WSEAS TRANSACTIONS on MATHEMATICS

Abdolamir Karbalaie, Mohammad Mehdi
Montazer, Hamed Hamid Muhammed

New Approach to Find the Exact Solution of Fractional Partial
Differential Equation

ABDOLAMIR KARBALAIE *, MOHAMMAD MEHDI MONTAZER?,
HAMED HAMID MUHAMMED?

L3 Division of Informatics, Logistics and Management, School of Technology and Health STH
Royal Institute of Technology KTH, SE-100 44, Stockholm, SWEDEN
! abdolamir.karbalaie@sth.kth.se, * hamed. muhammed@sth.kth.se

2 Department of Mathematics, Khomeini Shahr Branch
Islamic Azad University, Khomeini Shahr, Isfahan, IRAN
? montazari @iaukhsh.ac.ir
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by using a modified homotopy perturbation method (MHPM).The exact solutions are constructed by choosing
an appropriate initial approximation and only one term of the series obtained by MHPM. The exact solutions
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1 Introduction

In recent years, fractional calculus has been
increasingly used for numerous applications in
many scientific and technical fields such as medical
sciences, biological research, as well as various
chemical, biochemica and physica fields.
Fractional calculus can be, for instance, employed to
solve a lot of problems within the biomedical
research field. Such an important application is
studying membrane biophysics and polymer
viscoelasticity [17].

Other promising biomedical application fields
where fractional calculus can be used is anayzing
chaos and nonlinear systems of fractional order. An
interesting example of the practical application of
fractional order models is to use these models to
improve the behavior of bioelectrodes. Such
bioelectrodes are usually used for al forms of
biopotential  recording  purposes, such as
Electrocardiography  (ECG), Electromyo-graphy
(EMG) and Electroencephalography (EEG) [26, 27,
18, 5]. In addition to that, theses bioelectrodes are
also used for functional electrical stimulation, as in
the case of pacemaker and deep brain stimulation
[26, 27, 18, 5].
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Almost all of the approaches used to solve the
problems mentioned above end with solving
fractional partial differentia equations (FPDE).
Therefore, it is natural to see that modeling by using
FPDE have interested a wide segment of researchers
[39, 21] within numerous application areas in
natural and technological sciences.

Srivastava and Rai [36] have used the fractiona
diffusion equation to construct a mathematical
model for oxygen delivery to tissues through a
capillary. Mainardi [29] also used fractiona partia
differential equations to model the propagation of
mechanical diffusive wavesin viscoelastic media.

Numerous methods and approaches were
proposed and used to solve FPDEs. Some of these
methods are andytica, such as the Fourier
transform method [27], the Fractional Green's
function method [24], the popular Laplace transform
method [31, 32], the iteration method [34], the
Mellin transform method and the method of
orthogonal polynomials [31].

Numerical methods and approaches are also
popular and used to obtain approximate solutions of
FPDEs. Examples of such numerical methods for
solving FPDEs are the Homotopy Perturbation
Method (HPM) [6, 9, 11, 14, 15], the Differentia
Transform Method (DTM) [28] the Variationa
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Iteration Method (VIM) [8], the New lterative
Method (NIM) [3, 4], the homotopy anaysis
method (HAM) [1, 17], and the Adomian
Decomposition Method (ADM) [2].

Among these numerical methods, the VIM and
the ADM are the most popular ones that are used to
solve differential and integral equations of integer
and fractiona order. The HPM is a universa
approach which can be used to solve both fractional
ordinary differential eguations FODEs as well as
fractional partia differential equations FPDES.

This method (the HPM), was originally proposed
by He [9, 10]. The HPM is a coupling of homotopy
in the topology and the perturbation method. The
method is utilized to solve various types of
equations such us the Hellmholtz equation, the fifth
order KdV [34], the Kleein-Gorden equation [31],
the Fokker-Panck equation [38, 39], the nonlinear
Kolmogorov-Petrovskii-Piskunov Equation [8] as
well as some other types of equations as proposed
and used in [12, 13, 14].

Various combinations of the methods mentioned
previousy have been proposed recently to solve
fractional partial differential equations FPDES.
Examples of such combination methods are the
Homotopy Anaysis Transform Method, the
Variational Homotopy Perturbation Method and the
Homotopy Perturbation Transformation Method.

The Homotopy Analysis Transform Method is a
combination of the Homotopy Analysis Method and
the Laplace Decomposition Method [20].

In the case of the Variationa Homotopy
Perturbation Method, Noor and Mohyud-Din [30]
have combined the Variational Iteration Method and
the Homotopy Perturbation Method. They used this
method for solving higher dimensiona initial
boundary value problems.

On the other hand, the Homotopy Perturbation
Transformation Method was constructed by
combining two powerful methods, namely the
Homotopy Perturbation Method and the Laplace
Transform Method [23]. In the latter case, this
successful combination could compensate for the
limitation of the Laplace Transform Method which
was totally incapable of handling nonlinear
equations.

In general, there exists no method that gives an
exact solution for FPDEs and most obtained
solutions are only approximations. However, Yang
[37] used the modified homotopy perturbation
method (MHPM) to aobtain the exact solution of the
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Fokker-Plank equation which is a PDE of integer
order.

In this paper, the MHPM is used to derive the
exact solution of various types of FPDEs instead of
PDEs. We present an elegant fast approach by
designing and utilizing a proper initia
approximation which satisfies the initial condition
of the HPM. Successful design results are obtained
when this step is performed by means of separation
of variables.

The structure of this paper is as follows: In
section 1, we begin with an introduction to some
necessary definitions of fractional calculus theory.
In section 2, the basic idea of the MHPM is
presented. In section 3, we present four examples to
show the efficiency of using the MHPM to solve
FPDEs. Findly, relevant conclusions are drawn in
section 4.

2 Basic Definitions of Fractional

Calculus

In this section, we present the basic definitions and
properties of the fractional calculus theory, which
are used further in this paper.

Definition 2.1. A read functionf(t),t > 0, issaid to
be in the space C,,0 € R if there exists a red
number p > o, such that f(t) = tPf,(t), where
f1(t) € C[0, ), and it is said to be in the space CJ*
if f*eC,,meN.

Definition 2.2. The left sided Riemann—Liouville

fractional integral of order « = 0, of a function
f € C;,0 = —1 isdefined as:

JEFO) = 15§ (€= D™ (), @)

where a>0,t >0 and I'(a) is the gamma
function.  Properties of the operator J& for
fecC,u=-1, a,f=0,y=-1 can be found
for instance in [35], and are defined as follows

JOF@) = f(0).
JEEF@®) = 1P r o).
afr ) = JP1er o).

ayy — r(y+1)
]t t r(a+y+1)

)
(©)
4
a+y

©)

Definition 2.3. The fractional derivative of f(t)in
the Caputo sense is defined as

D f(t) = J¢~*De f(t)
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= T(n- a)f (t = e fM(Ddg, (6)

foon-1<a<nneN,t>0,fe(}u=-1

For Caputo’ s derivative we have

DfC =0, (Cisaconstant) )
r(y+1) y-a _
paty = fg-ant ~ ¥> 71 ®
0 y<a-1
k
EDEF(E) = F(6) — Zrsa FR (09 =, )

Definition 2.4. The single parameter and the two
parameters variants of the Mitting-leffler function
are denoted by E,(t), and E, g(t), respectively,
which are relevant for their connection with
fractional caI culus, and are defined as,

E(t)_zf(a']+1) a>0,tecC
t:z,—, a,f>0,teC
Eqp(t) j=0['(a] 5 B
(10)
Their k-th derivatives are
dx
x)
FEGEPIAG)
o (k+ I
=) Ao,
£ O]!F(a]+ak+1)
]=
(11)
E& @) = —Ea @,
o (k)
:Z_ o
j_oj!F(a] +ak + )
(12)

Some special cases of the Mitting-Leffler
function are as follows:

E.(t) =et (13)

Eq1(t) = Eq(8) (14)

ak _ ke
[P Eqp(at®)] = tF*E, 5 (at®)  (15)
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Other properties of the Mitting-leffler functions
can be found in [21]. These functions are
generalizations of the exponential function, because,
most linear differential equations of fractional order
have solutions that are expressed in terms of these
functions.

Theorem 2.5. Consider the following n-term linear
fractional differential equation [6]:

(@nDf" + ay_y DF 4+ aeD ) u(t) = £(©),
(16)

with the constant initial condition:

wi(0) =Cy, i=01,..,n j;=12,..,1; (17)

where al-,Cl-jl. eR, n; — 1< :Bi < n;,n; € NU{O}

and

Bo < P1 <

Then, we see that the analytical general solution
of Eq. (12) is

<P <n<B,<n+1

t
u(t) = f Go(t — ) F()dT +
0

o -1

Z Z a;Cij, Gl (),

i=0 j;=0
(18)

where G, (t) is the Green function and it is defined
as

1m
G()__ - (-1)

m!
an m=o

x Z (m; ko, Ky, oo Kpg)
ko,kl,...,kn_220
k0+k1+“'+kn_z=m
n-2

k
x (a_p) P ¢ (Bn=Bn-1)m+ B+ E123 (Bn1-B) k-1

p=0
m) n-1 g, Bn—1)
XEBn Bn-1.Bn+ 2] o(ﬁn 1= B})k]_l( an D ’
(19)
where
m!
(M5 ko, Ky, vy knz) = e —— (20)
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and E) is the m-th derivative of the Mitting-

Leffler function.

In a special case of the latter theorem, the
following relaxation-oscillation equation [6] is
solved:

Dfu(t) + Au(t) = f(t), t>0, (21)

ul(0)=b;, i=12,..,n—1, (22)

where b; arerea constantsand n—1<a <n.

By utilizing theorem 2.5 we obtain the solution of
Eqg. (21) asfollows:

¢ n-1 '
u® = [ 6= FQdg + Y bpET6,0)
0 =

(23)
where G,(t) = t*1E, o (—At%).

It is easy to see that if 0 <a <1, then the
solution of Eq. (21) becomes as follows:

u(®) = f Go(t = O) F(Q)dT + boDF G, (£) (24)

which will be used in the coming examples,
discussed in this paper.

3 The Basic | dea of the Homotopy
Perturbation Method

The Homotopy Perturbation Method (HPM) is a
combination of the Homotopy technique and the
classical Perturbation Method. The HPM is applied
to various nonlinear problems as mentioned in the
previous sections of this paper.

In this section, we will briefly present the
algorithm of this method. To achieve our goal, we
consider the nonlinear differential equation:

Alw)—f(r)=0, req,

B(w %/, )=0, rer, )

where B is aboundary operator, I' isthe boundary of
thedomain 02, f(r) isaknown analytic function and
A isagenera differential function operator.

The operator A can be decomposed into a linear
operator, denoted by £, and a nonlinear operator,
denoted by V. Therefore, Eq. (25) can be written as
follows

Lw)+Nw)—f@r)=0, (26)
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By using the homotopy perturbation technique, we
construct a homotopy v(r,p): Q x [0,1] - R which
satisfies:

Hw,p) =1 -p)Lw) - L{(u)] +

pl[AW) —f(r)] =0, 0<p<1, (27)
or
H(w,p) = L) — L(ug) + pL(ug) +
pINWw)-f()]=0, 0<p<1, (28)

wherer € O, u, is an initial approximation for Eq.
(25) and p is an embedding parameter. When the
value of p ischanged fromp =0 to p = 1, wecan
easily see that

Hw,0) =L(w) —L(uy) =0, (29)
Hw,1)=Lw)+NWw)—f(r)
=A) - f(r) =0, (30)

This changing process is called deformation, and
Eq. (29) and (30) are called homotopic in topology.
If the p-parameter is considered as small, then the

solution of Eq. (27) and (28) can be expressed as a
power seriesin p, asfollows:

v =200V = vo + pvy + p?vy + p3vs + - (3L)

The best approximation for the solution of Eq. (25)
IS

ZUL- =vo+v,t+tvy+v3+-,

i=0

u=Ilimv=
p—1

(32)

Now we are able to apply the HPM to solve the
class of time fractional partial differential equations
defined asfollows:

Dfu(x,t) = L(u(x,t)) +

N(u(x,t)) + f(x,t), (33)
subject to theinitial condition
u(x,0) = g(x) (34)

where 0 < a <1 in Df, which is identical to the
Cupoto fractional derivative of order a.
Now we construct a homotopy

v(x,t,p): 2 x[0,1] » R, which satisfies
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H(w(x,t),p) =1 - p)[DE(v(x, 1)) —
D& (uo(x, )] + p[Df (w(x, 1)) — L(v(x, 1)) —

L(v(x,0)) = N(w(x,0) — f(x,0)] =0,

(35)
where p €[0,1] and wuy(x,t) is an initia
approximation of the solution of Eq.(33) which also
satisfiestheinitial condition in Eq. (34).

By simplifying Eq. (35) we get

D (v(x, t)) = D¢ (ug(x, £)) + p[D¢ (uo(x, 1)) —

Lw(x,t)) = N(w(x,t)) — f(x, )]

(36)
where the embedding parameter p is considered to
be small and applied to the classical perturbation
technique.

The next step is to use this homotopy parameter p
to expand the solution into the following form:

v(x,t) = vo(x,t) + pvy(x, t) + p?v,(x, t) + -
(37)
Eventually, at p = 1, we will obtain the approximate

solution of Eq. (33). By substituting Eqg. (37) into Eq.

(36) and equating the terms with identical powers of
p, we can obtain a series of equations as the follows

p%: DE(wo(x, 1)) = DE (o (x, 1)),

Pl DE(wi(x, 1)) = DE(vo(x, ) — L(vo(x, ) -
N(wo(x, ) = £ (x,8),

P2 DE(v(x,0) = DE(ws (x, 1)) — £(v4 (x, D)) -

N (Bt (D), (39)

Applying the operator J#, which is the Riemann—
Liouville fractiona integral of order @ = 0, on both
sides of all cases of EQ.(38), the solution can be
given by

vo(x,t) = ug(x, t),

vy (x, ) = JE[DE(vo(x, 1)) — L(vo(x, 1)) —
N (wo(x, 1)) = f(x, 0],

vy (x, ) = JE[DE(v1(x, 1)) — L(vy(x, 1)) —

N (vo(x, £), v1(x, )],

(39)
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By utilizing the results in Eg. (39), and
substituting them into Eq. (37), we get an accurate
n™ approximation of the exact solution as follows

Un(X,8) = Vo +v1 + -+ vp = XiLo Vs (40)

In Eq. (40), if there exists somev, =0,n>1,
then the exact solution can be written in the
following form

u(x,t) =vyg+v +-+v,_ = ?;01 v; (41)
Now we can introduce the core of the work in this

paper. At first, we consider the initial approximation
of Eq.(25) asfollows

uo(x, t) = ulx,0)cy (t) + ulx)cy (t), (42)

where u(x, 0) isthe initia condition of Eq.(18), and
ou(x,0)

u(x) = T .

The final goa of our new approach is finding
¢, (t) and c,(t). Hence, for simplicity, we assume
that v, (x,t) = 0 in Eq. (28), which means that the
exact solution in Eq. (28) is(x,t) = vy(x,t). And
when solving Eq. (26), we obtain the result

ug(x, t) = vo(x, t). (43)
Since u(x, t) satisfies the initial condition as well
asEq. (29), we get
u(x,0) = vy(x,0)
= u(x,0)c1(0) + u(x)c,(0) = g(x),  (44)
and
¢1(0) = 1,¢,(0) =0, (45)

On the other hand, we have
DE(wy(x, t)) = Df (up(x,t)) — L(Vo(x, t)) -

N(W(x,t)) —f(x,t) =0 (46)

By substituting Eg. (43) and (42) into Eq. (46), we
obtain
u(x, 0)D¢ (c1 (1)) + u(x) D (c2 (1)) =

L(u(x, 0)cy () + ulx)c, (t)) +

N(u(x, 0)cy(t) + ulx)c, (t)) + f(x,t)
(47)
In this case, the fractional partial differential
equation is changed into a fractiona ordinary
differential equation, which simplifies the problem
at hand. Furthermore, if we consider « as an integer
number in Eq. (47), then we obtain an ordinary
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differential  equation, which means further
simplification. Finaly, the target unknowns c, (t)
and ¢, (t) can be obtained by utilizing Eq. (47) and
theinitial conditionsin Eq. (45).

4 Applications

In this section, in order to assess the applicability
and the accuracy of the procedure described in the
last section, we consider the following five
examples. In examples 4.3 and 4.4, two cases of the
single-variable time-fractional Fokker-Plank
equation are solved. The general forms of these
equations are as follows:

07w = 9 A t) + az B t

gre | Tax A O T 5B O|u
07w = 9 A t + 62 B t
Pl P G R G

These equations are used in numerous
applications within various areas in physics such us
plasma, surface, laser and polymer physics. In
examples 4.1 and 4.5, the forward and backward
Kolmogorov equations are solved.

Example 4.1 Consider the linear time-fractiona
partial differential equation

Difu = uy, + uy, (48)

where t > 0, xeR, 0 < a < 1, subject to the initial
condition

u(x,0) =x (49)

and u(x) = :—xu(x, 0)=1
Choose theinitial approximation

up(x, £) = ulx, 0)cy (8) + u(x)c, (8)

= x¢;(t) + c,(t), (50)
then

Dfvy = DE(xcy (1) + (1)) —
62
ﬁ(xcl(t) + Cz(t)) -

0
a(xcl (0 + (D)) =0,

Di'vy = xDic1(8) + Dffc;(8) — 1 () =0, (51)
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We obtain the fractional differential system

D¢ e, (t) =0,
{ (52)
c1(0) =1,

Dfcy(t) — ¢y (t) =0,
{ (53)
c2(0) =0,

Solving Eq. (52) and (53) by applying Eqg. (24), we
obtain

) =1
ta
c(t) = r(a1) (54)
and the exact solution is
u(x,t) =x+ F@iD (55)

If we put ¢ = 1in Eq. (55) or solve Eq. (52) and
(53) witha = 1, we obtain the exact solution

ulx,t) =x+t (56)

Example 4.2 Consider the linear time-fractional
partial differential equation

Dfu = uy, +u, (57)
where t >0, xeR, 0 < a <1, subject to the
initial condition
u(x,0) = cos (mx)
Choose theinitial approximation

ug(x,t) = cos(mx) ¢, (t) — msin (mx)c,(t), (58)
then

Dffvy = [Dfcy (1) + ey () — ¢y ()] cos (mx) —

nsin (mx)[Df c,(t) + m2c,(t) — ¢, ()] = 0,

(59)
We obtain the fractional differential system
Dfey(t) + ey () — ¢4 (t) =0,

(60)
Cl(o) = 1'
Dfcy(t) + ey (t) — 2 (8) = 0,

(61)

c(0) =0,

Solving Eqg. (60) and (61) by applying Eq. (24), we
obtain

&1(8) = DE (£ Eq o ((? — D))
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= a((ﬂz - 1)ta)’
() =0, (62)
and the exact solutionis

u(x, t) = co s(mx) E,((m? — 1)t%), (63)

If weput @ —» 1in Eq.(63) or solve Eg. (60) and (61)
with a = 1, we obtain the exact solution

u(x, t) = cos(mx) e~ @~ (64)

Example 4.3 Consider the linear time-fractional
Fokker-Plank equation

@, — _ 0 (4u_x 02 2
Dfu = 6x(x 3)u+xu, (65)

where t > 0, xeR, 0 < a < 1, subject to the initial
condition

u(x,0) = x? (66)
Choose the initial approximation

ug(x, t) = x2c;(t) + 2xc,(t). (67)

then

Dfv, = _xZ(DgQ(t) - Cl(t)) -
x (Dfea(®) — 2y + 46, (D,(0)) -

2c3(t) =0, (68)

We obtain the following fractional differentia
system

D ey (t) —c1(8) =0,
{ (69)
c1(0) =1,
c3(1) =0,
(70)
c(0) =0,

Solving Eq. (69), (70) by applying Eg. (24), we
obtain

c1(8) = DEH (£ B o (£9)) = Eo (%),
c,(t) =0, (7D

and the exact solution is
u(x, t) = x2E,(t%), (72)

If weput @ — 1in Eq.(50) or solve EqQ. (47) and (48)
witha = 1, we obtain the exact solution
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u(x, t) = x%et (73)

which is in full agreement with the result in Ref.
[39].

Example 4.4 Consider the time-fractional Fokker-
Plank equation

d
Dfu = ~ 3z (et coth(x) cosh(x) + et sinh(x)
62
— coth(x))u + — et cosh(x) u,

0x2
(74)
where t > 0, xeR, 0 < a < 1, subject to the initial
condition

u(x,0) = sinh(x), (75)
Choose theinitial approximation
uy(x,t) = sinh(x) ¢, (t) + cosh (x)c,(t). (76)
then
Dfv = —2
tV1 T Sk (x)
[sinh(x) cosh?(x) (DFc1(t) — c1(D)) +
sinh(x) (Df‘c1 ) —c (t)) +
cosh3(x) (DFc,(t) — ¢, (1)) +
cosh(x) (202 (t) — Dfc, (t)) —
etDfc,(t)] =0, (77)

We obtain the following fractional differential
system

Dffci(t) — c1(t) = 0,

(78)
c1(0) =1,
Df cy(t) — () = 0,

(79)
c,(0) =0,

Solving Eq. (78), (79) by applying Eq. (24), we
obtain

c1(8) = DET (697 B g (£9)) = Eq (£,
Cz(t) = 0, (80)
and the exact solution is

u(x, t) = cos(mx) E,(t%), (81)

If we puta — 1in Eqg.(81) or solve Eq. (78) and
(79) witha = 1, then we obtain the exact solution
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u(x,t) = etco s(mx) (82)

which is in full agreement with the result in Ref.
[37].

Example 4.5 Consider the non-homogenous time-
fractional Backward Klomogorov equation

Dfu = —x?etuy, + (x + Duy, + tx, (83)

where t > 0, xeR, 0 < a < 1, subject to the initial
condition

ulx,0) =x+1, (84)
Choose initial approximation

ug(x, t) = (x + 1)y (t) + ¢, (t). (85)

then

Dffvy = x(Dffcy () — ¢y (B) — t) +

(D1 () + D cy(t) — ¢, (1) = 0,

(86)
We obtain the fractional differential system
Dffc;(8) —1(®) —t =0,
(87)
c1(0) =1,
Dicy(8) + Difc () — (1) = 0,
(88)
c2(0) =0,

Solving Eq. (87), (88) by applying Eq. (28) and (5),
we obtain

t
6(©) = [ 6ot = )58 + DE (9 B ()

0

© paj+a+l
- ;(aj +a+1(aj+a)(aj + a) T Ea(t%)
(89)
pa+l

c,(t) = r(a+2) (90)
and the exact solution is
ulx,t) = (x + D[E,(t%) +

had paj+a+l pa+l

= (aj+a+1D(aj + ) (aj + oc)] + I'a+2)

(91)
If weputa - 1in Eq. (91) or solve Eq. (87) and
(88) with @ = 1, we obtain the exact solution

ulx,t) = (x+ D[E(t) +
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[oe]

LFG+DG+2G+D TEY
= (x+ DRet —t—1) —t?, (92)

4 Conclusion
It is well known that numerous mathematical
models of physical, chemical and biological systems
lead to or end up with partial differential egquations.
These eguations may be of fractional or integer
order. Finding the exact solutions for these
equations is very important for the understanding of
many phenomena and processes in natural sciences.
In this paper, we have proposed a new analytical
method based on the homotopy perturbation method
(HPM) to solve time fractional partial differential
equations. This method is intuitive and very easy to
understand. It can be easily implemented and it is
fast (i.e. computationally efficient) in finding the
desired exact solution. Since our new approach
converts a partial differential equation (PDE) into an
ordinary differential equation (ODE) and after that
proceeds to solve the resulting ODE. Thus, it can be
used to solve equations with fractional and integer
order with respect to time.
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