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1 Introduction
This paper contains authors‘ results in actual recent
years problem of reliability analysis of complicated
random networks. Specialists from different sciences
physics, biology, technical sciences, nanotechnology,
sociology) interest in these models [1] – [8]. This fun-
damental problem is considered as in reliability theory
[9] – [13] so probability theory papers [14] – [24].

One of the most difficult problems in an investi-
gation of complicated random networks is large com-
plexity of necessary calculations and even NP prob-
lem. In this paper the authors concentrated their at-
tention on an investigation of a specifics of random
networks and on a derivation of asymptotic formulas
and on a construction of recurrent algorithms. Such
approach allowed to decrease a complexity of calcu-
lations in considered problems sometimes even to lin-
ear.

Large interest of specialists in reliability theory
is called a concept and a calculation of connectiv-
ity probability in random networks. In [25] – [27]
upper and low estimates of the connectivity proba-
bility are constructed for general type networks on
a base of maximal systems of disjoint frames. For
small numbers of arcs in [28] accelerated algorithms
of a calculation of reliability polynomial coefficients
are constructed. In [29] this problem is solved using
the Monte-Carlo method with some combinatory for-

mulas. To calculate the connectivity probability in
rectangle lattices the transfer matrix method is used
[30]. But an increasing of arcs number leads to large
complexity and so it is worthy to develop asymptotic
methods.

In this paper an analog of Burtin-Pittel asymptotic
formula [31] for disconnection probability of random
graph with high reliable arcs is constructed in terms of
cross sections with minimal volume. Minimal volume
equals to maximal flow in random ports [32] and its
calculation has cubic complexity. But an enumeration
of cross sections with minimal volume has geometric
complexity. So we consider widely used planar graphs
for which we prove that a definition of these character-
istics has no more than cubic complexity by a number
of faces. And there is a lot of graphs [33, Ch. IV]
for which this complexity is linear and smaller. These
results are based on a consideration of dual graphs
[34], [35] in which cross sections generate cycles [36],
[37]. Numerical experiment confirms an accuracy and
a performance of suggested method.

Accuracy calculations of connectivity probability
and another reliability characteristics usually are NP
problems. So there is a necessity to describe practi-
cally interesting classes of random networks with fast
algorithms of their analysis. For example such calcu-
lations in parallel-sequential networks defined by re-
cursive formulas [8], [9] have linear complexity by a
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number of arcs. Such an approach to fast algorithms
construction for recursively defined networks has still
not received adequate attention. In this paper we con-
sider a class of random networks recursively defined
by a gluing in single node and construct algorithms of
their connectivity probability calculation and a calcu-
lation of a probability that there is closed way pass-
ing through all network nodes. Last characteristic im-
mediately leads to a salesman problem which is N-P
complicated. Nevertheless a solution of this problem
has linear complexity because of recursive definition
of considered networks.

Another important characteristic of random net-
works is a number of connectivity components. In
[38], [39] limit distributions of numbers of connec-
tivity components in random image of n - element
discrete set are obtained. Analogous problem for
structurally complicated systems with many states is
solved by means of probability - algebraic methods
[40], [41] with geometric complexity. But such prob-
lem was not considered for parallel-sequential con-
nections widely used in reliability theory. In this pa-
per for special sequence of parallel-sequential connec-
tions recursive formulas characterizing random num-
bers of connectivity components are obtained. Vari-
ants of the law of large numbers and the central limit
theorem for the random numbers of connectivity com-
ponents are proved and their parameters are calculated
using recurrent formulas for auxiliary conditional mo-
ments of these numbers.

2 Asymptotic analysis of connectiv-
ity probability in random planar
graphs

In this section, complete asymptotic formulas for an
disconnection probability in random graphs with high
reliable arcs are obtained. A definition of coefficients
in these formulas have geometric complexity by a
number of arcs. But a consideration of planar graphs
and dual graphs allow to solve this problem with no
more than cubic complexity by a number of graph
faces.

2.1 Asymptotic formulas
Consider non oriented connected graph G with finite
sets of nodes U and arcs W. Suppose that each pair
of nodes in G may be connected no more than single
arc and there are not loops. Denote L(u, v) the set
of all cross sections in G which divide nodes u, v ∈
U, u ̸= v, and define the set L =

∪
u̸=v

L(u, v) of all

cross sections in G. Graph cross section is such set of

arcs which deletion makes it non connected. Put d(L)
a number of arcs in the cross section L and

D(u, v) = min(d(L) : L ∈ L(u, v)),

D = min
u̸=v

D(u, v), L∗ = {L ∈ L : d(L) = D},

C is a number of cross sections in the set L∗. Suppose
that graph arcs work independently with probabilities
p(w), w ∈ W.

Theorem 1 If p(w) = 1 − p(w) = h, w ∈ W, then
graph disconnection probability

P ∼ ChD, h → 0. (1)

Theorem 2 If p(w) ∼ cwh, h → 0, w ∈ W, then

P ∼
∑
L∈L∗

hD
∏
w∈L

cw, h → 0.

Theorems 1, 2 are generalizations of the Burtin-Pittel
asymptotic formula [31].

2.2 Calculation of constants C,D
Suppose that the graph G has m arcs and r nodes.

Theorem 3 If the number c1 of arcs in G, which do
not belong to any cycle is positive then D = 1, C =
c1. The complexity of c1 calculation is O(mr3).

Assume that the graph G is planar and its each arc
belongs to some cycle. Arcs of planar graph divide
a plane into faces [34, Ch. 1]. Denote n the number
of faces in G. Confront the graph G its dual graph
G∗. Each face z in G accords the node z∗ in G∗, each
arc w in G belonging faces z1, z2, accords an arc w∗

connecting nodes z∗1 , z
∗
2 in G∗.

A set of arcs {w1, . . . , wd} in G accords some
subgraph R∗ in G∗. For its definition each arc wi, 1 ≤
i ≤ d, accords a pair of faces which contain this arc.
Then this pair of faces accords a pair of nodes in R∗

connected by the arc w∗. Say that the graph R∗ is gen-
erated by the set of arcs {w1, . . . , wd}.

Theorem 4 The set of cross sections L∗ consists of
all sets of arcs {w1, . . . , wd}, which generate cycles
with minimal length D∗ in the dual graph G∗ and

D = D∗ ≤ 5.

This statement is a corollary of the Whithney theorem
and the Euler formula [34, Theorem 1.5, Corollary of
Theorem 1.6], [35].

Suppose that elements aij of the matrix A define a
number of arcs which belong to zi∩zj , i ̸= j, aii = 0,
in the planar graph G.
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Corollary 1 If max
1≤i,j≤n

aij > 1 then

D = 2, C =
1

4

∑
1≤i,j≤n

aij(aij − 1) (2)

and a complexity of constants D, C calculation by
the formula (2) is squared by n. If for i < j aij > 1
only for j = n then this complexity is linear.

Define ci the number of cycles with length i, i =
3, 4, 5, in G∗. Assume that all cycles u1 → u2 →
. . . → uk → u1 which consist of same set of nodes
{u1, . . . , uk} and differ by an initial node u1 and by
a direction of a bypass coincide. Elements of power
Al, l > 1, of a matrix A denote by a

(l)
ij .

Corollary 2 If max
1≤i,j≤n

aij = 1 then

D = min(i : ci > 0, i = 3, 4, 5), C = cD, (3)

c3 =
1

6
trA3, c4 =

1

8

trA4−2m−2
∑

1≤i̸=j≤n

a
(2)
ij

 ,

c5 =
1

8

trA5 − 5trA3−5
n∑

i=1

 n∑
j=1

aij−2

 a
(3)
ii

 .

Complexity of the constants D, C calculation using
the formula (3) is cubic by n.

The formulas of c3, c4, c5 calculation are ob-
tained in [36], see also [37, Formulas (16), (17)].

Corollary 3 In general case the following formulas
are true:

D = min(i : ci > 0, 1 ≤ i ≤ 5), C = cD, (4)

Consider a connected graph G′ which consists of
plane faces in three dimensional space. Suppose that
each pair of faces has not joint points or has joint node
or has joint arc and each arc belongs at least to two
faces. Take a set of arcs {wi, 1 ≤ i ≤ d} from G′

and confront each arc wi a pair of faces zi, z
i which

contain this arc. Then the set of arcs {w1, . . . , wd}
accords some (non unique) graph Γd with the nodes
zi, z

i, 1 ≤ i ≤ d, and arcs {w1, . . . , wd} which con-
nect these nodes.

Theorem 5 If the graph Γd is acyclic then the set of
arcs {w1, . . . , wd} which generates it is not cross sec-
tion in G′.

Corollary 4 Suppose that the set L′ of arcs sets which
generate cycles with minimal length D∗ and which are
cross sections in G′ is not empty. Then D = D∗,
L∗ = L′.

Example 1 In fig. 1 there are examples of planar
graphs with representatives of cross sections from the
set L∗:

1) an integer rectangle with a length M and a
width N (L∗ consists of arcs pairs connected with an-
gle nodes),

2) a honeycomb structure (L∗ consists of all pos-
sible pairs of arcs which belong to internal and exter-
nal faces simultaneously),

3) a tube which is constructed by a gluing of op-
posite sides (with a length M ) of integer rectangle (L∗
consists of arcs triplets which have common butt node
) if N > 3.

Fig. 1. Planar graphs with cross sections dedicated
by bold type.

Example 2 In fig. 2 there are graphs with examples
of their cross sections from the set L∗:

1) a graph constructed from integer rectangle by
a gluing of pairs of its opposite sides (L∗ consists of
arcs quads which have common node),

2) a graph constructed from unit cubes with in-
teger coordinates of their nodes (L∗ consists of arcs
triplets which contain a cube node, in this node the
cube does not intersect or has only common node with
another cube).

Fig. 2. Graph G′ with dedicated cross sections.

2.3 Numerical experiment
Calculate the disconnection probability of honeycomb
structure (fig. 1 in center) using theorem 1 and Corol-
lary 1 and by the Monte-Carlo method with 106 real-
izations. Failure probability of each arc is 0.005. Re-
sults of calculations are represented in the table. Time
of calculations by asymptotic method is few seconds
and by the Monte-Carlo method is some hours.
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Size Asymptotic Monte-Carlo Relative
structure method method error
2× 2 0.00045 0.000439 2.4 %
3× 3 0.00055 0.000526 4.3 %
3× 4 0.00060 0.000579 3.5 %
3× 5 0.00065 0.000621 4.5 %
4× 4 0.00065 0.000619 4.8 %
5× 5 0.00075 0.000732 2.4 %

The authors thanks A.S. Losev for a realization of a
numerical experiment.

3 Stochastic and deterministic char-
acteristics of recursively defined
networks

In this section, we led to the idea of constructing re-
cursive definitions of networks, calculating different
characteristics by recursive formulas and deriving lin-
ear bounds for the calculated number of arithmetic
operations of our algorithms. We attempt such an
approach for calculations of reliability and the solu-
tion of a salesman problem. This suggested approach
may also lead to recursive formulas for the calculation
of other characteristics of networks connected with
physical applications, rather than with reliability the-
ory or the theory of transportation networks.

3.1 Definitions
Suppose that Γ = {U,W} is a non oriented graph
with a finite set of nodes U, a finite set of arcs W and
dedicated initial and final nodes u, v ∈ U. Each arc
w ∈ W is characterized by a set of positive numbers:
a probability of work pw, 0 < pw < 1, a length dw
and a weight (ability to handle) sw. Let us introduce
the following characteristics of the graph Γ:
1) its number of nodes l(Γ) and number of arcs m(Γ);
2) a probability PΓ = PΓ(pw, w ∈ W ) that there is a
path from u to v;
3) a probability P ′

Γ = P ′
Γ(pw, w ∈ W ) that there is a

path from u to v through all nodes of the graph;
4) a probability P ′′

Γ = P ′′
Γ (pw, w ∈ W ) of a closed

path through all nodes of the graph Γ;
5) the length of a shortest path DΓ=DΓ(dw, w ∈ W )
from u to v of the graph Γ;
6) the length of a shortest path D′

Γ=D′
Γ(dw, w ∈ W )

from u to v through all nodes of the graph Γ;
7) the length D′′

Γ = D′′
Γ(dw, w ∈ W ) of a shortest

closed path through all nodes of the graph Γ;
8) the minimal weight for cross sections SΓ =
SΓ(sw, w ∈ W ) from u to v of the graph Γ;
9) the number of arithmetic operations n(PΓ), n(P

′
Γ),

n(P ′′
Γ ), n(DΓ), n(D

′
Γ), n(D

′′
Γ), n(SΓ) necessary to

calculate PΓ, P ′
Γ, P

′′
Γ , DΓ, D

′
Γ, D

′′
Γ, SΓ appropriately.

If in the graph Γ, there is not a path connecting u, v
(through all graph nodes) then

PΓ = 0, DΓ = ∞, SΓ = 0 (P ′
Γ = 0, D′

Γ = ∞).

3.2 Ports constructed by a replacement of
arcs

Suppose that B∗ is a family of ports Γ with nonin-
tersecting sets of nodes. Define a class B of ports
with a set of generators B∗, B∗ ⊂ B by the follow-
ing condition. If a port Γ = {U,W} ∈ B∗ with W =
{w1, . . . , wm}, and ports Γ1 = {U1,W1}, . . . ,Γm =
{Um,Wm} ∈ B with U1 ∩ . . . ∩ Um = ∅, then a port
Γ′ = Γ(Γ1, . . . ,Γm) constructed from Γ by replacing
arcs w1, . . . , wm by ports Γ1, . . . ,Γm, also belongs to
the class B.

Algorithms for calculating the reliability P, the
length of a shortest path D, the minimal weight S for
ports from the class B are based on the recursive for-
mulas

PΓ′ = PΓ(PΓ1 , . . . , PΓm), DΓ′ = DΓ(DΓ1 , ..., DΓm),

SΓ′ = SΓ(SΓ1 , ..., SΓm). (5)

A calculation of the complexity of these algorithms is
defined by the following statement.

Theorem 6 Suppose that inf
Γ∈B∗

m(Γ) > 1. If arcs of

Γ work independently and sup
Γ∈B∗

n(PΓ) < ∞ then

n(PΓ) ≤ (m(Γ)− 1) sup
Γ∈B∗

n(PΓ), Γ ∈ B. (6)

Analogous statements are true for n(P ′
Γ), n(DΓ),

n(D′
Γ), n(SΓ).

From this theorem we see that to calculate the
probabilities PΓ, P

′
Γ linear numbers of arithmetic op-

erations by n(PΓ), n(P ′
Γ) are necessary. Note that

for ports of general type, n(DΓ) increases as a square
of m(Γ) while n(SΓ) increases as a cube of m(Γ),
n(PΓ), n(P ′

Γ) and n(D′
Γ) increase as geometric pro-

gressions of m(Γ) [9, 10, 42].

3.3 Networks constructed by clustering of
nodes

A salesman problem. Suppose that D∗ is a family of
networks Γ with nonintersecting sets of arcs. Define
recursively a class of networks D, D∗ ⊂ D by the
following condition. If for a pair of networks Γ1 =
{U1,W1} ∈ D, Γ2 = {U2,W2} ∈ D∗, W1 ∩W2 =
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∅, U1 ∩ U2 = {z} (with a single node z) then Γ1 ∪
Γ2 ∈ D.

Define recursively a number k(Γ), Γ ∈ D :

k(Γ) =


1, Γ ∈ D∗,
k(Γ1) + k(Γ2), Γ = Γ1 ∪ Γ2,
Γ1 ∈ D, Γ2 ∈ D∗.

It is clear that k(Γ) ≤ l(Γ).
Algorithms of the reliability P ′′ and calculations

of the length of a shortest path D′′ for networks from
the class D are based on the recursive formulas

P ′′
Γ1∪Γ2

= P ′′
Γ1
P ′′
Γ2
, D′′

Γ1∪Γ2
= D′′

Γ1
+D′′

Γ2
. (7)

A calculation of the complexity of these algorithms is
defined by the following statement.

Theorem 7 Suppose that Γ1, ...,Γl is a finite family
of networks with nonintersecting sets of arcs. If D∗
consists of Γ1, ...,Γl independent copies, then for any
Γ ∈ D :

n(P ′′
Γ ) ≤ k(Γ) +

l∑
i=1

n(P ′′
Γi
),

n(D′′
Γ) ≤ k(Γ) +

l∑
i=1

n(D′′
Γi
). (8)

This analog of the salesman problem has a lin-
ear solution complexity depending on the number of
nodes l(Γ) .

A problem of Floid and Steinberg. In the problem
considered in [43] complete families of

{DΓ, u, v ∈ U, u ̸= v}, {SΓ, u, v ∈ U, u ̸= v}

but not their elements are calculated. In this paper
families

{DΓ, u, v ∈ U, u ̸= v}, {SΓ, u, v ∈ U, u ̸= v},

{PΓ, u, v ∈ U, u ̸= v}

are calculated on the basis of recursive formulas: sup-
pose that Γ′ ∈ D, Γ′′ ∈ D∗, U

′ ∩ U ′′ = {z}, then

DΓ′∪Γ′′ =


DΓ′ , u, v ∈ U ′,
DΓ′′ , u, v ∈ U ′′,
DΓ′ +DΓ′′ , u ∈ U ′, v ∈ U ′′,

SΓ′∪Γ′′ =


SΓ′ , u, v ∈ U ′,
SΓ′′ , u, v ∈ U ′′,
min(SΓ′ , SΓ′′), u ∈ U ′, v ∈ U ′′,

PΓ′∪Γ′′ =


PΓ′ , u, v ∈ U ′,
PΓ′′ , u, v ∈ U ′′,
PΓ′PΓ′′ , u ∈ U ′, v ∈ U ′′.

(9)

In the last equalities which recursively define D,S, P,
the quantities DΓ′ , SΓ′ , PΓ′ characterize con-
nections between nodes u, z, while the quantities
DΓ′′ , SΓ′′ , PΓ′′ characterize connections between
nodes z, v. A calculation of the complexity of algo-
rithms based on recursive formulas (9) is defined by
the following statement.

Theorem 8 Under the conditions of theorem 7 for
any Γ ∈ D :

l(Γ)(l(Γ)−1)
2 ≤

∑
u,v∈U, u̸=v

n(DΓ)

≤ l(Γ)(l(Γ)−1)
2 +

l∑
i=1

∑
u,v∈Ui, u ̸=v

n(DΓi),
(10)

Analogous inequalities are true for n(SΓi), n(PΓi).

From this theorem we obtain

lim
l(Γ)→∞

∑
u,v∈U, u̸=v

n(DΓ)

l(Γ)(l(Γ)−1))
2

= lim
l(Γ)→∞

∑
u,v∈U, u ̸=v

n(SΓ)

l(Γ)(l(Γ)−1))
2

= lim
l(Γ)→∞

∑
u,v∈U, u ̸=v

n(PΓ)

l(Γ)(l(Γ)−1))
2

= 1.

(11)

Hence, asymptotically for l(Γ) → ∞, to calculate the
length of the shortest path D or a minimal weight S,
or a reliability P for a single pair of initial and final
nodes, only a single arithmetic operation is necessary.

4 Probability characteristics of con-
nectivity components numbers in
parallel-sequential connections

In this section recursive formulas for generating func-
tions, first and second moments of numbers of connec-
tivity components in parallel-sequential connections
of arcs with different failure probabilities are proved.
These proofs are based on an introduction of two di-
mensional random vector which consists of an indi-
cator of connection between initial and final nodes
and a number of connectivity components in parallel-
sequential connection.

Limit theorems for numbers of connectivity com-
ponents in parallel-sequential connections with iden-
tical arcs are obtained. These theorems are based on
recursive formulas for numbers of connectivity com-
ponents and the law of large numbers and the central
limit theorem for discrete Markov chain.
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4.1 Connections with non identical arcs
Define recursively the class A of parallel-sequential
connections of ports. Suppose that there is enumer-
able set A1 is of arcs w (generating set) and A1 ⊂ A.
If the ports g1, g2 ∈ A with arcs sets W1,W2, accord-
ingly and W1 ∩W2 = ∅ then their sequential g1 → g2
and parallel g1 ∥ g2 connections belong to the class
A, and arcs sets in these connections coincide with
W1 ∪W2. Initial node in the port g1 → g2 (in the port
g1 ∥ g2) coincides with initial node in the port g1 (with
a gluing of initial nodes of the ports g1, g2), and final
node coincides with final node in g2 (with a gluing of
final nodes ing1, g2).

Denote by αg random variable which equals one
if in random realization of the port g initial and fi-
nal nodes are connected and zero if these nodes are
not connected. Consider random variable ηg which
characterizes a number of connectivity components in
its random realization (if an arc of a graph fails its
nodes conserves in this graph). Then for g1, g2 ∈ A,
W1 ∩W2 = ∅, the following formulas are true:

αg1→g2 = αg1 ∧ αg2 , αg1∥g2 = αg1 ∨ αg2 ,

ηg1→g2 = ηg1 + ηg2 − 1, (12)

ηg1∥g2 = ηg1 + ηg2 − 2 + αg1 ∧ αg2 , (13)

P (αg1→g2 = 1) = P (αg1 = 1)P (αg2 = 1),

P (αg1∥g2 = 0) = P (αg1 = 0)P (αg2 = 0). (14)

Assume that

pw = P (αw = 1), qw = 1− pw, w ∈ A1,

consequently for w ∈ A1

P ((αw, ηw) = (1, 1)) = pw,

P ((αw, ηw) = (0, 2)) = qw. (15)

Theorem 9 If g1, g2 ∈ A, W1
∩
W2 = ∅, and ran-

dom vectors (αg1 , ηg1) and (αg2 , ηg2) are independent
then

M (zηw |αw = a) = z2−a, w ∈ A1,

M (zηg1→g2 |αg1→g2 = a) =

=
∑

a1,a2: a1∧a2=a

P (αg1 = a1)P (αg2 = a2)

P (αg1→g2 = a)
×

×M (zηg1 |αg1 = a1)M (zηg2 |αg2 = a2) z
−1, (16)

M
(
zηg1∥g2 |αg1∥g2 = a

)
=

=
∑

a1,a2: a1∨a2=a

P (αg1 = a1)P (αg2 = a2)

z2−a1∧a2P (αg1∥g2 = a)
×

×M (zηg1 |αg1 = a1)M (zηg2 |αg2 = a2) , (17)

and

Mzηg =
∑
a=0,1

P (αg = a)M (zηg |αg = a) , g ∈ A.

Using the equalities (16), (17) and the formulas

P (ηg = 0|αg = a) ≡ 0, M (zηg |αg = a) =

=
∑
k≥1

zkP (ηg = k|αg = a),

obtain the following statement.

Theorem 10 If g1, g2 ∈ A, W1
∩
W2 = ∅, then

P (ηw=1|αw=1) = P (ηw=2|αw=0) = 1, w ∈ A1,

P (ηg1→g2 = k|αg1→g2 = a)

=
∑

a1,a2: a1∧a2=a

k∑
j=1

P (αg1=a1)P (αg2=a2)
P (αg1→g2=a) ×

P (ηg1 = j|αg1 = a1)P (ηg2 = k − j + 1|αg2 = a2),

P (ηg1∥g2 = k|αg1∥g2 = a)

=
∑

a1,a2: a1∨a2=a

k+1−a1∧a2∑
j=1

P (αg1=a1)P (αg2=a2)

P (αg1∥g2=a) ×

×P (ηg1=j|αg1=a1)P (ηg2=k−j+2−a1|αg2=a2 ∧ a2).

Corollary 5 Suppose that Q(g) = P ((ηg, αg) =
(1, 1)) = P (ηg = 1) is connectivity probability of
the graph g and S(g) = P ((ηg, αg) = (2, 0)). From
the theorem 10, the equalities (14) and the complete
probability formula obtain:

Q(w) = pw, S(w) = 1− pw, w ∈ A1,

and for g1, g2 ∈ A, W1
∩
W2 = ∅,

Q(g1 → g2)=Q(g1)Q(g2), S(g1 ∥ g2)=S(g1)S(g2),

S(g1 → g2) = Q(g1)S(g2) + S(g1)Q(g2),

Q(g1 ∥ g2) = Q(g1)S(g2)+S(g1)Q(g2)+Q(g1)Q(g2).

From the theorem 10 obtain the following state-
ment.

Theorem 11 If g1, g2 ∈ A, W1
∩
W2 = ∅, then

M (ηg1→g2 |αg1→g2 = a) =

=
∑

a1,a2: a1∧a2=a

P (αg1 = a1)P (αg2 = a2)

P (αg1→g2 = a)
×
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×(A1 +A2 − 1),

M
(
ηg1∥g2 |αg1∥g2 = a

)
=

=
∑

a1,a2: a1∨a2=a

P (αg1 = a1)P (αg2 = a2)

P (αg1∥g2 = a)
×

×(A1 +A2 − 2 + a1 ∧ a2),

M
(
η2g1→g2 |αg1→g2 = a

)
=

=
∑

a1,a2: a1∧a2=a

P (αg1 = a1)P (αg2 = a2)

P (αg1→g2 = a)
×

×(B1 +B2 + 1 + 2A1A2 − 2A1 − 2A2),

M
(
η2g1∥g2 |αg1∥g2 = a

)
=

=
∑

a1,a2: a1∨a2=a

P (αg1 = a1)P (αg2 = a2)

P (αg1∥g2 = a)
×

×[B1 +B2 + 4 + 2A1A2 − 4A1 − 4A2+

+(2A1 + 2A2 − 3)a1 ∧ a2],

where

Ai = M(ηgi |αgi = ai), Bi = M(η2gi |αgi = ai),

and for g ∈ A

Mηkg =
∑
a=0,1

P (αg = a)M(ηkg |αg = a), k = 1, 2.

Remark 1 Using obtained recurrent formulas com-
puter program for a calculation of generating
functions and distributions of connectivity compo-
nents numbers in parallel-sequential connections was
made. A complexity of these calculations is linear by
numbers of arcs in parallel-sequential connections.

4.2 Connections with identical arcs

Consider the sequence An, n ≥ 1, of ports defined
recursively by a sequential or parallel connection of
new arc bn to the port An. Denote a type of connection
by || or →, accordingly. Suppose that random variable
ωn characterizes a type of the arc bn connection to the
port An and put

π→ = P (ωn =→), π|| = P (ωn = ||) = 1− π→,

0 < π→ < 1.

Here random variable βn characterizes a state of the
arc bn :

P (βn = 1) = P (bn working state = p,

P (βn = 0) = 1− p = q, 0 < p < 1.

The sequences of random variables {ωn, n ≥ 1},
{βn, n ≥ 1} are independent and each of them con-
sists of independent and identically distributed ran-
dom variables.

The port An with randomly working arcs is char-
acterized by random vector (αn, ηn), there αn is an
indicator of a connectivity between initial and final
nodes of parallel-sequential connection An and ηn is a
number of connectivity components in An. Introduce
auxiliary random variables

−→α n+1 = αn ∧ βn, −→η n+1 = ηn + 1− βn, (18)

αn+1 = αn ∨ βn, ηn+1 = ηn − βn + αnβn, (19)

then

(αn+1, ηn+1) = I(ωn =→)(−→α n+1,−→η n+1)+

+I(ωn =∥)(αn+1, ηn+1), (20)

where I(C) is an indicator of an event C.
Denote ∆n+1 = ηn+1 − ηn, then the sequence

Xk = (αk,∆k), k ≥ 1, is Markov chain with the
states set X = {(i, j), i = 0, 1, j = −1, 0, 1} (which
consists of six states) as follows

(αn+1,∆n+1) = I(ωn =→)(αnβn, 1− βn)+

+I(ωn =∥)(αn ∨ βn,−βn + αnβn).

From the equalities (18) - (20) and the conditions
0 < p < 1, 0 < π→ < 1, we see that Markov chain
Xk, k ≥ 1, states are interconnected. Consequently
from the central limit theorem for discrete Markov
chains with finite states set [44, chapters V, VI] there
are normally distributed random vector N(0,B) with
the dimension six and with zero mean and with co-
variance matrix B and real numbers A(x), x ∈ X ,
which do not depend on initial state X1 so that for any
real t(x), x ∈ X ,

P

(
Nn(x)− nA(x)√

n
> t(x), x ∈ X

)
→

→ P (N(0,B) > (t(x), x ∈ X )), n → ∞. (21)

Here Nn(x) =
n∑

k=1

I(Xk = x) and the inequality

N(0,B) > (t(x), x ∈ X ) is defined componentwise.
Introduce auxiliary numbers a(x), x ∈ X , by the

equalities:

a(i, 0) = 0, a(i, 1) = 1, a(i,−1) = −1, i = 0, 1.

From the formula (21) it is simple to obtain that there
is normally distributed random variable N(0, B) with

WSEAS TRANSACTIONS on MATHEMATICS Gurami Tsitsiashvili, Marina Osipova

E-ISSN: 2224-2880 849 Issue 10, Volume 11, October 2012



zero mean and with the covariance B so that for any
real t

P


∑
x∈X

a(x)(Nn(x)− nA(x))

√
n

> t

 →

→ P (N(0, B) > t), n → ∞. (22)

Using obvious equality

∑
x∈X

a(x)Nn(x) =
n∑

k=1

∆k = ηn, n ≥ 1,

rewrite the formula (22) as follows

P

(
ηn − nA√

n
> t

)
→ P (N(0, B) > t), n → ∞,

A =
∑
x∈X

a(x)A(x). (23)

Remark 2 A calculation of the vector (A(x), x ∈
X )) and especially of covariance matrix B in the for-
mula (21) is sufficiently complicated procedure [44,
chapters V, VI]. So to define the mean A and the co-
variance B we use following limit formulas

A = lim
n→∞

Mηn
n

, B = lim
n→∞

Dηn
n

, (24)

which are corollaries of the formula (23) with special
initial distribution of X1.

Choose random vector (α1,∆1) = (α1, η1),
which does not depend on random sequences
{ωn, n ≥ 1}, {βn, n ≥ 1} and satisfies the equalities

P ((α1, η1) = (1, 1)) = P =
π∥p

π∥p+ π→q
,

P ((α1, η1) = (0, 2)) = Q = 1− P, (25)

with P (αn = 1) ≡ P, P (αn = 0) ≡ Q. Random
sequence αn, n ≥ 1, is stationary Markov chain.

Theorem 12 The equalities

A = Qπ→q, (26)

B = π→qQ(1− π→qQ+ 2PQ) > 0. (27)

are true.

Remark 3 From Remark 2 is is possible to replace
the condition (25) by more natural suggestion

P ((α1, η1) = (1, 1)) = p, P ((α1, η1) = (0, 2)) = q

so that the equalities (23), (26), (27) are true also.

5 Proofs of main statements

The proof of theorem 1. Suppose that VL is a random
event that all arcs in cross section L fail. Then

P = P

 ∪
L∈L∗

VL

∪ ∪
L∈L\L∗

VL

 ∼

P

 ∪
L∈L∗

VL

 , h → 0.

As P (VL) = o(hD), L ∈ L \ L∗, h → 0, so

P

 ∪
L∈L∗

VL

 ∼ ChD, h → 0.

The proof of theorem 5. Suppose that arcs set
{w1, . . . , wd} from the graph G generates acyclic
graph R∗. Prove that each arc wi, 1 ≤ i ≤ d, may be
bypassed in G by a way which does not contain arcs
of this set.

The subgraph R∗ consists of trees S∗
1 , . . . , S

∗
m

which do not connect with each other. Arrange each
tree S∗

i , 1 ≤ i ≤ m, on a plane so that in each
node z∗ arcs connected with this node follow each
other as their preimages on the face z if we bypass this
face in some direction. Confront each tree S∗

i closed
way which bypasses once all its arcs from both sides,
1 ≤ i ≤ m (fig. 3).

Fig. 3. Bypass of arcs in tree.

Accord ways Γ∗
i bypassing tree S∗

i arcs a closed
way Γi, which passes in the graph G through all
nodes of arcs {w1, . . . , wd} which generate the tree
S∗
i (fig. 4). The way Γi has not arcs from

the set {w1, . . . , wd}. Consequently each arc from
{w1, . . . , wd} may be bypassed in G by a way which
does not contain arcs from this set. So the set
{w1, . . . , wd} from the graph G, d ≤ D∗, which does
not generate a cycle in G∗ does not belong to the set
of cross sections L∗.

Fig. 4. Bypass of arcs in tree from dual graph and in
initial graph.
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The proof of theorem 6. We prove the inequality

n(PΓ) ≤ (m(Γ)− 1) sup
Γ∈B∗

n(PΓ),

from which all other statements of this theorem may
be established analogously. From the conditions of
the theorem for Γ ∈ B∗ the inequality (6) is true. Sup-
pose that the inequality (6) is true for Γ1, . . . ,Γm ∈ B
and Γ′ = Γ(Γ1, . . . ,Γm). Then from the equations (5)
and the equality m(Γ′) = m(Γ1) + . . .+m(Γm), we
obtain that

n(PΓ′) = n(PΓ1) + . . .+ n(PΓm) + n(PΓ),

n(PΓ′) ≤ sup
Γ∈B∗

n(PΓ)(m(Γ1)+...+m(Γm)−m+1) ≤

≤ (m(Γ′)− 1) sup
Γ∈B∗

n(PΓ).

The proof of theorem 7. We prove the first inequal-
ity in (8), the second inequality may be proved anal-
ogously. It is clear that this inequality is true for all
Γ ∈ D∗.

Suppose that Γ1 ∈ D, Γ2 ∈ D∗, R is a closed
path through all nodes of the network Γ1 ∪ Γ2 and z
is its initial node. Divide R into closed paths with the
initial node z, which belong entirely to Γ1 or to Γ2.
Connect all closed paths which belong to Γ1 and con-
struct a closed path which passes through all nodes of
Γ1. Analogously construct a closed path which passes
through all nodes of Γ2. Then P ′′

Γ1∪Γ2
= P ′′

Γ1
P ′′
Γ2
.

Suppose that the first inequality from (8) is true
for Γ1, then from P ′′

Γ1∪Γ2
= P ′′

Γ1
P ′′
Γ2

n(P ′′
Γ1∪Γ2

) ≤
l∑

i=1

n(P ′′
Γi
) + k(Γ1) + 1 =

=
l∑

i=1

n(P ′′
Γi
) + k(Γ1 ∪ Γ2).

The proof of theorem 8. Suppose that the inequality
(10) is true for Γ′, then from the recursive formulas (9)
and from the equality l(Γ′ ∪ Γ′′) = l(Γ′) + l(Γ′′)− 1
we obtain

∑
u,v∈U ′∪U ′′, u ̸=v

n(DΓ′∪Γ′′) ≤
l∑

i=1

∑
u,v∈Ui, u ̸=v

n(DΓi)+

+
l(Γ1)(l(Γ1)− 1)

2
+

l(Γ2)(l(Γ2)− 1)

2
+

+(l(Γ1 − 1))(l(Γ2)− 1) =
l∑

i=1

∑
u,v∈Ui, u ̸=v

n(DΓi)+

+
l(Γ1 ∪ Γ2)(l(Γ1 ∪ Γ2)− 1)

2
.

Analogous inequalities may be obtained for S, P.

The proof of theorem 9. Prove the formula (16). At
first remark that for independent two dimensional dis-
crete random vectors (defined on common probability
space) (X1, Y1) and (X2, Y2) with meanings (x1i, y1i)
and (x2i, y2i), i = 1, 2, . . . , I, accordingly the for-
mula

P (Y1 = y1i, Y2 = y2k|X1 = x1i, X2 = x2k) =

=
2∏

j=1

P (Yj = yji|Xj = xji) . (28)

is true. Introduce the event A = {f(X1, X2) = b},
where f is a function of two real variable and b is some
number. Then from the formula (28) and the complete
probability formula we obtain

P (Y1 = y1, Y2 = y2, A) =

=
∑

x1j ,x2m: f(x1j ,x2m)=b

P (X1 = x1j)P (Y1 = y1|X1 = x1j)×

×P (X2 = x1m)P (Y2 = y2|X2 = x2m) .

Consequently we have

M (Y1Y2|A) =

∑
y1i,y2k

y1iy2kP (Y1=y1i, Y2=y2k, A)

P (A)

=
1

P (A)

∑
x1j ,x2m: f(x1j ,x2m)=b

P (X1=x1j)P (X2=x1m)×

×M (Y1|X1 = x1j)M (Y2|X2 = x2m) .

From this equality and the formula (12) we obtain the
formula (16). Analogously from the formula (13) it is
possible to prove the equality (17).

The proof of theorem 12. To define the constants
A,B from (24) we construct recurrent algorithm. De-
note

An = M (ηn|an = 1) , Bn = M (ηn|an = 0) ,

Mn = Mηn = AnP +BnQ, (29)

A′
n = M

(
η2n|an = 1

)
, B′

n = M
(
η2n|an = 0

)
,

M ′
n = Mη′n = A′

nP +B′
nQ, (30)

where

A1 = 1, B1 = 2, A′
1 = 1, B′

1 = 4. (31)
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Using the formulas (18) - (20), (29) and theorem 11
obtain for n ≥ 1 :

An+1 =
1

P

(
AnPπ→p+AnPπ∥p+

+(Bn − 1)Qπ∥p+AnPπ∥q
)
,

Bn+1 =
1

Q
(BnQπ→p+ (An + 1)Pπ→q+

+(Bn + 1)Qπ→q +BnQπ∥q
)
,

Mn+1 = Mn −Qπ∥p+ Pπ→q +Qπ→q =

= Mn +Qπ→q,

consequently

Mn+1 = M1+nQπ→q, n ≥ 1, M1 = 1+Q. (32)

Then from (24) we obtain the equality (26).
And

An+1−Bn+1 = (An−Bn)λ−(2π→q+π∥p), n ≥ 1,

λ = π∥q + π→p < 1, (33)

so

An+1 −Bn+1 = −
[
λn + (2π→q + π∥p)

1− λn

1− λ

]
=

= λnQ− 1−Q,

An+1P +Bn+1Q = Mn+1,

consequently

An+1 = Mn+1 +Q[λnQ− 1−Q],

Bn+1 = Mn+1 − P [λnQ− 1−Q], n ≥ 1. (34)

Begin now a calculation of M ′
n+1. Using the formulas

(18) - (20), (30) and Theorem 11 obtain for n ≥ 1 :

A′
n+1 =

1

P

(
A′

nPπ→p+A′
nPπ∥p+

+(B′
n − 2Bn + 1)Qπ∥p+A′

nPπ∥q
)
,

B′
n+1 =

1

Q

(
B′

nQπ→p+ (A′
n + 2An + 1)Pπ→q+

+(B′
n + 2Bn + 1)Qπ→q +B′

nQπ∥q
)
,

M ′
n+1 = M ′

n + 2AnQπ∥p+ 2BnQ(π→q − π∥p)+

+π→q(1 + P ).

So from (34) we obtain

M ′
n+1 = M ′

1 + 2Qπ∥p
n−1∑
k=0

Ak+1+

+2Q(π→q − π∥p)
n−1∑
k=0

Bk+1 + nπ→q(1 + P ) =

= M ′
1 + 2Qπ→q

n−1∑
k=0

Mk+1 − 2nQP (1 +Q)π∥p+

+nπ→q(1 + P ) + 2π→qP 2Q
1− λn

1− λ
=

= M ′
1 + 2Qπ→q

(
n(1 +Q) +

π→qQn(n− 1)

2

)
−

−2nQP (1 +Q)π∥p+

+nπ→q(1 + P ) + 2P 2Q2(1− λn), M ′
1 = 1 + 3Q.

Consequently

Dηn+1 = M ′
n+1−M2

n+1 = 2P 2Q2(1−λn)+QP+

+nπ→q[1 + P −Q2π→q − 2P 2(1 +Q)].

Then from (24), (33) we have

B = π→q(1 + P −Q2π→q − 2P 2(1 +Q)) =

= π→qQ(1− π→qQ+ 2PQ) > 0.
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