
 

New Approach to Find the Exact Solution of Fractional Partial 
Differential Equation 

 
ABDOLAMIR KARBALAIE 1, MOHAMMAD MEHDI MONTAZER2,                                 

HAMED HAMID MUHAMMED3   
 

1, 3 Division of Informatics, Logistics and Management, School of Technology and Health STH 
Royal Institute of Technology KTH, SE-100 44, Stockholm, SWEDEN 

1 abdolamir.karbalaie@sth.kth.se, 3 hamed.muhammed@sth.kth.se 

   
2 Department of Mathematics, Khomeini Shahr Branch 

 Islamic Azad University, Khomeini Shahr, Isfahan, IRAN  
2 montazari@iaukhsh.ac.ir 

 
 
Abstract: - In this study, we present the exact solution of certain fractional partial differential equations (FPDE) 
by using a modified homotopy perturbation method (MHPM).The exact solutions are constructed by choosing 
an appropriate initial approximation and only one term of the series obtained by MHPM. The exact solutions 
for initial value problems of FPDE are analytically derived. The methods introduced an efficient tool for 
solving a wide class of time-fractional partial differential equations. 
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1 Introduction 
In recent years, fractional calculus has been 
increasingly used for numerous applications in 
many scientific and technical fields such as medical 
sciences, biological research, as well as various 
chemical, biochemical and physical fields. 
Fractional calculus can be, for instance, employed to 
solve a lot of problems within the biomedical 
research field. Such an important application is 
studying membrane biophysics and polymer 
viscoelasticity [17]. 
    Other promising biomedical application fields 
where fractional calculus can be used is analyzing 
chaos and nonlinear systems of fractional order. An 
interesting example of the practical application of 
fractional order models is to use these models to 
improve the behavior of bioelectrodes. Such 
bioelectrodes are usually used for all forms of 
biopotential recording purposes, such as 
Electrocardiography (ECG), Electromyo-graphy 
(EMG) and Electroencephalography (EEG) [26, 27, 
18, 5]. In addition to that, theses bioelectrodes are 
also used for functional electrical stimulation, as in 
the case of pacemaker and deep brain stimulation 
[26, 27, 18, 5]. 

    Almost all of the approaches used to solve the 
problems mentioned above end with solving 
fractional partial differential equations (FPDE). 
Therefore, it is natural to see that modeling by using 
FPDE have interested a wide segment of researchers 
[39, 21] within numerous application areas in 
natural and technological sciences. 
    Srivastava and Rai [36] have used the fractional 
diffusion equation to construct a mathematical 
model for oxygen delivery to tissues through a 
capillary. Mainardi [29] also used fractional partial 
differential equations to model the propagation of 
mechanical diffusive waves in viscoelastic media.  

Numerous methods and approaches were 
proposed and used to solve FPDEs. Some of these 
methods are analytical, such as the Fourier 
transform method [27], the Fractional Green’s 
function method [24], the popular Laplace transform 
method [31, 32], the iteration method [34], the 
Mellin transform method and the method of 
orthogonal polynomials [31]. 

Numerical methods and approaches are also 
popular and used to obtain approximate solutions of 
FPDEs. Examples of such numerical methods for 
solving FPDEs are the Homotopy Perturbation 
Method (HPM) [6, 9, 11, 14, 15], the Differential 
Transform Method (DTM) [28] the Variational 
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Iteration Method (VIM) [8], the New Iterative 
Method (NIM) [3, 4], the homotopy analysis 
method (HAM) [1, 17], and the Adomian 
Decomposition Method (ADM) [2]. 

Among these numerical methods, the VIM and 
the ADM are the most popular ones that are used to 
solve differential and integral equations of integer 
and fractional order. The HPM is a universal 
approach which can be used to solve both fractional 
ordinary differential equations FODEs as well as 
fractional partial differential equations FPDEs. 

This method (the HPM), was originally proposed 
by He [9, 10]. The HPM is a coupling of homotopy 
in the topology and the perturbation method. The 
method is utilized to solve various types of 
equations such us the Hellmholtz equation, the fifth 
order KdV [34], the Kleein-Gorden equation [31], 
the Fokker-Panck equation [38, 39], the nonlinear 
Kolmogorov-Petrovskii-Piskunov Equation [8] as 
well as some other types of equations as proposed 
and used in [12, 13, 14].  

Various combinations of the methods mentioned 
previously have been proposed recently to solve 
fractional partial differential equations FPDEs. 
Examples of such combination methods are the 
Homotopy Analysis Transform Method, the 
Variational Homotopy Perturbation Method and the 
Homotopy Perturbation Transformation Method. 

The Homotopy Analysis Transform Method is a 
combination of the Homotopy Analysis Method and 
the Laplace Decomposition Method [20]. 

In the case of the Variational Homotopy 
Perturbation Method, Noor and Mohyud-Din [30] 
have combined the Variational Iteration Method and 
the Homotopy Perturbation Method. They used this 
method for solving higher dimensional initial 
boundary value problems. 

On the other hand, the Homotopy Perturbation 
Transformation Method was constructed by 
combining two powerful methods; namely the 
Homotopy Perturbation Method and the Laplace 
Transform Method [23]. In the latter case, this 
successful combination could compensate for the 
limitation of the Laplace Transform Method which 
was totally incapable of handling nonlinear 
equations. 

In general, there exists no method that gives an 
exact solution for FPDEs and most obtained 
solutions are only approximations. However, Yang 
[37] used the modified homotopy perturbation 
method (MHPM) to obtain the exact solution of the 

Fokker-Plank equation which is a PDE of integer 
order. 

In this paper, the MHPM is used to derive the 
exact solution of various types of FPDEs instead of 
PDEs. We present an elegant fast approach by 
designing and utilizing a proper initial 
approximation which satisfies the initial condition 
of the HPM. Successful design results are obtained 
when this step is performed by means of separation 
of variables. 

The structure of this paper is as follows: In 
section 1, we begin with an introduction to some 
necessary definitions of fractional calculus theory. 
In section 2, the basic idea of the MHPM is 
presented. In section 3, we present four examples to 
show the efficiency of using the MHPM to solve 
FPDEs. Finally, relevant conclusions are drawn in 
section 4. 

2 Basic Definitions of Fractional 
Calculus 
In this section, we present the basic definitions and 
properties of the fractional calculus theory, which 
are used further in this paper. 

Definition 2.1.  A real function𝑓(𝑡), 𝑡 > 0, is said to 
be in the space 𝐶𝜎 ,𝜎 ∈ ℝ  if there exists a real 
number    𝑝 > 𝜎 , such that 𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡) , where 
𝑓1(𝑡) ∈ 𝐶[0,∞), and it is said to be in the space 𝐶𝜎𝑚 
if 𝑓𝑚 ∈ 𝐶𝜎 ,𝑚 ∈ ℕ. 

Definition 2.2. The left sided Riemann–Liouville 
fractional integral of order 𝛼 ≥ 0 , of a function 
𝑓 ∈ 𝐶𝜎 ,𝜎 ≥ −1  is defined as: 
𝐽𝑡𝛼𝑓(𝑡) = 1

Γ(𝛼)∫ (𝑡 − 𝜁)𝛼−1𝑓(𝜁)𝑑𝜁,𝑡
0                       (1) 

where  𝛼 > 0, 𝑡 > 0  and Γ(𝛼)  is the gamma 
function.  Properties of the operator  𝐽𝑡𝛼   for 
𝑓 ∈ 𝐶𝜇 , 𝜇 ≥ −1, 𝛼,𝛽 ≥ 0, 𝛾 ≥ −1  can be found 
for instance in [35], and are defined as follows 

𝐽𝑡0𝑓(𝑡) = 𝑓(𝑡).                                                             (2) 

𝐽𝑡𝛼𝐽𝑡
𝛽𝑓(𝑡) = 𝐽𝑡

𝛼+𝛽𝑓(𝑡).                                                (3) 

𝐽𝑡𝛼𝐽𝑡
𝛽𝑓(𝑡) = 𝐽𝑡

𝛽𝐽𝑡𝛼𝑓(𝑡).                                                (4) 

𝐽𝑡𝛼𝑡𝛾 = 𝛤(𝛾+1)
𝛤(𝛼+𝛾+1) 𝑡

𝛼+𝛾 .                                               (5) 

Definition 2.3. The fractional derivative of 𝑓(𝑡) in 
the Caputo sense is defined as  
 
𝐷𝑡𝛼𝑓(𝑡) = 𝐽𝑡𝑛−𝛼𝐷𝑡𝑛𝑓(𝑡)         
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             = 1
Γ(𝑛−𝛼)∫ (𝑡 − 𝜁)𝑛−𝛼−1𝑓(𝑛)(𝜁)𝑑𝜁,𝑡

0           (6) 
 

for 𝑛 − 1 < 𝛼 ≤ 𝑛,𝑛 ∈ ℕ , 𝑡 > 0, 𝑓 ∈ 𝐶𝜇𝑛, 𝜇 ≥ −1.  

    For Caputo’s derivative we have  

𝐷𝑡𝛼𝐶 = 0,       (C is a constant)                               (7) 

𝐷𝑡𝛼𝑡𝛾 = �
𝛤(𝛾+1)

𝛤(𝛾−𝛼+1) 𝑡
𝛾−𝛼      𝛾 > 𝛼 − 1    

0                        𝛾 ≤ 𝛼 − 1 
�                (8) 

𝐽𝑡𝛼𝐷𝑡𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓𝑘(0+) 𝑡
𝑘 
𝑘!

𝑛−1
𝑘=0 ,                      (9) 

Definition 2.4. The single parameter and the two 
parameters variants of the Mitting-leffler function 
are denoted by 𝐸𝛼(𝑡),  and 𝐸𝛼,𝛽(𝑡) , respectively, 
which are relevant for their connection with 
fractional calculus, and are defined as, 

𝐸𝛼(𝑡) = �
𝑡𝑗

𝛤(𝛼𝑗 + 1) ,
∞

𝑗=0

              𝛼 > 0, 𝑡 ∈ ℂ 

𝐸𝛼,𝛽(𝑡) = �
𝑡𝑗

𝛤(𝛼𝑗 + 𝛽) ,
∞

𝑗=0

           𝛼,𝛽 > 0, 𝑡 ∈ ℂ 

(10) 
Their k-th derivatives are  

𝐸𝛼
(𝑘)(𝑡) =

𝑑𝑘

𝑑𝑡𝑘
𝐸𝛼(𝑡), 

            = �
(𝑘 + 𝑗)! 𝑡𝑗

𝑗!𝛤(𝛼𝑗 + 𝛼𝑘 + 1) ,
∞

𝑗=0

     𝑘 = 0,1,2, …, 

(11) 

𝐸𝛼,𝛽
(𝑘)(𝑡) =

𝑑𝑘

𝑑𝑡𝑘
𝐸𝛼,𝛽(𝑡), 

          = �
(𝑘 + 𝑗)! 𝑡𝑗

𝑗! Γ(𝛼𝑗 + 𝛼𝑘 + 𝛽) ,
∞

𝑗=0

   𝑘 = 0,1,2 …, 

(12) 

    Some special cases of the Mitting-Leffler 
function are as follows: 

𝐸1(𝑡) = 𝑒𝑡                                                           (13) 

𝐸𝛼,1(𝑡) = 𝐸𝛼(𝑡)                                                   (14)  

𝑑𝑘

𝑑𝑡𝑘
�𝑡𝛽−1𝐸𝛼,𝛽(𝑎𝑡𝛼)� = 𝑡𝛽−𝑘−1𝐸𝛼,𝛽−𝑘(𝑎𝑡𝛼)       (15) 

 

    Other properties of the Mitting-leffler functions 
can be found in [21]. These functions are 
generalizations of the exponential function, because, 
most linear differential equations of fractional order 
have solutions that are expressed in terms of these 
functions. 

Theorem 2.5. Consider the following n-term linear 
fractional differential equation [6]: 

�𝑎𝑛𝐷𝑡
𝛽𝑛 + 𝑎𝑛−1𝐷𝑡

𝛽𝑛−1 + ⋯+ 𝑎0𝐷𝑡
𝛽0� 𝑢(𝑡) = 𝑓(𝑡),  

(16) 
with the constant initial condition: 

𝑢𝑗𝑖(0) = 𝐶𝑖𝑗𝑖   𝑖 = 0,1, … ,𝑛,   𝑗𝑖 = 1,2, … , 𝑙𝑖 ,        (17) 

where  𝑎𝑖 ,𝐶𝑖𝑗𝑖 ∈ ℝ,  𝑛𝑖 − 1 < 𝛽𝑖 ≤ 𝑛𝑖 ,𝑛𝑖 ∈ ℕ⋃{0}    
and 

𝛽0 < 𝛽1 < ⋯ < 𝛽𝑛−1 < 𝑛 ≤ 𝛽𝑛 < 𝑛 + 1  

    Then, we see that the analytical general solution 
of Eq. (12) is 

𝑢(𝑡) = � 𝐺𝑛(𝑡 − 𝜁)
𝑡

0
𝑓(𝜁)𝑑𝜁 + 

          � � 𝑎𝑖𝐶𝑖𝑗𝑖

𝑙𝑖−1

  𝑗𝑖=0

∞

𝑖=0

𝐺𝑛
𝛽𝑖−𝑗𝑖−1(𝑡), 

(18) 
 

where 𝐺𝑛(𝑡) is the Green function and it is defined 
as 

𝐺𝑛(𝑡) =
1
𝑎𝑛

�
(−1)𝑚

𝑚!

∞

𝑚=0

 

 × � (𝑚; 𝑘0, 𝑘1, … , 𝑘𝑛−2)
𝑘0,𝑘1,…,𝑘𝑛−2≥0

𝑘0+𝑘1+⋯+𝑘𝑛−2=𝑚

 

× ��
𝑎𝑝
𝑎𝑛
�
𝑘𝑝
𝑡(𝛽𝑛−𝛽𝑛−1)𝑚+𝛽𝑛+∑ �𝛽𝑛−1−𝛽𝑗�𝑘𝑗−1𝑛−2

𝑗=0

𝑛−2

𝑝=0

 

  
× 𝐸𝛽𝑛−𝛽𝑛−1,𝛽𝑛+∑ �𝛽𝑛−1−𝛽𝑗�𝑘𝑗−1𝑛−2

𝑗=0

(𝑚) �−
𝑎𝑛−1
𝑎𝑛

𝐷𝛽𝑛−𝛽𝑛−1�, 

(19) 
 

where 

  (𝑚;𝑘0, 𝑘1, … , 𝑘𝑛−2) = 𝑚!
𝑘0!𝑘1!…,𝑘𝑛−2!

                   (20) 
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and  𝐸(.),(.)
(𝑚)   is the m-th derivative of the Mitting-

Leffler function. 

     In a special case of the latter theorem, the 
following relaxation-oscillation equation [6] is 
solved: 

𝐷𝑡𝛼𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝑓(𝑡),        𝑡 > 0,                    (21) 

𝑢𝑖(0) = 𝑏𝑖 ,       𝑖 = 1,2, … ,𝑛 − 1,                        (22) 

where 𝑏𝑖 are real constants and  𝑛 − 1 < 𝛼 ≤ 𝑛 . 

   By utilizing theorem 2.5 we obtain the solution of 
Eq. (21) as follows: 

𝑢(𝑡) = � 𝐺2(𝑡 − 𝜁)
𝑡

0
𝑓(𝜁)𝑑𝜁 + �𝑏𝑗𝐷𝑡

𝛼−𝑗−1𝐺2(𝑡)
𝑛−1

𝑗=0

 

                                                                             (23)        
where 𝐺2(𝑡) = 𝑡𝛼−1𝐸𝛼,𝛼(−𝐴𝑡𝛼). 

   It is easy to see that if 0 < 𝛼 ≤ 1  , then the 
solution of Eq. (21) becomes as follows: 

  𝑢(𝑡) = ∫ 𝐺2(𝑡 − 𝜁)𝑡
0 𝑓(𝜁)𝑑𝜁 + 𝑏0𝐷𝑡𝛼−1𝐺2(𝑡)  (24) 

 
which will be used in the coming examples, 
discussed in this paper. 
 
3 The Basic Idea of the Homotopy 
Perturbation Method 

The Homotopy Perturbation Method (HPM) is a 
combination of the Homotopy technique and the 
classical Perturbation Method. The HPM is applied 
to various nonlinear problems as mentioned in the 
previous sections of this paper. 
    In this section, we will briefly present the 
algorithm of this method. To achieve our goal, we 
consider the nonlinear differential equation: 

�
𝒜(𝑢) − 𝑓(𝑟) = 0,    𝑟 ∈ Ω,

   
𝐵�𝑢, 𝜕𝑢 𝜕𝑛� � = 0,     𝑟 ∈ Γ,

�                               (25) 

where 𝐵 is a boundary operator, Γ is the boundary of 
the domain 𝛺, 𝑓(𝑟) is a known analytic function and 
𝒜 is a general differential function operator. 
   The operator 𝒜 can be decomposed into a linear 
operator, denoted by ℒ , and a nonlinear operator, 
denoted by 𝒩. Therefore, Eq. (25) can be written as 
follows 

ℒ(𝑢) + 𝒩(𝑢) − 𝑓(𝑟) = 0,                                  (26) 

   By using the homotopy perturbation technique, we 
construct a homotopy 𝑣(𝑟,𝑝):Ω × [0,1] → ℝ which 
satisfies: 

ℋ(𝑣, 𝑝) = (1 − 𝑝)[ℒ(𝑣) − ℒ(𝑢0)] +          

             𝑝[𝒜(𝑢) − 𝑓(𝑟)] = 0,    0 ≤ 𝑝 ≤ 1,         (27) 
or 

ℋ(𝑣, 𝑝) = ℒ(𝑣) − ℒ(𝑢0) + 𝑝ℒ(𝑢0) +             

            𝑝[𝒩(𝑣) − 𝑓(𝑟)] = 0,    0 ≤ 𝑝 ≤ 1,          (28) 

where 𝑟 ∈ Ω , 𝑢0 is an initial approximation for Eq. 
(25) and  𝑝 is an embedding parameter. When the 
value of 𝑝 is changed from 𝑝 = 0  to  𝑝 = 1, we can 
easily see that 

ℋ(𝑣, 0) = ℒ(𝑣) − ℒ(𝑢0) = 0,                            (29) 

ℋ(𝑣, 1) = ℒ(𝑣) + 𝒩(𝑣) − 𝑓(𝑟)    

                = 𝒜(𝑢) − 𝑓(𝑟) = 0,                             (30) 

   This changing process is called deformation, and 
Eq. (29) and (30) are called homotopic in topology. 

   If the 𝑝-parameter is considered as small, then the 
solution of Eq. (27) and (28) can be expressed as a 
power series in  𝑝, as follows: 
 

𝑣 = ∑ 𝑝𝑖𝑣𝑖∞
𝑖=0 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3 + ⋯ (31) 

 

The best approximation for the solution of Eq. (25) 
is: 

𝑢 = lim
𝑝→1

𝑣 = �𝑣𝑖

∞

𝑖=0

= 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯, 

 (32) 
 

    Now we are able to apply the HPM to solve the 
class of time fractional partial differential equations 
defined as follows:  
 

 𝐷𝑡𝛼𝑢(𝑥, 𝑡) = ℒ(𝑢(𝑥, 𝑡)) + 

                        𝒩(𝑢(𝑥, 𝑡)) + 𝑓(𝑥, 𝑡),                   (33) 

subject to the initial condition  

𝑢(𝑥, 0) = 𝑔(𝑥)                                                    (34)  

where 0 < 𝛼 ≤ 1  in 𝐷𝑡𝛼 ,  which is identical to the 
Cupoto fractional derivative of order 𝛼. 
   Now we construct a homotopy 

𝑣(𝑥, 𝑡,𝑝):𝛺 × [0,1] → ℝ ,  which satisfies 
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ℋ(𝑣(𝑥, 𝑡),𝑝) ≡ (1 − 𝑝)[𝐷𝑡𝛼�𝑣(𝑥, 𝑡)� −          

        𝐷𝑡𝛼(𝑢0(𝑥, 𝑡))] +  𝑝[𝐷𝑡𝛼(𝑣(𝑥, 𝑡)) − ℒ�𝑣(𝑥, 𝑡)� − 

        ℒ�𝑣(𝑥, 𝑡)� −𝒩(𝑣(𝑥, 𝑡)) − 𝑓(𝑥, 𝑡)] = 0, 
(35) 

where 𝑝 ∈ [0,1]  and 𝑢0(𝑥, 𝑡)  is an initial 
approximation of the solution of Eq.(33) which also 
satisfies the initial condition in Eq. (34). 
   By simplifying Eq. (35) we get 

 𝐷𝑡𝛼(𝑣(𝑥, 𝑡)) = 𝐷𝑡𝛼(𝑢0(𝑥, 𝑡)) + 𝑝[𝐷𝑡𝛼(𝑢0(𝑥, 𝑡)) − 

                       ℒ(𝑣(𝑥, 𝑡)) −𝒩(𝑣(𝑥, 𝑡)) − 𝑓(𝑥, 𝑡)] 
  (36) 

where the embedding parameter 𝑝 is considered to 
be small and applied to the classical perturbation 
technique. 
    The next step is to use this homotopy parameter 𝑝 
to expand the solution into the following form: 

𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑝𝑣1(𝑥, 𝑡) + 𝑝2𝑣2(𝑥, 𝑡) + ⋯ 
(37) 

Eventually, at 𝑝 = 1, we will obtain the approximate 
solution of Eq. (33). By substituting Eq. (37) into Eq. 
(36) and equating the terms with identical powers of 
𝑝, we can obtain a series of equations as the follows 
 

𝑝0:     𝐷𝑡𝛼(𝑣0(𝑥, 𝑡)) = 𝐷𝑡𝛼(𝑢0(𝑥, 𝑡)), 

𝑝1:    𝐷𝑡𝛼(𝑣1(𝑥, 𝑡)) = 𝐷𝑡𝛼(𝑣0(𝑥, 𝑡)) − ℒ�𝑣0(𝑥, 𝑡)� − 

                                        𝒩(𝑣0(𝑥, 𝑡)) − 𝑓(𝑥, 𝑡), 

𝑝2:    𝐷𝑡𝛼(𝑣2(𝑥, 𝑡)) = 𝐷𝑡𝛼(𝑣1(𝑥, 𝑡)) − ℒ�𝑣1(𝑥, 𝑡)� − 

                                      𝒩�𝑣0(𝑥,𝑡),𝑣1(𝑥,𝑡)�,
⋮                                 (38) 

Applying the operator 𝐽𝑡𝛼 , which is the Riemann–
Liouville fractional integral of order 𝛼 ≥ 0, on both 
sides of all cases of Eq.(38), the solution can be 
given by 

𝑣0(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡), 

𝑣1(𝑥, 𝑡) = 𝐽𝑡𝛼[𝐷𝑡𝛼�𝑣0(𝑥, 𝑡)� − ℒ�𝑣0(𝑥, 𝑡)� − 

                     𝒩(𝑣0(𝑥, 𝑡)) − 𝑓(𝑥, 𝑡)], 

𝑣2(𝑥, 𝑡) = 𝐽𝑡𝛼[𝐷𝑡𝛼�𝑣1(𝑥, 𝑡)� − ℒ�𝑣1(𝑥, 𝑡)� − 

                     𝒩�𝑣0(𝑥, 𝑡), 𝑣1(𝑥, 𝑡)�],
⋮

 

(39) 

    By utilizing the results in Eq. (39), and 
substituting them into Eq. (37), we get an accurate 
nth approximation of the exact solution as follows 

𝑢𝑛(𝑥, 𝑡) = 𝑣0 + 𝑣1 + ⋯+ 𝑣𝑛 = ∑ 𝑣𝑖𝑛
𝑖=0               (40) 

    In Eq. (40), if there exists some 𝑣𝑛 = 0 ,𝑛 ≥ 1 , 
then the exact solution can be written in the 
following form 

𝑢(𝑥, 𝑡) = 𝑣0 + 𝑣1 + ⋯+ 𝑣𝑛−1 = ∑ 𝑣𝑖𝑛−1
𝑖=0           (41)  

    Now we can introduce the core of the work in this 
paper. At first, we consider the initial approximation 
of Eq.(25) as follows 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0)𝑐1(𝑡) + 𝑢(𝑥)𝑐2(𝑡),                (42) 

where 𝑢(𝑥, 0) is the initial condition of Eq.(18), and 
𝑢(𝑥) = 𝜕𝑢(𝑥,0)

𝜕𝑥
 .  

    The final goal of our new approach is finding 
𝑐1(𝑡) and 𝑐2(𝑡). Hence, for simplicity, we assume 
that 𝑣1(𝑥, 𝑡) ≡ 0 in Eq. (28), which means that the 
exact solution in Eq. (28) is (𝑥, 𝑡) = 𝑣0(𝑥, 𝑡). And 
when solving Eq. (26), we obtain the result  

 𝑢0(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡).                                             (43) 

   Since 𝑢(𝑥, 𝑡) satisfies the initial condition as well 
as Eq. (29), we get 

𝑢(𝑥, 0) = 𝑣0(𝑥, 0)            

             = 𝑢(𝑥, 0)𝑐1(0) + 𝑢(𝑥)𝑐2(0) = 𝑔(𝑥),     (44) 

and 

 𝑐1(0) = 1, 𝑐2(0) = 0,                                         (45) 

   On the other hand, we have  

𝐷𝑡𝛼(𝑣1(𝑥, 𝑡)) = 𝐷𝑡𝛼(𝑢0(𝑥, 𝑡)) − ℒ�𝑣0(𝑥, 𝑡)� − 

                            𝒩(𝑣0(𝑥, 𝑡)) − 𝑓(𝑥, 𝑡) ≡ 0         (46) 

 By substituting Eq. (43) and (42) into Eq. (46), we 
obtain 
𝑢(𝑥, 0)𝐷𝑡𝛼(𝑐1(𝑡)) + 𝑢(𝑥)𝐷𝑡𝛼(𝑐2(𝑡)) = 

                    ℒ�𝑢(𝑥, 0)𝑐1(𝑡) + 𝑢(𝑥)𝑐2(𝑡)� + 

                   𝒩�𝑢(𝑥, 0)𝑐1(𝑡) + 𝑢(𝑥)𝑐2(𝑡)� + 𝑓(𝑥, 𝑡) 
     (47) 

In this case, the fractional partial differential 
equation is changed into a fractional ordinary 
differential equation, which simplifies the problem 
at hand. Furthermore, if we consider 𝛼 as an integer 
number in Eq. (47), then we obtain an ordinary 
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differential equation, which means further 
simplification. Finally, the target unknowns 𝑐1(𝑡) 
and 𝑐2(𝑡) can be obtained by utilizing Eq. (47) and 
the initial conditions in Eq. (45). 

4 Applications 

In this section, in order to assess the applicability 
and the accuracy of the procedure described in the 
last section, we consider the following five 
examples. In examples 4.3 and 4.4, two cases of the 
single-variable time-fractional Fokker-Plank 
equation are solved. The general forms of these 
equations are as follows: 
 

𝜕𝛼𝑢
𝜕𝑡𝛼

= �−
𝜕
𝜕𝑥

𝐴(𝑥, 𝑡) +
𝜕2

𝜕𝑡2
𝐵(𝑥, 𝑡)� 𝑢 

𝜕𝛼𝑢
𝜕𝑡𝛼

= �−
𝜕
𝜕𝑥

𝐴(𝑥, 𝑡,𝑢) +
𝜕2

𝜕𝑡2
𝐵(𝑥, 𝑡,𝑢)� 𝑢 

 

    These equations are used in numerous 
applications within various areas in physics such us 
plasma, surface, laser and polymer physics. In 
examples 4.1 and 4.5, the forward and backward 
Kolmogorov equations are solved. 

Example 4.1 Consider the linear time-fractional 
partial differential equation 
 
𝐷𝑡𝛼𝑢 = 𝑢𝑥𝑥 + 𝑢𝑥 ,                                                 (48) 

where  𝑡 > 0, 𝑥𝜖ℝ, 0 < 𝛼 ≤ 1, subject to the initial 
condition  

𝑢(𝑥, 0) = 𝑥                                                          (49) 

and  𝑢(𝑥) = 𝜕
𝜕𝑥
𝑢(𝑥, 0) = 1  

    Choose the initial approximation 

 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0)𝑐1(𝑡) + 𝑢(𝑥)𝑐2(𝑡) 

                 = 𝑥𝑐1(𝑡) + 𝑐2(𝑡),                                 (50) 

then  

𝐷𝑡𝛼𝑣1 = 𝐷𝑡𝛼�𝑥𝑐1(𝑡) + 𝑐2(𝑡)� − 

                
𝜕2

𝜕𝑥2
�𝑥𝑐1(𝑡) + 𝑐2(𝑡)� − 

               
𝜕
𝜕𝑥

�𝑥𝑐1(𝑡) + 𝑐2(𝑡)� ≡ 0, 

𝐷𝑡𝛼𝑣1 = 𝑥𝐷𝑡𝛼𝑐1(𝑡) + 𝐷𝑡𝛼𝑐2(𝑡) − 𝑐1(𝑡) ≡ 0,       (51) 

 

     We obtain the fractional differential system  

�
𝐷𝑡𝛼𝑐1(𝑡) = 0,

  
𝑐1(0) = 1,     

�                                                      (52) 

�
𝐷𝑡𝛼𝑐2(𝑡) − 𝑐1(𝑡) = 0,

   
𝑐2(0) = 0,                   

�                                         (53) 

 Solving Eq. (52) and (53) by applying Eq. (24), we 
obtain 

 𝑐1(𝑡) = 1  

𝑐2(𝑡) = 𝑡𝛼

𝛤(𝛼+1)
                                                      (54) 

and the exact solution is 

𝑢(𝑥, 𝑡) = 𝑥 + 𝑡𝛼

𝛤(𝛼+1)
                                           (55) 

    If we put 𝛼 → 1 in Eq. (55) or solve Eq. (52) and 
(53) with 𝛼 = 1 , we obtain the exact solution  

 𝑢(𝑥, 𝑡) = 𝑥 + 𝑡                                                   (56) 

Example 4.2 Consider the linear time-fractional 
partial differential equation  

𝐷𝑡𝛼𝑢 = 𝑢𝑥𝑥 + 𝑢,                                                   (57) 

where   𝑡 > 0, 𝑥𝜖ℝ, 0 < 𝛼 ≤ 1,  subject to the 
initial condition  

𝑢(𝑥, 0) = cos (𝜋𝑥) 

Choose the initial approximation 

 𝑢0(𝑥, 𝑡) = 𝑐𝑜 𝑠(𝜋𝑥) 𝑐1(𝑡) − 𝜋𝑠𝑖𝑛 (𝜋𝑥)𝑐2(𝑡),    (58) 

then  

𝐷𝑡𝛼𝑣1 = [𝐷𝑡𝛼𝑐1(𝑡) + 𝜋2𝑐1(𝑡) − 𝑐1(𝑡)]𝑐𝑜𝑠 (𝜋𝑥) − 

          𝜋𝑠𝑖𝑛 (𝜋𝑥)[𝐷𝑡𝛼𝑐2(𝑡) + 𝜋2𝑐2(𝑡) − 𝑐2(𝑡)] ≡ 0,  

    (59) 

 We obtain the fractional differential system  

�
𝐷𝑡𝛼𝑐1(𝑡) + 𝜋2𝑐1(𝑡) − 𝑐1(𝑡) = 0,

 
𝑐1(0) = 1,                                        

�                        (60) 

�
𝐷𝑡𝛼𝑐2(𝑡) + 𝜋2𝑐2(𝑡) − 𝑐2(𝑡) = 0,

 
𝑐2(0) = 0,                                        

�                        (61) 

Solving Eq. (60) and (61) by applying Eq. (24), we 
obtain  

𝑐1(𝑡) = 𝐷𝑡𝛼−1 �𝑡𝛼−1𝐸𝛼,𝛼�(𝜋2 − 1)𝑡𝛼�� 
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          = 𝐸𝛼�(𝜋2 − 1)𝑡𝛼�,               

𝑐2(𝑡) = 0,                                                            (62) 

and the exact solution is  

𝑢(𝑥, 𝑡) = 𝑐𝑜 𝑠(𝜋𝑥)𝐸𝛼�(𝜋2 − 1)𝑡𝛼�,                  (63) 

If we put 𝛼 → 1 in Eq.(63) or solve Eq. (60) and (61) 
with 𝛼 = 1, we obtain the exact solution  

 𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠(𝜋𝑥) 𝑒−(𝜋2−1)𝑡 ,                             (64) 

Example 4.3 Consider the linear time-fractional 
Fokker-Plank equation 

𝐷𝑡𝛼𝑢 = − 𝜕
𝜕𝑥
�4𝑢
𝑥
− 𝑥

3
� 𝑢 + 𝜕2

𝜕𝑥2
𝑢2,                          (65) 

where  𝑡 > 0, 𝑥𝜖ℝ, 0 < 𝛼 ≤ 1, subject to the initial 
condition  

𝑢(𝑥, 0) = 𝑥2                                                       (66) 

    Choose the initial approximation 

 𝑢0(𝑥, 𝑡) = 𝑥2𝑐1(𝑡) + 2𝑥𝑐2(𝑡).                          (67) 

then 

𝐷𝑡𝛼𝑣1 = −𝑥2�𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡)� − 

            𝑥 �𝐷𝑡𝛼𝑐2(𝑡) − 2
3
𝑐2(𝑡) + 4𝑐1(𝑡)𝑐2(𝑡)� − 

            2𝑐22(𝑡) ≡ 0,                                             (68) 

 We obtain the following fractional differential 
system 

�
𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡) = 0,

 
𝑐1(0) = 1,                  

�                                         (69) 

�
𝑐22(𝑡) = 0,                           

 
𝑐2(0) = 0,                           

�                                  (70) 

Solving Eq. (69), (70) by applying Eq. (24), we 
obtain  

𝑐1(𝑡) = 𝐷𝑡𝛼−1 �𝑡𝛼−1𝐸𝛼,𝛼(𝑡𝛼)� = 𝐸𝛼(𝑡𝛼),        

𝑐2(𝑡) = 0,                                                            (71) 

and the exact solution is  

𝑢(𝑥, 𝑡) = 𝑥2𝐸𝛼(𝑡𝛼),                                           (72) 

If we put 𝛼 → 1 in Eq.(50) or solve Eq. (47) and (48) 
with 𝛼 = 1 , we obtain the exact solution  

 𝑢(𝑥, 𝑡) = 𝑥2𝑒𝑡                                                   (73) 

which is in full agreement with the result in Ref. 
[39].  

Example 4.4 Consider the time-fractional Fokker-
Plank equation  

𝐷𝑡𝛼𝑢 = −
𝜕
𝜕𝑥

 (𝑒𝑡 𝑐𝑜𝑡ℎ(𝑥) 𝑐𝑜𝑠ℎ(𝑥) + 𝑒𝑡 𝑠𝑖𝑛ℎ(𝑥)

− 𝑐𝑜𝑡ℎ(𝑥))𝑢 +
𝜕2

𝜕𝑥2
𝑒𝑡 𝑐𝑜𝑠ℎ(𝑥)𝑢, 

 (74) 
where  𝑡 > 0, 𝑥𝜖ℝ, 0 < 𝛼 ≤ 1, subject to the initial 
condition  

𝑢(𝑥, 0) = sinh(𝑥),                                               (75) 

    Choose the initial approximation 

 𝑢0(𝑥, 𝑡) = 𝑠𝑖𝑛ℎ(𝑥) 𝑐1(𝑡) + 𝑐𝑜𝑠ℎ (𝑥)𝑐2(𝑡).        (76) 

then 

𝐷𝑡𝛼𝑣1 =
1

𝑠𝑖𝑛ℎ2(𝑥) 

                 [𝑠𝑖𝑛ℎ(𝑥) 𝑐𝑜𝑠ℎ2(𝑥) �𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡)� + 

                   𝑠𝑖𝑛ℎ(𝑥) �𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡)� + 

                   𝑐𝑜𝑠ℎ3(𝑥) �𝐷𝑡𝛼𝑐2(𝑡) − 𝑐2(𝑡)� + 

                      𝑐𝑜𝑠ℎ(𝑥) �2𝑐2(𝑡) − 𝐷𝑡𝛼𝑐2(𝑡)� −           

                   𝑒𝑡𝐷𝑡𝛼𝑐2(𝑡)] ≡ 0,                              (77) 

We obtain the following fractional differential 
system 

�
𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡) = 0,

 
𝑐1(0) = 1,                     

�                                        (78) 

�
𝐷𝑡𝛼𝑐2(𝑡) − 𝑐2(𝑡) = 0,    

 
𝑐2(0) = 0,                           

�                                  (79) 

 Solving Eq. (78), (79) by applying Eq. (24), we 
obtain  

𝑐1(𝑡) = 𝐷𝑡𝛼−1 �𝑡𝛼−1𝐸𝛼,𝛼(𝑡𝛼)� = 𝐸𝛼(𝑡𝛼),                  

𝑐2(𝑡) = 0,                                                          (80) 

and the exact solution is  

𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠(𝜋𝑥)𝐸𝛼(𝑡𝛼),                                 (81) 

    If we put 𝛼 → 1 in Eq.(81) or solve Eq. (78) and 
(79) with 𝛼 = 1 , then we obtain the exact solution 
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  𝑢(𝑥, 𝑡) = 𝑒𝑡𝑐𝑜 𝑠(𝜋𝑥)                                       (82) 

which is in full agreement with the result in Ref. 
[37]. 

Example 4.5 Consider the non-homogenous time-
fractional Backward Klomogorov equation  
 
𝐷𝑡𝛼𝑢 = −𝑥2𝑒𝑡𝑢𝑥𝑥 + (𝑥 + 1)𝑢𝑥 + 𝑡𝑥,                (83) 

where  𝑡 > 0, 𝑥𝜖ℝ, 0 < 𝛼 ≤ 1, subject to the initial 
condition 

𝑢(𝑥, 0) = x + 1,                                                  (84) 

    Choose initial approximation 

 𝑢0(𝑥, 𝑡) = (𝑥 + 1)𝑐1(𝑡) + 𝑐2(𝑡).                       (85) 

then 

𝐷𝑡𝛼𝑣1 = 𝑥(𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡) − 𝑡) +          

             �𝐷𝑡𝛼𝑐1(𝑡) + 𝐷𝑡𝛼𝑐2(𝑡) − 𝑐1(𝑡)� ≡ 0, 
(86) 

We obtain the fractional differential system 

�
𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡) − 𝑡 = 0,

  
 𝑐1(0) = 1,                         

�                                   (87) 

�
𝐷𝑡𝛼𝑐2(𝑡) + 𝐷𝑡𝛼𝑐1(𝑡) − 𝑐1(𝑡) = 0,

   
 𝑐2(0) = 0,                                          

�                     (88)                                             

Solving Eq. (87), (88) by applying Eq. (28) and (5), 
we obtain  

𝑐1(𝑡) = �𝐺2(𝑡 − 𝜁)𝜁𝑑𝜁
𝑡

0

+ 𝐷𝑡𝛼−1 �𝑡𝛼−1𝐸𝛼,𝛼(𝑡𝛼)� 

    =  �
𝑡𝛼𝑗+𝛼+1

(𝛼𝑗 + 𝛼 + 1)(𝛼𝑗 + 𝛼)𝛤(𝛼𝑗 + 𝛼)

∞

𝑗=0

+ 𝐸𝛼(𝑡𝛼) 

(89) 
 

𝑐2(𝑡) = 𝑡𝛼+1

𝛤(𝛼+2)
                                                         (90) 

and the exact solution is  

𝑢(𝑥, 𝑡) = (𝑥 + 1)[𝐸𝛼(𝑡𝛼) + 

   �
𝑡𝛼𝑗+𝛼+1

(𝛼𝑗 + 𝛼 + 1)(𝛼𝑗 + 𝛼)𝛤(𝛼𝑗 + 𝛼)

∞

𝑗=0

] +
𝑡𝛼+1

𝛤(𝛼 + 2)
, 

 (91) 
    If we put 𝛼 → 1 in Eq. (91) or solve Eq. (87) and 
(88) with 𝛼 = 1, we obtain the exact solution 

𝑢(𝑥, 𝑡) = (𝑥 + 1)[𝐸1(𝑡) +    

                      �
𝑡𝑗+2

𝛤(𝑗 + 1)(𝑗 + 2)(𝑗 + 1)

∞

𝑗=0

] +
𝑡2

𝛤(3)
, 

            = (𝑥 + 1)(2𝑒𝑡 − 𝑡 − 1) − 1
2
𝑡2,            (92) 

4 Conclusion 
It is well known that numerous mathematical 
models of physical, chemical and biological systems 
lead to or end up with partial differential equations. 
These equations may be of fractional or integer 
order. Finding the exact solutions for these 
equations is very important for the understanding of 
many phenomena and processes in natural sciences. 
    In this paper, we have proposed a new analytical 
method based on the homotopy perturbation method 
(HPM) to solve time fractional partial differential 
equations. This method is intuitive and very easy to 
understand. It can be easily implemented and it is 
fast (i.e. computationally efficient) in finding the 
desired exact solution. Since our new approach 
converts a partial differential equation (PDE) into an 
ordinary differential equation (ODE) and after that 
proceeds to solve the resulting ODE. Thus, it can be 
used to solve equations with fractional and integer 
order with respect to time. 

Acknowledgment 

The authors would like to thank Prof. Bjorn-Erik 
Erlandsson, Maryam Shabany and Mehran Shafaiee 
for their support and for fruitful scientific 
discussions.  
 
 
References: 
[1] A. A. M. Arafa, S. Z. Rida, H. Mohamed, 

Homotopy Analysis Method for Solving 
Biological Population Model, Communications 
in Theoretical Physics, vol.56, No.5, 2011. 

[2] G. Adomian, Solving frontier problems of 
physics: The decomposition method, 
Kluwer Academic Publishers, Boston and 
London, 1994. 

[3] S. Bhalekar, V. Daftardar-Gejji, New iterative 
method: Application to partial differential 
equations, Applied Mathematics and Computer, 
vol.203 (2), 2008, pp 778-783. 

[4] V. Daftardar-Gejji, S. Bhalekar, Solving 
fractional boundary value problems with 
Dirichlet boundary conditions using a new 
iterative method, Computers &amp; 
Mathematics with Applications, vol.59, No.5, 
2010, pp. 1801-1809. 

WSEAS TRANSACTIONS on MATHEMATICS
Abdolamir Karbalaie, Mohammad Mehdi 
Montazer, Hamed Hamid Muhammed

E-ISSN: 2224-2880 915 Issue 10, Volume 11, October 2012



[5] E. N. Bruce, Biomedical Signal Processing and 
Signal Modeling, John Wiley, New York, 2001. 

[6] J. F. Cheng, Y. M. Chu, Solution to the linear 
fractional differential equation using Adomian 
decomposition method, Mathematical 
Problems in Engineering,  2011, doi:10.1155 
/2011/587068. 

[7] Z. Z. Ganji, D. D. Ganji, H. Jafari, Application 
of the homotopy perturbation method to 
coupled system of partial differential equations 
with time fractional derivatives, Topological 
Methods in Nonlinear Analysis, vol.31, 2008, 
pp. 341–348. 

[8] K. A. Gepreel, The homotopy perturbation 
method applied to the nonlinear fractional 
Kolmogorov–Petrovskii–Piskunov equations, 
Applied Mathematics Letters, vol.24, No.8, 
2011, pp. 1428-1434. 

[9] J. H. He, Approximate analytical solution for 
seepage flow with fractional derivatives in 
porous media, Computer Methods in Applied 
Mechanics and Engineering, vol.167 (1-2), 
1998,  pp. 57– 68. 

[10] J. H. He, Homotopy perturbation technique. 
Computational, Methods in Applied Mechanics 
and Engineering, vol.178, 1999, pp. 257–262. 

[11] J. H. He, A coupling method of a homotopy 
technique and a perturbation technique for non-
linear problems, International Journal of Non-
Linear Mechanics, vol.35, 2000, pp. 37-43. 

[12] J. H. He, Homotopy perturbation method: a 
new nonlinear analytical technique, Applied 
Mathematics and Computation, vol.135, 2003, 
pp. 73-79. 

[13] J. H. He, Solution of nonlinear equations by an 
ancient Chinese algorithm, Applied 
Mathematics and Computer, vol.151, 2004, pp. 
293-297 

[14] J. H. He, Limit cycle and bifurcation of 
nonlinear problems, Chaos, Solitons & Fractals, 
vol.24, 2005, pp. 827-833 

[15] J. H. He, New interpretation of homotopy 
perturbation method, International Journal of 
Modern Physics B, vol.20, 2006b, pp. 2561-
2668 

[16] J. H. He, Homotopy perturbation method for 
solving boundary value problems, Physics 
Letters  A, vol. 350, 2006c, pp. 87–88. 

[17] R. Hilfer (Ed.), Applications of Fractional 
Calculus in Physics,World Scientific Singapore, 
2000. 

[18]  J. Keener, J. Sneyd, Mathematical Physiology, 
Springer, New York, 2004 

[19] N. A. Khan, N. U. Khan, A. Ara, M. Jamil, 
Approximate analytical solutions of fractional 

reaction-diffusion equations, Journal of King 
Saud University – Science, vol. 24, No.2, 2012, 
pp. 111–118. 

[20] M. Khan, M. A. Gondal, I. Hussain, S. Karimi 
Vanani, A new comparative study between 
homotopy analysis transform method and 
homotopy perturbation transform method on a 
semi-infinite domain, Mathematical and 
Computer Modeling, vol.55, No.3–4, 2012, pp. 
1143-1150 

[21] A. A. Kilbas, M. Saigo, R. K. Saxena,  
Generalized Mittag-Leffler function and 
generalized fractional calculus operators, 
Integral Transforms and Special Functions, 
vol.15, 2004, pp. 31–49 

[22] A. A. Kilbas,  N. H. M. Srivastava, J. J. Trujillo, 
Theory and Applications of Fractional 
Differential Equation, Elsevier, Amsterdam, 
2006 

[23] Y. Liu, Approximate solutions of fractional 
nonlinear equations using homotopy 
perturbation transformation method, 
Mathematical Problems in Engineering, 
2010??? 

[24] F. Mainardi, Fractional diffusive waves in 
viscoelastic solids. in: J.L. Wegner, F.R. 
Norwood. (Eds.) IUTAM Symposium-
Nonlinear Waves in Solids, Fairfield, 1995, pp. 
93-97 

[25] F. Mainardi, Y. Luchko , G. Pagnini, The 
fundamental solution of the space-time 
fractional diffusion equation, Fractional 
Calculus and Applied Analysis, Vol.4, No.2 
2001, pp. 153-192 

[26] R. L. Magin, Fractional Calculus in 
Bioengineering, Begell House, Connecticut, 
2006. 

[27] R. L. Magin and M. Ovadia, Modeling the 
cardiac tissue electrode interface using 
fractional calculus, J. Vibration and Control , 
vol.14, 2008, pp. 1431-1442. 

[28] K. S. Miller, B. Ross, An Introduction to the 
fractional Calculus and Fractional Differential 
Equations.  John Wiley and Sons, 1993. 

[29] S. Momani, Z. Odibat, A novel method for 
nonlinear fractional partial differential 
equations: Combination of DTM and 
generalized Taylor's formula, Journal of 
Computational and Applied Mathematics, vol. 
220, No.(1-2), 2008, pp. 85-95.   

[30] M. A. Noor, S. T. Mohyud-Din, Variational 
Homotopy Perturbation Method for Solving 
Higher Dimensional Initial Boundary Value 
Problems, Mathematical Problems in 

WSEAS TRANSACTIONS on MATHEMATICS
Abdolamir Karbalaie, Mohammad Mehdi 
Montazer, Hamed Hamid Muhammed

E-ISSN: 2224-2880 916 Issue 10, Volume 11, October 2012



Engineering, 2008, Article ID 696734, 
doi:10.1155/2008/696734 

[31] Z. Odibat, S. Momani, A reliable treatment of 
homotopy perturbation method for Klein–
Gordon equations, Physics Letters A, vol.365, 
No.5–6, 2007, pp. 351-357 

[32] I. Podlubny, Fractional Differential Equations: 
An Introduction to Fractional Derivatives, 
Fractional Equations, to Methods of Their 
Solution and Some of Their Applications, vol. 
198 of Mathematics in Science and 
Engineering, Academic Press, New York, 1999. 

[33] I. Podlubny, The Laplace Transform Method 
for Linear Differential Equations of the 
Fractional Order, Slovak Academy of Sciences, 
Slovak Repablic, 1994. 

[34] M. Rafei and D. D Ganji, Explicit solutions of 
Helmholtz equation and fifth-order KdV 
equation using homotopy perturbation method. 
International Journal of Nonlinear Sciences 
and Numerical Simulation, vol.73, 2006, pp. 
321–329. 

[35] S. G. Samko, A. A. Kilbas, O. I. Marichev, 
Fractional Integrals and Derivatives: Theory 

and Applications. Gorden and Barench, 
Amesterdam, 1993. 

[36] V. Srivastava, K. N. Rai, A multi-term 
fractional diffusion equation for oxygen 
delivery through a capillary to tissues, 
Mathematical and Computer Modelling, vol. 51, 
No.5-6, 2010, pp. 616-624. 

[37] G. Yang, R. Chen, L. Yao, On exact solutions 
to partial differential equations by the modified 
homotopy perturbation method. Acta 
Mathemathicae Applicatae Sinica, vol.28, No 1, 
2012, pp. 91-98. 

[38] A. Yıldırım, Application of the homotopy 
perturbation method for the Fokker-Planck 
equation, Communications in Numerical 
Methods in Engineering, vol.26, No.9, 2008a, 
pp. 1144–1154. 

[39] A. Yildirim, Analytical approach to Fokker-
Planck equation with space- and time-fractional 
derivatives by means of the homotopy 
perturbation method. Journal of King Saud 
University- Science, vol.22, No.4, 2010, pp. 
257-264. 

 
 

WSEAS TRANSACTIONS on MATHEMATICS
Abdolamir Karbalaie, Mohammad Mehdi 
Montazer, Hamed Hamid Muhammed

E-ISSN: 2224-2880 917 Issue 10, Volume 11, October 2012




