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Abstract: Let G be a finite group. We extend Alan Camina′s theorem on conjugacy class sizes which asserts that if
the conjugacy class sizes of G are exactly {1, pa, qb, paqb}, where p and q are two distinct primes and a and b are
integers, then G is nilpotent. We show that when the set of conjugacy class sizes of all elements of primary and
biprimary orders of G is {1, pa, qb, paqb}, where p and q are two distinct primes and a and b are integers, then G is
nilpotent.
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1 Introduction

In this paper, any group is a finite group. We say that a
group element has primary or biprimary order respec-
tively if its order is divisible by at most one or two
primes. We will denote by xG the conjugacy class of
x in G and (following Baer [1]) we call IndG(x) =
|xG| = |G : CG(x)|, the index of x in G(in some oth-
er papers, IndG(x) = |xG| = |G : CG(x)| is called
conjugacy class size or length of x in G, for example,
[2, 3]). We will often refer to the index of an element,
this is just the size of the conjugacy class containing
the element. The benefit of this definition is entire-
ly linguistic. Given an element g in some group G
we can talk about the index of g rather than talking
about the size of the conjugacy class containing g. So
if we are referring to elements we use the term index
but if we are talking about conjugacy classes we refer
to size. The rest of our notation and terminology are
standard. The reader may refer to ref.[4].

Here, we consider the influence of the sizes of
conjugacy classes on the structure of finite groups.
Over the last 30 years there have been many papers on
this topic and it would seem to be a good idea to try
to bring some of the key results together in one place.
This is especially relevant as some authors seem un-
aware of others writing in the field as well as some of
the older results which seem to get reproved quite reg-
ularly. It is hoped that in writing this, less time will be
spent in reproving old results, enabling more progress
to be made on some of the more interesting problems.
How much information can one expect to obtain from
the sizes of conjugacy classes? Sylow in 1872 exam-
ined what happened if there was information about the

sizes of all conjugacy classes, whereas in 1904 Burn-
side showed that strong results could be obtained if
there was particular information about the size of just
one conjugacy class. Landau in 1903 bounded the or-
der of the group in terms of the number of conjugacy
classes whilst in 1919 Miller gave a detailed analysis
of groups with very few conjugacy classes. Very little
then seems to have been done until 1953 when both
Baer and Itô published papers on this topic but with
different conditions on the sizes. By looking at these
early results it can been seen that much will depend
on how much information is given and it is importan-
t to be explicit. For example if one knows that there
is only one conjugacy class size then the group is a-
belian, but this can be any abelian group. However
if you know the collection of conjugacy class sizes,
that is the multiplicities, then the order of the group
is also known. However it would still not be possible
to identify the group. Some authors have considered
the situation where the multiplicities of the conjuga-
cy class sizes are used if the size is not 1. This is
particularly true when the authors have been study-
ing aspects of the problem related to graphs. Again if
we only demand information about the sizes of conju-
gacy classes and not their multiplicities, the group G
and G × P will have the same set whenever P is an
abelian group. So we can only state results modulo a
direct abelian factor.

It is well known that there is a strong relation be-
tween the structure of a group and the sizes of its con-
jugacy classes and there exist several results studying
the solvability or the nilpotence of a group under some
arithmetical conditions on its conjugacy class sizes. In
[1], R. Baer proves that a group G is solvable if its el-
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ements of prime power order have also prime power
index. N. Itô shows in [5] that if the sizes of the conju-
gacy classes of a group G are {1,m}, then G is nilpo-
tent, m = pa for some prime p and G = P ×A, with
P a Sylow p-subgroup of G and A ⊆ Z(G). In [6],
Li Shirong prove that if the finite group G has exact-
ly two conjugacy class lengths of elements of prime
power order of G, then G is solvable. There exist oth-
er deeper results. For instance, in [7], Itô shows that if
the conjugacy class sizes of G are {1, n,m}, then G
is solvable. In [8], Yakov Berkovich and Lev Kazarin
prove that suppose that indices of all elements of pri-
mary or biprimay orders of a non-abelian group G are
powers of primes, then one and only one of the fol-
lowing holds: (a) G = P ×A, where P ∈ Sylp(G) is
non-abelian and A is abelian. (b) G = F × A, where
A is abelian, F is a nonnilpotent biprimary Hall sub-
group of G with abelian Sylow subgroups. On the
other hand, A.R. Camina proves in [2] that if the con-
jugacy class sizes of G are {1, pa, qb, paqb}, where p
and q are two distinct primes and a and b are inte-
gers, then G is nilpotent. Notice that the hypotheses
of Caminas theorem imply the solvability of G just by
using Burnside′s paqb theorem.

In this paper, we will replace conditions for al-
l conjugacy classes by conditions referring to only
some conjugacy classes to generalize the above Alan
Camina′s theorem. We put our emphasis on conjuga-
cy class sizes of all elements of prime-power or bipri-
mary orders of G and obtain the following main re-
sult: Let G be a group. Assume that the conjugacy
class sizes of primary and biprimary orders of G are
exactly {1, pa, qb, paqb}, where p and q are two dis-
tinct primes and a and b are positive integers, then G
is nilpotent. In addition, we analyze a new case of
groups having three conjugacy class sizes of primary
and biprimary orders of G and generalize the result
of Camina. Our theorem determine the structure of
those groups whose conjugacy class sizes of primary
and biprimary orders of G are {1, pa, paqb}, where p
and q are coprime. In the proof we have not used the
solvability obtained by Itô. We have preferred to avoid
it by using more elementary technique at the cost of
making the proof longer. The main result is: Let G
be a group. If the set of conjugacy class sizes of al-
l elements of primary and biprimary orders of G is
{1, pa, paqb} with (p, q) = 1, then G ∼= H×K, where
K is abelian and H contains a normal subgroup of in-
dex p, M×P1, where M is an abelian q-subgroup and
P1 is an abelian p-subgroup, neither being central in
G, and M×P1 is the set of all elements of H of index
pa. Finally, pa = p and P/P1 acts fixed-point-free on
M and Φ(P ) ≤ Z(P ), where P ∈ Sylp(G).

In order to prove the above main results, we will
first prove a supplementary result which is also an ex-

tension of Camina′s theorem. We will replace condi-
tions for all conjugacy classes by conditions referring
to only some conjugacy classes of elements of primary
and biprimary orders to generalize the Alan Camina′s
theorem. Such an extension is the following: Let G be
a group such that pa is the highest power of the prime
p which divides the index of an element of primary
and biprimary order of G. Assume that there is a p-
element in G whose index is precisely pa. Then G has
a normal p-complement.

2 Basic definitions and preliminary
results

In this section, we introduce the basic definitions and
some elementary results that are used time and time
again in this paper.

Definition 1 Let G be a finite group and let x ∈ G.
The index of x in G is given by [G : CG(x)] and is
denoted by IndG(x).

We will make use of the classic Thompson′s A×
B−Lemma.

Lemma 2 [9, Chap. 5, Theorem 3.4] Let A × B be
a group of automorphisms of the p-group P with A
a p′−group and B a p-group. If A acts trivially on
CP (B), then A = 1.

Lemma 3 [3, Lemma 1.1] Let N E G, x ∈ N, and
y ∈ G. Then

(i)|xN | | |xG|.
(ii)|(yN)G/N | | |yG|.

In order to prove our main theorem, we need the
following important lemma.

Lemma 4 [10, Theorem 5] Let G be a finite group
and p a prime divisor of |G|. Then there is in G no
p′−element of prime power order whose index is di-
visible by p if and only if G = P × H, where P is a
Sylow p-subgroup of G and H has order prime to p.

Lemma 5 Let G be a group. A prime p does not di-
vide any conjugacy class size of any element of prime
power order of G if and only if G has a central Sylow
p-subgroup.

Proof: By Lemma 4 we know that G = P×H, where
P is a Sylow p-subgroup of G and H has order prime
to p. In the following we only need to prove P is
abelain. For any element y ∈ P, then p does not di-
vide |yG| = |G : CG(y)| according to the hypotheses.
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Thus P ≤ CG(y), P is abelian. Our proof is complete
now. ⊓⊔

The Lemma 5 can be seen as a generalization of
[11, Theorem 33.4]:Let G be a group. A prime p does
not divide any conjugacy class size of G if and only if
G has a central Sylow p-subgroup.

Lemma 6 [12, Lemma 6] Suppose that the three s-
mallest non-trivial indices of elements of a group G
are a < b < c, with (a, b) = 1 and a2 < c. Then the
set {g ∈ G : |gG| = 1 or a } is a normal subgroup of
G.

Lemma 7 (Wielandt)[1, Lemma 6] Op(G) contains
every element in G whose order and index are powers
of p.

In the following Lemma, we characterize those
groups whose conjugacy class size of any non-central
p′−element of prime power order of G is a power
of the prime p and determine the structure of those
groups whose conjugacy class size of every p-element
of G is a p-number.

Lemma 8 Let G be a finite group.
(a) The conjugacy class size of any p′−element of

prime power order of G is a p-number if and only if G
has abelian p-complememnt.

(b) The conjugacy class size of every p-element of
G is a p-number if and only if G = P×H, where P ∈
Sylp(G) and H is a p-complement of G.

Proof: (a)We show first that G is solvable in both
direction of the Lemma. Suppose first that any
p′−element of prime power order G is a p-number.
Our assumption is inherited by normal subgroup and
quotient groups by Lemma 3, and hence, arguing by
induction on |G| we may assume that G is simple
nonabelian. However, Burnside′s Theorem (15.2 of
[11] for instance]) asserts that a simple group cannot
possess a conjugacy class of prime power length and
thus, the claim follows. Conversely, suppose that G
has an abelian p-complement. Then G can be writ-
ten as the product of two nilpotent subgroups, that is,
an abelian p-complement and a Sylow p-subgroup of
G. By Kegel-Wielandt′s Theorem (VI.4.3 of [13]), it
follows that G is solvable too.

Suppose now that every conjugacy class size of
any p′−element of prime power order of G is a p-
number if and work by induction on |G| to show that
G has abelian p-complement. We assume first that
Op(G) ̸= 1. By induction, G/Op(G) has abelian p-
complement and trivially so does G. Thus, we can as-
sume that Op(G) = 1 and consequently Op′(G) ̸= 1.

Let x be a non-central p′−element of prime power or-
der of G. As G is solvable and |G : CG(x)| is a p-
power, we can get that there exists a p-complement
of G, say, H , such that x ∈ H ⊆ CG(x). Observe
that 1 ̸= F (G) ⊆ Op′(G) ⊆ H, where F (G) is the
Fitting subgroup. This implies that x ∈ CG(H) ⊆
CG(F (G)) ⊆ F (G) ⊆ Op′(G). Therefore, any non-
central p′−element of prime power order of G belongs
to Op′(G)(and any central p′−element of prime pow-
er order of G belongs to Op′(G) too). Since H can
be generated by elements of prime power order, we
have that HEG, that is, G has normal p-complement.
Moreover, notice that this complement is abelian.

The converse direction is trivial, just noticing that
since G is solvable, then any two p-complements of G
are conjugated, whence all of them are abelian.

(b) See[15, Lemma 3]. ⊓⊔
Lemma 9 ([21, Lemma 1 (c)]) Let G be a π-
separable group. If x ∈ G and |xG| is a π-number,
then x ∈ Oπ,π′(G).

In order to give the structure of a finite group with
two conjugacy class sizes, we need the following im-
portant lemma.

Lemma 10 Let G be a group. Then the following two
conditions are equivalent:

(i) 1 and m > 1 are the only lengths of conju-
gacy classes of p′-elements of primary and biprimary
orders of G;

(ii) 1 and m > 1 are the only lengths of conjugacy
classes of p′-elements of G.

Proof: (i)=⇒(ii)
Let a be any q-element of index m and b be any

r-element of CG(a), where q ̸= p and r ̸= p. Notice
that

CG(ab) = CG(a)
∩

CG(b) ⊆ CG(a)

and since m is the largest conjugacy class size of p′-
elements of primary and biprimary orders of G, then
CG(ab) = CG(a) and hence CG(a) ⊆ CG(b). This
implies that b ∈ Z(CG(a)).

Now let x be any non-central p′-element of G and
write x = x1x2 · · ·xs, s ≥ 3, where the order of each
xi is a power of a prime pi (pi ̸= p, i = 1, 2, · · · , s)
and the xi commute pairwise. As x is a non-central
p′-element of G, we know that at least one of the xi
such that xi is non-central. Without loss of generality,
we can assume that x1 is non-central. Now

CG(x) = CG(x1x2 · · ·xs)
= CG(x1)

∩
CG(x2 · · ·xs)

= CG(x1)
∩

CG(x2)
∩

· · ·
∩

CG(xs)

⊆ CG(x1),
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and by the previous argument we may conclude that
have that xi ∈ Z(CG(x1)) for i = 2, · · · , s. Hence
we get that CG(x1) ≤ CG(xi), i = 2, · · · , s. Thus

CG(x) = CG(x1x2 · · ·xs)
= CG(x1)

∩
CG(x2 · · ·xs)

= CG(x1)
∩

CG(x2)
∩

· · ·
∩

CG(xs)

= CG(x1).

It follows that the conjugacy class size of x is equal to
the conjugacy class size of x1, that is, m. ⊓⊔

Lemma 11 [23, Theorem A] Let G be a finite p-
solvable group. If the set of p-regular conjugacy class
sizes of G has exactly two elements, for some prime p,
then G has Abelian p-complement or G = PQ × A,
with P ∈ Sylp(G), Q ∈ Sylq(G) and A ⊆ Z(G),
with q a prime distinct from p. As a consequence, if
{1,m} are the p-regular conjugacy class sizes of G,
then m = paqb. In particular, if b = 0 then G has a-
belian p-complement and if a = 0 then G = P×Q×A
with A ⊆ Z(G).

Lemma 12 [24, Theorem A] Let N be a p-solvable
normal subgroup of a group G such that N contain-
s a noncentral Sylow r( ̸= p)-subgroup R of G. If
|xG| = 1 or m for every p-regular element x of N
whose order is divisible by at most two distinct primes,
then the p-complements of N are nilpotent.

Lemma 13 [24, Corollary 1] Let N be a p-solvable
normal subgroup of a group G such that N contain-
s a noncentral Sylow r( ̸= p)-subgroup R of G. If
|xG| = 1 or m for every p-regular element x of N
whose order is divisible by at most two distinct primes,
then one and only one of the following statements
holds:

(1) If r|m, then N = NpR × N{p,r}′ , where
N{p,r}′ ≤ Z(G) and R is non-abelian;

(2) If r - m, then N has abelian p-complements.

3 Main results
Theorem 14 Let G be a group such that pa is the
highest power of the prime p which divides the index
of an element of primary and biprimary order of G.
Assume that there is a p-element in G whose index is
precisely pa. Then G has a normal p-complement.

Proof: By the hypothesis we let x be a p-element of
index pa. It is easy to know (see, for example, [1])
that the normal closure of x will be a p-group, say
H . Let Z = CG(H). Now [G : CG(x)] = pa, and

so if y ∈ CG(x) and y has prime power order prime
to p, [CG(x) : CG(xy)] is prime to p. For otherwise
pa+1 would divide the index of xy, contrary to the
hypothesis. However, CG(xy) = CG(x)

∩
CG(y), as

x and y has coprime order and [x, y] = 1. Since H is
normal in G, H ∩ CG(x) ≤ H ∩ CG(y) or CH(x) ≤
CH(y). We can now use Lemma 2.1 to deduce that
CH(y) = H.

So H centralizes every element of prime pow-
er order prime to p in CG(x). We can conclude that
H centralizes every element of order prime to p in
CG(x). In fact, for any element of order prime to p
in CG(x), we can write z = z1z2 . . . zs, where zi is
a power of a prime distinct from to p and the zi com-
mute pairwise, and zi ∈ CG(x). By the above para-
graph it follows that H centralizes every element of
order prime to p in CG(x).

As [G : CG(x)] = pa, we can deduce that [G : Z]
is a power of p. Now let w be any p′−element of
prime power order in Z. By the previous argument,
[CG(x) : CG(w)∩CG(x)] is prime to p, but, as Z is a
normal subgroup of CG(x), we have that [Z : CZ(w)]
is prime to p by Lemma 3. Thus every p′−element of
prime power order in Z has index in Z prime to p and
so, by lemma 4 we have that Z = K × P1, where K
has order prime to p and P1 is the Sylow p-subgroup
of Z. As [G : Z] is a power of p, K is a normal
p-complement of G.

Our proof is complete now. ⊓⊔

Remark 15 In Theorem 14 we note that as H is a
normal p-subgroup of G, H is contained in all Sylow
p-subgroups of G and so Z contains all p-elements of
index prime to p. But clearly any p-element in Z has
index a power of p and so, if P is a Sylow p-subgroup
of G, Z(P ) = Z(G)∩P. Further, if v is an element of
index prime to p, then v = st, where s is a p′-element
of G and t is in Z(G). For, if v = st, where s is a
p′-element and t is a p-element or t = 1, t has index
prime to p and so is in Z(G).

Theorem 16 Let G be a group. Assume that the set
of conjugacy class sizes of all elements of primary
and biprimary orders of G is exactly {1, pa, qb, paqb},
where p and q are two distinct primes and a and b are
positive integers, then G is nilpotent.

Proof: The proof has been divided into several steps.
Step 1. We may assume that G is a {p, q}−group.
If the order of G is divisible by a prime r, r ̸=

p, q, then by Lemma 5 we have that G = R × H,
where R is an abelian r-group and H is an r′-group.
So we need only consider H . Thus we can assume
that the order of G is divisible only by prime p and q.
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Step 2. If there is a p-element in G whose index
is precisely pa, then the theorem is proved. Conse-
quently, if there is a q-element in G whose index is
precisely qb, then the theorem is proved too.

Assume that we have a p-element of index pa.
Then by Theorem 3.1 we know that G has a normal
p-complement and any element of index prime to p is
a product of a q-element and an element in the center
of G by Remark 15 and Step 1. So there is a q-element
of index qb, and thus G has a normal q-complement by
Theorem 14, and so G is nilpotent.

This argument will work just well if there is a q-
element of index qb.

Step 3. we may assume that if x is a p-element
of G, then IndG(x) = 1, qb or paqb; if x is a q-element
of G, then IndG(x) = 1, pa or paqb.

By Step 1 and Step 2 it is obvious.
Step 4. We may assume that there exist some q-

element of index pa. Consequently, there exist some
p-element of index qb.

By the hypothesis and Step 2 it is enough to con-
sider to the decomposition of any element of index pa

as a product of a p-element by a q-element. In the
same way we can prove the second part of this Step.

Step 5. If x is a p-element of index paqb, then
CG(x) = Px×Vx with Px a p-group and Vx an abelian
q-group such that Vx * Z(G). If y is a q-element of
index paqb, then CG(y) = Py×Vy with Py an abelian
p-group such that Py * Z(G) and Vy a q-group.

Let x be a p-element of index paqb and let y
be any q-element of CG(x). Notice that CG(xy) =
CG(x)∩CG(y) ⊆ CG(x) and since paqb is the largest
conjugacy class size of G, then CG(xy) = CG(x), so
CG(x) ⊆ CG(y). This implies that y ∈ Z(CG(x)),
so we can write CG(x) = Px × Vx with Px a p-group
and Vx an abelian q-group. It remains to show that Vx

cannot be central in G.
Suppose that Vx ⊆ Z(G), and notice that then

Vx = Z(G)q and |G : Z(G)|q = qb. Choose z a
non-central p-element of G, which must have index
qb or paqb by Step 2. In every case, notice that Z(G)q
is a p-complement of CG(z). This implies that if we
choose any non-central q-element w of G, then any p-
element of CG(w) must be central in G. Thus Z(G)p
is a Sylow p-subgroup of CG(w). Since w has index
pa or paqb, then |G : Z(G)|p = pa. This yields |G :

Z(G)| = |G : Z(G)|p|G : Z(G)|q = paqb, which
contradicts the existence in G of elements of index
paqb. Thus, the first assertion of the step is proved.

The second part of this step can be proved by
reasoning in a similar way with a q-element of index
paqb.

Step 6. If pa > qb, then the set Lp := {x : x

is p-element and |xG|= 1 or qb} is an abelian normal

p-subgroup of G. If pa < qb, then the set Lq := {x : x
is q-element and |xG| = 1 or pa} is an abelian normal
q-subgroup of G.

It is enough to apply Lemma 6 to obtain that if
pa > qb then the set W := {x : |xG| = 1 or qb} is a
normal subgroup of G. Analogously, if pa < qb, then
the set W := {x : |xG| = 1 or pa} is a normal sub-
group of G. Now, if x is any element of index qb and
factorize x = xpxq, with xp and xq a p-element and a
q-element, respectively, it follows that xq must be cen-
tral by Step 2, whence x ∈ Lp × Z(G)q. Therefore,
W = Lp×Z(G)q and Lp is also a normal p-subgroup
of G. The argument for Lq is similar.

Finally, we see for instance that Lp is abelian, as
the argument for Lq is the same. If we take any y ∈ Lp

then |Lp : CLp(y)| divides (|Lp|, qb) = 1. Conse-
quently, Lp is abelian.

Step 7. If pa > qb, then Lp is an abelian normal
Sylow p-subgroup of G; If pa < qb, then Lq is an
abelian normal Sylow q-subgroup of G.

At first we assume that pa > qb. In order to
prove that Lp is a Sylow p-subgroup of G it is e-
nough to show, by taking into account Step 2, that
there are no p-elements of index paqb. Suppose that
z is a p-element of index paqb and by Step 5, write
CG(z) = Pz × Vz, with Vz a noncentral abelian q-
group and Pz a p-group. If t ∈ Vz, it is clear that
CG(z) ⊆ CG(t), so in particular CLp(z) ⊆ CLp(t).
By applying Lemma 2.1, we get t ∈ M := CG(Lp)
and therefore, Vz ⊆ M. On the other hand, by Step
2, we know that t has index pa or paqb, so |CG(t) :
CG(z)| must be equal to 1 or qb. This proves that
Lp ⊆ CG(z) and we conclude that Lp centralizes ev-
ery p-element of index paqb. But on the other hand,
any p-element of index qb trivially centralizes Lp as it
is abelian. Therefore, we conclude that any p-element
of G lies in M , whence |G : M | is a q-number. Fur-
thermore, since Lp ⊆ M ⊆ CG(k) for any k non-
central element of Lp, which has index qb, then qb

must divide |G : M |. Now, if we consider the equality
|G : M ||M : Vz| = |G : CG(z)||CG(z) : Vz|, then
all the properties remarked above imply that Vz is a
p-complement of M .

Let x be a p-element of G, which we know lies in
M . If x has index 1 or qb, then it certainly follows that
x ∈ Z(M). If x has index paqb, then by Step 5, we
write CG(x) = Px×Vx with Vx a non-central abelian
q-group and Px a p-group. As we have seen above,
Vx is a p-complement of M , and in particular Vx ⊆
CM (x) and |M : CM (x)| is a p-number. Therefore,
we have shown that the index of any p-element of M
is a p-number. Thus, by applying Lemma 8(b), we can
factor M = P × T, where P ∈ Sylp(G) and T is a
q-group, which must be equal to Vz. In particular, P is
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normal in G. But now, if we choose some non-central
y ∈ Vz, then P ⊆ CG(y), which contradicts Step 2.

The second part of this step can be proved by rea-
soning in a similar way.

Step 8. If pa > qb, then the p-complements of
G are abelian; If pa < qb, then the q-complements of
G are abelian.

We firstly consider pa > qb. Let H be a p-
complement of G and assume that it is not abelian.
By Lemma 8(a) and Step 2, there exist q-elements in
H of index paqb. Let w be any such element. By
Step 5, we write CG(w) = Pw × Vw with Pw an
abelian p-group such that Pw * Z(G) and Vw a q-
group. We will prove that Vw is abelian too. We may
choose a non-central p-element u ∈ CG(w), which
certainly satisfies CG(w) ⊆ CG(u). By Step 7, we
know that |uG| = qb, so |CG(u) : CG(w)| = pa.
Therefore, Vw is a Sylow q-subgroup of CG(u). On
the other hand, if v is a q-element of CG(u), then
|CG(u) : CG(uv)| = |CG(u) : CG(u) ∩ CG(v)| is a
power of p. Thus, by Lemma 8(b), CG(u) has abelian
Sylow q-subgroups. So Vw is abelian as we wanted to
show and consequently, CG(w) is abelian too.

If Z(H) = Z(G)q, then there would not be q-
elements of index pa, and this yields a contradiction
with Step 4. Thus there exist non-central elements in
Z(H). For any such element, say y, note that y ∈
CG(w) and as CG(w) is abelian, we have CG(w) ⊆
CG(y) = CLp(y)H. Moreover, since LpEG, we have
CLp(y)ECG(y). Since H ⊆ CG(y) and Lp is abelian,
it follows that T := CLp(y) E G. Furthermore, as
|CG(y) : CG(w)| = qb, it follows that T is the Sylow
p-subgroup of CG(w), so T = Pw and in particular,
T is not central in G. Notice that we have also proved
that T centralizes any q-element in H of index paqb

and any element in Z(H).
Now, if we take v ∈ H of index pa, then

there exists some g ∈ G such that Hg ⊆ CG(v),
whence vg−1 ∈ Z(H). By the above paragraph, T ∈
CG(v

g−1) and as T is normal in G, we get that T also
centralizes v. Then T ⊆ CG(H) and as Lp is abelian,
we conclude that T ⊆ Z(G), a contradiction.

Step 9. (Conclusion). Assume first that pa > qb.
We claim that |G : Z(G)|q = qb by the hypothesis.
Let z be an element of index paqb and write z = zpzq,
with zp and zq the p-part and q-part of z, respectively.
If zp is not contained in Z(G), then by Step 7, |zGp | =
qb and Z(G)q is a Sylow q-subgroup of CG(z), so
zq ∈ Z(G), which is a contradiction since z has index
paqb. If zp ∈ Z(G), then |zGq | = paqb, by Step 8, this
is a contradiction too.

If pa < qb, the proof is the same.
The proof of the theorem is now complete. ⊓⊔

Remark 17 The most obvious connection with char-
acter theory is that the number of conjugacy classes
is the same as the number of irreducible character-
s. A number of authors, including those of this ar-
ticle, have seen a connection between character de-
grees and conjugacy class sizes and have searched
for analogous results. Perhaps the first obvious dif-
ference is that the order of the group is given by the
sum of the sizes of the conjugacy classes, but the sum
of the squares of the degrees of the irreducible char-
acters. This might help to explain the following di-
chotomies. As previously mentioned in Section 2, if p
is coprime to all indices of elements of G then the Sy-
low p-subgroup of G is an abelian direct factor of G.
However, Itô proved that if G has a normal abelian
Sylow p-subgroup then p is coprime to all character
degrees of G. Also, in [17] Cossey and Wang not-
ed that if all indices are square-free then G is solu-
ble. However, if all irreducible character degrees are
square-free G need not be soluble, the smallest exam-
ple we know is Alt(7), see for example in [18]. Anoth-
er example is given by the two different conclusions
drawn when {1, pa, qb, paqb} is either the set of char-
acter degrees or the set of conjugacy class sizes and p
and q are distinct primes. In the conjugacy class case
we can conclude that G = P ×Q where P is the Sy-
low p-subgroup and Q the Sylow q-subgroup in [2].
This conclusion does not hold in the character case in
[19].

Theorem 18 Let G be a group. If the set of conjuga-
cy class sizes of all elements of primary and biprima-
ry orders of G is {1, pa, paqb} with (p, q) = 1, then
G ∼= H × K, where K is abelian and H contains a
normal subgroup of index p, M × P1, where M is an
abelian q-subgroup and P1 is an abelian p-subgroup,
neither being central in G, and M×P1 is the set of all
elements of H of index pa. Finally, pa = p and P/P1

acts fixed-point-free on M and Φ(P ) ≤ Z(P ), where
P ∈ Sylp(G).

Proof: The proof has been divided into several steps.
Step 1. The q-Hall subgroup M of G is normal

and abelian, Further M = [M,P ] × CM (P ), where
P ∈ Sylp(G).

We consider two cases.
Case a. At first we assume that there is no p-

element of index pa. Then assume further that N =
Op(G) is not contained in the center of G. Now let
x be a p-element of index paqb. We can conclude that
CG(x) = U × V, where U is a p-group and V is an
abelian q-group. In fact, let y be any q-element of
CG(x). Notice that CG(xy) = CG(x) ∩ CG(y) ⊆
CG(x) and since paqb is the largest conjugacy class
size of G, then CG(xy) = CG(x), so CG(x) ⊆
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CG(y). This implies that y ∈ Z(CG(x)), so we can
write CG(x) = U × V with U a p-group and V an
abelian q-group. Also, by use of Thompson′s Theo-
rem [9, Theorem 5.3.2], we have that V ≤ CG(N).
As N � Z(G), we get that qb|[G : CG(N)]. But
qb|[G : CG(x)] exactly and so V is a q-Hall sub-
group of CG(N). Since CG(N) is a nilpotent group,
we have that V is normal in G. Let y be any q-
element of G not in V , and let P be a Sylow p-
subgroup of G such that [P : P

∩
CG(y)] = pa. Now

assume that w is in P and w is in CG(y), then we
have that [G : CG(w)] ̸= paqb, otherwise y ∈ V. So
P
∩

CG(y) = P
∩

Z(G) as G has no p-element of
index pa. Then [P : P

∩
Z(G)] = pa. But if z ∈ P

but is not in P
∩

Z(G), pa cannot divide [G : CG(z)],
which leads to a contradiction. Hence we have to as-
sume that N = Op(G) ≤ Z(G).

As there exist elements in G of index pa, they
must be q-elements. In fact, if x is any elemen-
t of index pa and x = xpxq, with xp a p-element
and xq a q-element, respectively. Then we have
CG(x) = CG(xp)

∩
CG(xq) ⊆ CG(xq). Hence

[G : CG(xq)]|[G : CG(x)] = pa. By hypotheses we
have that [G : CG(xq)] = pa. Thus Op,q(G) con-
tains all q-elements of index pa by Lemma 9 and so
Op,q(G) � Z(G). Further as Op(G) ≤ Z(G), we
have that Op,q(G) = Op(G) × Oq(G). Put Oq(G) =
L and notice that L � Z(G).

Now we suppose that we have a q-element y of G
such that [G : CG(y)] = paqb. Then by using argu-
ments applied earlier, we can deduce that CG(y) =
H × K, where K is a p-group and K ≤ CG(L).
As G is solvable by Itô′s Theorem. We have that
CG(Op,q(G)) ≤ Op,q(G). Furthermore Op,q(G) =
Op(G)×L and Op(G) ≤ Z(G). We get that CG(L) ≤
Op(G)×L. So K = Op(G), which is central. Now if
P is any a Sylow p-subgroup of G, |P/K| = pa and
this leads to a contradiction. Hence every q-element
of G has index pa and is in L and L is abelian.

Case b. Now we can consider the case where
there exist p-elements of index pa. Then by Theorem
14 we have know that G has a normal p-complement,
M , say, and that Op(G) consists of all the p-elements
of index pa and 1 by Lemma 7. If there exists an el-
ement x ∈ M such that [G : CG(x)] = paqb, we
can get again deduce that CG(x) = X × Y with
Y a p-group and Y ≤ CG(M). As M is a q-Hall
subgroup of G, we have that Y = Op(G). Let P
be an arbitrary Sylow p-subgroup of G, then we get
that [P : Y ] = pa. If u ∈ P but u is not in Y ,
then CM (u) = M

∩
Z(G) since Y is the Sylow p-

subgroup of the centralizer of any non-central element
of M . Then [M : M

∩
Z(G)] = qb, which contra-

dicts the existence of q-element of index paqb.

Hence we now get that in either case the q-Hall
subgroup M of G is normal and abelian. Then we
can use [9, Theorem 5.2.3] and deduce that M =
[M,P ]× CM (P ), where P ∈ Sylp(G).

Step 2. Let P1 = Op(G), then P/P1 acts fixed-
point-free on M and so |P/P1| = pa and |M | = qb,
Also P/P1 is cyclic of order pa or generalized quater-
nion of order pa.

By Step 1 we know that M = [M,P ] × CM (P )
and CM (P ) is a direct factor we can assume that
M = [M,P ]. Now Op(G) = CP (M) which is nor-
mal in G. Let P1 = Op(G). If we consider the ac-
tion of P/P1 on M , we know that P/P1 acts half-
transitively as every q-element has pa conjugates and
now by [22], we have that P/P1 acts fixed-point-free
or M is an elementary abelian q-group and P/P1 acts
semi-regularity ( and hence fixed-point-free) or irre-
ducibly on M . In the last case Z(P/P1) acts fixed-
point-free on M , that is, |M | = qb, but then P/P1

acts fixed-point-free on M .
Therefore in all cases P/P1 acts fixed-point-free

and so |P/P1| = pa and |M | = qb. Also P/P1 is
cyclic of order pa or generalized quaternion of order
pa.

Step 3. pa = p and Φ(P ) ≤ Z(P ), where P ∈
Sylp(G).

We will show next that the case where P1 ≤
Z(P ) does not occur. Notice that as P1 ≥ Z(P )
in any case, we have that P1 = Z(P ) in this situ-
ation. If P/P1 is cyclic, then P would be abelian
and then we would have no elements of index paqb.
if P/P1 is generalized quaternion, then there exists
x ∈ P such that [P : ⟨x⟩P1] = 2 and so, as ⟨x⟩P1

is abelian, [P : CP (x)] = 2 and so the conjugacy
class lengths of G are {1, 2, 2qb}. But now P ∼= G/Q
is a p-group whose conjugacy class lengths are {1, 2}
and so has class 2, which contradicts the assertion that
P/Z(P ) ∼= quaternion group.

Hence we get that there exist elements in P1 of
index pa and elements in M of index pa. Let x ∈ P1,
y ∈ M such that [G : CG(x)] = [G : CG(y)] = pa.
Then clearly CG(xy) = CG(x)

∩
CG(y) and xy has

index pa. So CG(x) = CG(y) = M ×P1. This is true
for all x ∈ P1 such that [G : CG(x)] = pa and so
P1 is abelian and for x ∈ P1, [G : CG(x)] ̸= 1, we
have that CG(x) = M×P1. That is , if u is p-element
but u is not in P1, then CG(u)

∩
P1 = P1

∩
Z(G).

Let P ∼= G/Q and denote by – the homomorphism
from G to G/Q. Then P is a p-group whose conjuga-
cy class lengths are {1, pa}, Further, P has a normal
abelian subgroup P1 of index pa with P/P1 cyclic or
generalized quaternion.

Let x ∈ P1, we have that CP (x) = Z(P )

or x ∈ Z(P ). Let u, v ∈ P\P1 and assume that
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CP (u)
∩

CP (v) > Z(P ). Let w be not in Z(P ) such
that [w, u] = [w, v] = 1. Now using the structure
of P/P1 we can find an integer n and an element z
of P1 such that either w = unz or u = wnz. But
as [u,w] = 1, [z, u] = 1 and so z ∈ Z(P ). Then
CP (u) = CP (v) and similarly CP (w) = CP (v).

Hence if CP (u)
∩

CP (v) ≥ Z(P ), then we can con-
clude that CP (u) = CP (v). Thus we have a partition
for P/Z(P ). Also, as |CP (x)| = |CP (y)| for any t-
wo non-central elements, this is an abelian partition,
and so by [5, 1.3], P/Z(P ) has just one normal com-
ponent, P1/Z(P ), which must contain all elements of
order greater than p, or P/Z(P ) has exponent p. In
either case we have to conclude that a = 1. Then
Φ(P ) ≤ Z(P ) and so P is a p-group of class 2 and
that concludes the proof of the theorem. ⊓⊔

Remark 19 We remark that the following example
show that the situation as described in Theorem 3.1
can occur. Let P be a p-group of exponent and or-
der p3 generated by x, y. Let P1 = ⟨x, [x, y]⟩ and let
M = ⟨v⟩, a cyclic group of order q where p|(q − 1).
We construct the split extension MP = G, where P
is mapped into Aut(M) by mapping x to the identity
automorphism and by mapping y to the automorphism
of M of order p. Then this split extension MP = G
is the required example.

Theorem 20 Let G be a finite p-solvable group. If
{1,m} are the conjugacy class sizes of p-regular el-
ements of primary and biprimary orders of G, for
some prime p, then G has Abelian p-complement or
G = PQ × A, with P ∈ Sylp(G), Q ∈ Sylq(G)
and A ⊆ Z(G), with q a prime distinct from p. As a
consequence, if {1,m} are the conjugacy class sizes
of p-regular elements of primary and biprimary or-
ders of G, then m = paqb. In particular, if b = 0
then G has abelian p-complement and if a = 0 then
G = P ×Q×A with A ⊆ Z(G).

Proof: By Lemma 10 and 11, we can get that Theo-
rem 20 holds. ⊓⊔

At last, we use conjugacy class sizes to study the
structure of the normal subgroup N of G. It is well
known that if N is a normal subgroup of a group G,
then it is clear that N is a set union of some conjugacy
classes of a group G. Hence, it is natural to explore
the structure of the normal subgroup N of G if the
sizes of the G-conjugacy class of N are given. In this
aspect, Riese et al. [25, 26] described the structure of
the normal subgroup N when N is a set union of four
or three conjugacy classes of a group G, respectively.

We now consider the following question.

Question Let G be a finite group and N a p-solvable
normal subgroup of G. If |xG| = 1 or m for every

p-regular element x of primary and biprimary orders
in N , whether the p-complements of N are nilpotent
or not?

Our answer to the above question is the following
theorem.

Theorem 21 Let N be a p-solvable normal subgroup
of a group G such that N contains a noncentral Sylow
r( ̸= p)-subgroup R of G. If |xG| = 1 or m for every
p-regular element x of primary and biprimary orders
of N whose order is divisible by at most two distinct
primes, then the p-complements of N are nilpotent.

Proof By Lemma 10 and 12, we can get that Theorem
21 holds. ⊓⊔

Corollary 22 Let N be a p-solvable normal sub-
group of a finite group G such that N contains a non-
central Sylow r( ̸= p)-subgroup R of G. If |xG| = 1
or m for every p-regular element x of primary and
biprimary orders of N whose order is divisible by at
most two distinct primes, then one and only one of the
following statements holds:

(1) If r|m, then N = NpR × N{p,r}′ , where
N{p,r}′ ≤ Z(G) and R is non-abelian;

(2) If r - m, then N has abelian p-complements.

Proof: By Lemma 10 and 13, we can get that Corol-
lary 22 holds. ⊓⊔

Corollary 23 Let G be a finite p-solvable group. If
|xG| = 1 or m for every p-regular element x of pri-
mary and biprimary orders of G whose order is di-
visible by at most two distinct primes, then the p-
complements of G are nilpotent.

Proof: By Lemma 10 and Corollary 2 in [24], we can
get that Corollary 23 holds. ⊓⊔

Corollary 24 Let G be a finite p-solvable group. If
|xG| = 1 or m for every p-regular element x of prima-
ry and biprimary orders of G, then the p-complements
of G are nilpotent.

Proof: By Lemma 10 and Corollary 3 in [24], we
can get that Corollary 24 holds. ⊓⊔

Corollary 25 Let G be a finite group. If |xG| = 1
or m for every p-regular element x of primary and
biprimary orders of G, then G is nilpotent.

Proof: By Lemma 10 and Corollary 4 in [24], we can
get that Corollary 25 holds. ⊓⊔

Comments: In our paper, we proved that a
group G is nilpotent when its conjugacy class sizes
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of primary and biprimary orders of G are exact-
ly {1, pa, qb, paqb}, where p and q are two distinc-
t primes and a and b are integers. We conjecture
that a group G is nilpotent when its conjugacy class
sizes of primary and biprimary orders of G are ex-
actly {1,m, n,mn}, where m and n are two distinct
integers.

4 Conclusion
The results explained in the previous sections show
that the method that we replace conditions for all con-
jugacy classes by conditions referring to only some of
the classes in order to investigate the structure of a fi-
nite group is very useful. Results of this type are inter-
esting since they can be used to simplify the proofs of
new or known properties related to conjugacy class-
es. In addition, according to the parallel property of
conjugacy class sizes and character degrees, we may
consider using the character degrees to characterize
the structure of finite groups. As an application, we
can investigate the structure of a finite group when it-
s character degrees of G are exactly {1, pa, qb, paqb},
where p and q are two distinct primes and a and b are
integers.
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