with another observation if such ex-
change decreases the value of criterion.

Rousseeuw and Van Driessen [17] show that C-
Step procedure guarantees an improvement in the ob-
jective value of the LTS estimator, Jung [6] modi-
fies the C-Step procedure by replacing vertical resid-
uals by orthogonal residuals, and shows that new C-
Step procedure also can guarantee an improvement in
the objective value of the OLTS estimator. The Fast-
OLTS algorithm for OLTS estimator also is proposed
by Jung [6].

One of the practical attractions of our OLTAD es-
timator is the relative ease (compared with the OLTS
estimator) which it can be computed. Because Feng
[19] proves that an important property, just like least
absolute deviation(LAD) estimator of linear model,
the OLTAD estimator corresponds to an exact fit to

some subset of size p+1. So the OLTAD estimator is
similarly characterized as a two-part problem, i.e., we
identify the correct subset of size h to cover with the
OLTAD criterion firstly, and subsequently determine
the subset of size p + 1 that minimizing the sum of
orthogonal absolute deviations to these h cases which
the number of subsets of size h from a sample of size

n. There are
(

n

p+ 1

)
elemental subsets (subsets of

size p+1) – a much smaller number than
(
n

h

)
in typ-

ical applications – and one of these must provide an
OLTAD solution for the full data set.

By reversing the order of the two-part search
therefore, we can dramatically reduce its computa-
tional complexity.

We adapt the selection step to propose the
Fast-OLTAD algorithm for linear EIV model, be-
cause OLTAD estimator does not need concentration
step(C-step).

Another important typical approach to tackle
problems is to use heuristics algorithm, such as
evolutionary algorithm [11] and Genetic Algorithm
(GA) [13].

Genetic Algorithm (GA) [13] is a well established
search heuristic in computer science and steadily gain-
ing importance in computational statistics [14].

In fact, many fast algorithms for robust estima-
tors of linear regression model adopt stochastic search
tricks [11][21][22] [23]. In light of this ideas, we con-
centrate on OLTAD estimator’s computing and extend
genetic algorithm to a framework that is applicable to
it.

3 The Fast-OLTAD Algorithm for
Solving OLTAD Estimator

Based on the above analysis, we proposed a fast
method for Solving OLTAD Estimator. Computation-
ally, it is enough to take 500 different initial subsets
for the proposed algorithm. Rousseeuw & Van Dris-
sen (1999a) used 500 different initial subsets for com-
puting the minimum covariance determinant estima-
tor.

We describe the algorithm for computing the
OLTAD estimator as follows:

Step 1. Generate an initial set H1 ⊂
{1, 2, · · · , n} using the method described as fol-
low: Generate a random (p+1)-subset J and com-
pute the exact coefficient β0 from yi = [ 1 xT

i ]β,
i ∈ J . If the data matrix X is not full rank,
then add a random observation into J until it
does. Then compute the residuals r0i = (yi −
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[ 1 xT
i ]β0)/

√
1 + ∥β′

0∥
2,i = 1, 2, · · · , n. wherein

β′
0 is a vector which β0 is removed the first element.

Set H1 such that{ i ∈ H1|
∣∣r0(1:n)∣∣ 6

∣∣r0(2:n)∣∣ 6
· · · 6

∣∣r0(h:n)∣∣}.
Step 2. Compute the objective function, and re-

peat Step 1 500 times.
Step 3. Set β0 corresponding to the minimum ob-

jective function as the OLTAD estimator of multiple
EIV model.

4 The Algorithm for Solving OLTAD
Estimator Using Genetic Algo-
rithm

4.1 The Core Genetic Algorithm

Genetic algorithms are based on a biological metaphor
and the search for the optimal solution is viewed as a
competition amongst the population of evolving can-
didate problem solutions.

The steps of a basic form of the genetic algorithm
are given below. These steps are general enough to
govern many (perhaps most) modern implementations
of genetic algorithm, including those in modern com-
mercial software. Of course, the performance of a GA
typically depends greatly on the implementation de-
tails, just as with other stochastic optimization algo-
rithms. Some of these practical implementation issues
are taken up in the next section.

Core GA Steps:
Step 0 (Initialization) Randomly generate an ini-

tial population of chromosomes and evaluate the fit-
ness function (the conversion of to a function to be
maximized for the encoded version of) for each of the
chromosomes.

Step 1 (Parent Selection) Set if elitism strategy
is not used; otherwise. Select with replacement par-
ents from the full population (including the elitist el-
ements). The parents are selected according to their
fitness, with those chromosomes having a higher fit-
ness value being selected more often.

Step 2 (Crossover) For each pair of parents iden-
tified in Step 1, perform crossover on the parents at
a randomly (perhaps uniformly) chosen splice point
(or points if using multi-point crossover) with proba-
bility. If no crossover takes place (probability), then
form two offspring that are exact copies (clones) of
the two parents.

Step 3 (Replacement and Mutation) While retain-
ing the best chromosomes from the previous gener-
ation, replace the remaining chromosomes with the
current population of offspring from Step 2. For the
bit-based implementations, mutate the individual bits

with probability ; for real coded implementations, use
an alternative form of ”small” modification (in either
case, one has the option of choosing whether to make
the elitist chromosomes candidates for mutation).

Step 4 (Fitness and End Test) Compute the fitness
values for the new population of chromosomes. Ter-
minate the algorithm if the stopping criterion is met
or if the budget of fitness function evaluations is ex-
hausted; else return to Step 1.

Genetic algorithms are a general and adaptive
framework and ideas can also be found in existing al-
gorithms for statistical applications [14].

4.2 Decimal-Integer-Coded Algorithm for
OLTAD Estimator

As a first step, we have to appoint the code of the can-
didate solutions. In order to have a limited number
of candidate solutions, we restrict ourselves to can-
didate solutions uniquely determined by a data sub-
sample of fixed size. In the most common algorithms
PROGRESS [15] and Fast-LTS [17] the subsamples
are for sound reasons of size p. These reasons include
the fact, that p linear independent points uniquely de-
fine a hyperplane. Additionally, smaller subsamples
decrease the possibility of having outliers in the sub-
sample.

We will adopt this in letting for explanatory data
Ze = {(X1, y1), (X2, y2), · · · , (Xn, yn)} ⊂ Rp+1.
The set

S = {s|s = (i1, i2, · · · , ip+1)} (13)

(where ik ∈ 1, 2, · · · , n, iq ̸= ir, q ̸= r, q, r, k =
1, 2, · · · , p + 1) is the code of our individuals that is
mapped to its phenotype by the function

m : S → R(p+1)×(p+1) (14)

m(s) = m((i1, i2, · · · , ip+1)) =


Xi1 yi1
Xi2 yi2
· · · · · ·

Xip+1 yip+1


(15)

Thus, we can obtain
(

n

p+ 1

)
different possible

individuals. The determination of the value of objec-
tive function of these individuals comprises two steps:

1. Compute a unique candidate solution hyper-
plane Hj from the given individual sj ∈ S, where
j = 1, 2, · · · , popsize, popsize ∈ N+.

2. Compute one of the objective function f(sj) =
hp∑
i=1

{|r1| , · · · , |rn|}i:n (the residuals ri are deter-

mined by Hj and the given data) depending on the
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estimator chosen, hp with [(n + p + 1)/2 6 hp 6 n
is a parameter influencing the estimation .

The algorithm that we propose is the following:
Algorithm (Integer-Coded Genetic Algorithm

(DICGA) for Trimmed Estimators)
Step 0 (Initialization) Give the size of popula-

tion popsize and randomly generate an initial popula-
tion of chromosomes s1, s2, · · · , spopsize ∈ S, com-
pute a unique hyperplane Hj from sjand evaluate
the fitness function for each of the chromosomes, let

fitness(sj) =
1

1 + f(sj)
, j = 1, 2, · · · , popsize. for

the OLTAD estimator.
In general way, the population size popsize can

take from 30 to 100, the chromosome sj can take p+1
numbers from 1 to n randomly.

Step 1 (Parent Selection) Set if elitism strategy
is not used; otherwise. Select with replacement par-
ents from the full population (including the elitist el-
ements). The parents are selected according to their
fitness, with those chromosomes having a higher fit-
ness value being selected more often. There are sev-
eral schemes for the selection process: roulette wheel
selection and its extensions: scaling techniques, tour-
nament, elitist models, and ranking methods. A com-
mon selection approach assigns a probability of selec-
tion Pj to each individual, j based on its fitness value.

Pj{individual j is chosen} =
fitness(sj)

popsize∑
j=1

fitness(sj)

,

j = 1, 2, · · · , popsize.
(16)

Here, we adopt roulette wheel selection.
Step 2 (Crossover) For each pair of parents iden-

tified in Step 1, perform crossover on the parents at
a randomly .If no crossover takes place (crossover
probability pc (0.5 < pc < 0.95)), then form
two offspring that are exact copies (clones) of the
two parents. The crossover operator in details is as
follows: Select chromosome (i1, i2, · · · , ip+1) and
(j1, j2, · · · , jp+1), union them and delete redundant
same numbers. As a result, we acquire a long
chromosome (k1, k2, · · · , km) (p < m ≤ 2p +
2). Subsequently, we attain two new chromosomes
taking (i′1, i

′
2, · · · , i′p+1) and (j′1, j

′
2, · · · , j′p+1) from

(k1, k2, · · · , km) randomly as offsprings.
Step 3 (Mutation) While retaining the best chro-

mosomes from the previous generation, replace the
remaining chromosomes with the current popula-
tion of offspring from Step 2. For the integer-
based implementations, mutate the individual inte-
gers with probability pm(0.01 < pm < 0.20).
If chromosome (i1, i2, · · · , ip+1) mutate, randomly

select ik from it and replace ik by i′k, i′k ∈
{1, 2, · · · , n}\{i1, i2, · · · , ip+1}.

Step 4 (Fitness and End Test) Compute the fitness
values for the new population of chromosomes. Ter-
minate the algorithm if the stopping criterion is met
or if the budget of fitness function evaluations is ex-
hausted; else return to Step 1. In general, generation
number, running time and no improvement for some
iterative times are often as stopping criterion.

The question how to compute a unique hyper-
plane from a subset of size p remains. As a first step,
we compute the hyperplane Hj through the subset of
data points. If it does not define a unique hyperplane,
we try to add observations in fixed order (e.g. starting
with (X1, y1)) until it does.

5 Simulations And Comparisons
To get an idea of the performance of our new algo-
rithm, we start by applying the decimal-integer-coded
genetic algorithm(DICGA) to some small regression
data sets taken from [18] and synthetic data.

Table 1 collects the results of our experiments on
OLTAD estimator for multiple EIV model. The first
column of Table 1 is list the name of each data set,
followed by n and p, where n is the number of ob-
servations and p stand for the number of coefficients
including the intercept term. We stayed with the de-
fault value of h = [(n + p + 1)/2]. The next columns
show one of best p-subset, final best h-subset found
and running time.

We may conclude that for these small data sets the
DICGA gives very accurate results in a short time. In
the computer simulation, parameters of DICGA algo-
rithm are set as follows: population size popsize =
50 + 10 × p, crossover rate pc = 0.7, mutation rate
pm = 0.3, generation number N = 30+5×p, p is the
column of data set Z. We also change parameters to
other values, and obtain similar results. The above pa-
rameters values can balance the algorithm’s accuracy
and efficiency in our test situation.

Exact fits to subsets of size p have a special place
in the area of high breakdown estimation - these ele-
mental sets have long been used to generate approx-
imations to other high breakdown fit criteria such as
OLTS estimator. Unlike OLTS estimator that need C-
Step procedure, one of the practical attractions of the
OLTAD estimator is the relative ease (compared with
the OLTS estimator), because in the case of OLTAD
estimator, they yield exact solutions and not just ap-
proximations [19].

Since an OLTAD estimator corresponds to an ex-
act fit to some subset of size p [19], the OLTAD
estimator is similarly characterized as a two-part
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problem–identifying the correct subset of size h to
cover with the OLTAD estimator, and determining the
subset of size p that minimizes the sum of orthogonal
absolute deviations to these h cases.

Denote the number of subsets of size h from a

sample of size n by
(
n

h

)
. There are

(
n

h

)
“elemen-

tal” subsets (subsets of size p– a much smaller number

than
(
n

h

)
in typical applications – and one of these

must provide an OLTAD estimator solution for the
full data set. For data sets of same size, the number
of subsets required for exact evaluation of the OLTAD
estimator is far smaller than those required for OLTS
estimator.

By reversing the order of the two-part search,
therefore, we can dramatically reduce its computa-
tional complexity. As a important result, for data sets
of same size, the number of subsets required for exact
evaluation of the OLTAD estimator is far smaller than
those required for OLTS estimator.

Furthermore, in order to explore and test the per-
formance of our new algorithms for OLTAD estimator
, we simulate data with n = 500 + 10× p data points
for p = 1, · · · , 30 from multiple linear EIV model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi (17)

where β0 is an intercept term and εi ∼ N(0, 1) are
statistical errors. The parameters β0, β1, · · · , βp is set
to 1, xij ∼ N(0, 1), j = 1, 2, · · · , p. are the nontrivial
explanatory variables. We have introduced outliers in
the x-direction and y-direction by replacing a 25 per-
cent of the xij , (j = 1, 2, · · · , p.) by that are normally
distributed with mean 10 and variance 100.

The DICGA algorithm and Fast-OLTAD algo-
rithm are used to compute OLTAD estimator for above
linear EIV model. Based on the computing results, the
boxplots of the trimmed OLTAD criterion values v.s
the number of regressors are plotted in Figure 1.

In the boxplys of Figure 1, the filled markers rep-
resent the results by Fast-OLTAD algorithm and null-
box markers represent the results by DICGA algo-
rithm.

From Figure 1, we can conclude that DICGA
algorithm achieves better values of the OLTAD-
criterion than Fast-OLTAD algorithm in nearly all
conducted runs. Of course the DICGA algorithm re-
quires more computation time.

Furthermore, the aspect computing time in the
simulations, we find that when the p increase and n
is fixed, the computation time mean of DICGA algo-
rithm linearly increases from 1.3 second to 8.2 sec-
ond, meanwhile, the computation time mean of Fast-
OLTAD algorithm linearly increase from 0.05 second

to 0.08 second. So, if you want to need higher preci-
sion, you can use DICGA algorithm, and if you want
save time, you can use Fast-OLTAD algorithm.

Table 1 Performance of DICGA for OLTAD estimator on
real data

data
set

n p best
p-subset
found

best h-
subset
found

Time(s)

Heart 12 3 2,6,11
1,2,4,5,6,
7,11,12

0.7

Phosphor 18 3 6,8,18
2,4,5,6,8,
9,10,14,15,
17,18

0.7

Coleman 20 6 2,4,6,10,
12,20

1,2,4,5,6,
7,8,9,10,11,
12,17,20

0.9

Wood 20 6 3,10,12,
15,18,19

1,2,3,4,5,
6,10,12,13,
15,18,19,20

0.9

Sanlinity 28 4 6,15,19,
27

2,3,4,6,7,
12,14,15,17,
18,19,20,21,
22, 26,27

0.8

Aircraft 23 5 11,13,16,
17,19

2,4,5,8,9,
10,11,12,13,
16,17,18,
19,21

0.8

Delivery 25 3 7,10,22

2,5,6,7,8,
10,12,13,14,
15,17,21,22,
25

0.7

Hawkins 75 4 1,5,47,74

1,2,3,4,5,
6,7,9,16,17,
18,19,21,
22,24,31,
32,35,36,
37,40,41,
43,45,47,
48,49,50,
51,52,54,
55,59,61,
66, 67,69,
71, 72,74

0.8

Bushfire 38 5 9,12,23,
28,37

7,8,9,10,
12,13,15,
17,19,20,
21

0.9
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Figure 1: The boxplot of trimmed OLTAD criterion values
vs. number of regressors computed by DICGA and
Fast-OLTAD algorithms

All computational experiments where performed
on a Intel Core Duo 2.4GHz computer with 2GB of
memory running MATLAB 2009a and Windows XP
Sp2.

6 Conclusion
High breakdown estimators in big data sets are a chal-
lenging problem. Many high breakdown estimators
are in all likelihood not computable exactly in high
dimensional regressor spaces. The common heuris-
tics to compute solutions in these cases work with
subsample versions of the estimators. By comparison
with 0 − 1 integer-coded genetic algorithm [14] and
other evolution algorithms [11][23], the individuals
of decimal-integer-coded genetic algorithm is shorter,
especially when sample data number n is big, so
DICGA occupies less computer’s memory and it is
less time-consuming.

Comparing with OTLS estimator of multiple lin-
ear EIV model, our new robust OLTAD estimator is
easier to implementation in computer. What more, our
new robust OLTAD estimator is less time-consuming,
because it needed the C-Step procedures. Since the C-
Step procedures in computing OTLS estimator needs
many iterations and redetermining the multiple linear
EIV model in each iteration, so computing OTLS esti-
mator is more complicated and need more computing
time.

In this paper, a new and simple robust estimator
and corresponding algorithms for multiple linear EIV
model are proposed. The research enriches the theory
and method study of multiple linear EIV model and at
the same time, it provides a new choice for engineers
and scientific researchers who use linear EIV model

in their work.
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