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Abstract: Liu, Liu, and Liu, in the paper “A novel three-dimensional autonomous chaos system, Chaos,
Solitons and Fractals. 39 (2009) 1950-1958”, introduce a novel three-dimensional autonomous chaotic
system. In this paper, the fractional-order case is considered. The lowest order for the system to remain
chaotic is found via numerical simulation. Stability analysis of the fractional-order system is studied
using the fractional Routh-Hurwitz criteria. Furthermore, the fractional Routh-Hurwitz conditions are
used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional
Routh-Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-
order autonomous system can be controlled to its equilibrium points. In addition, the synchronization of
the fractional-order system and the fractional-order Liu system is studied using active control technique.
Numerical results show the effectiveness of the theoretical analysis.
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1 Introduction

As a 300-year-old mathematical topic, fraction-
al calculus has always attracted the interest of
many famous ancient mathematicians, including
L’Hospital, Leibniz, Liouville, Riemann, Grun-
wald, and Letnikov [1]. Although it has a long his-
tory, it was not applied in our real life because it
seems to be more difficult and fewer theories have
been established than for classical differential e-
quations. In recent decades, fractional-order dif-
ferential equations have been found to be a pow-
erful tool in more and more fields, such as physic-
s, chemistry, biology, economics, and other com-
plex systems [2, 3]. The interest in the study of
fractional-order nonlinear systems lies in the fac-
t that fractional derivatives provide an excellent
tool for the description of memory and hereditary
properties, which are not taken into account in
the classical integer-order models. Studying dy-
namics in fractional-order nonlinear systems has
become an interesting topic and the fractional cal-
culus is playing a more and more important role
for analysis of the nonlinear dynamical system-
s. Some work has been done in the field, and the

chaos and control in fractional-order systems have
been studied, including Lorenz system [4], Chua
system [5], Chen system [6], Rossler system [7],
Newton-Leipnic system [8], Liu system [9] and so
on.

In 2009, Liu et al. gave a novel three-
dimensional autonomous chaotic system [10],
which is not different from Liu system in Ref.
[11]. In this paper, the dynamical behaviors and
feedback control to steady state of the fractional-
order autonomous system are studied. The lowest
order for the system to remain chaotic is found
via numerical simulation. Furthermore, we are
going to use the fractional Routh-Hurwitz con-
ditions given in [12, 13, 14] to study the stabili-
ty conditions for the fractional-order system, and
the conditions for linear feedback control are ob-
tained as well. Moreover, the synchronization of
the fractional-order autonomous system and the
fractional-order Liu system is also studied using
the active control method in Ref. [15]. This
paper is organized as follows: Section 2 gives
the integer-order autonomous system. Section 3
presents the fractional derivatives and the lowest
order for the fractional-order autonomous system
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to remain chaotic. Section 4 gives stability anal-
ysis of the fractional-order chaotic autonomous
system. Section 5 presents chaos control of the
fractional-order autonomous system, and the nu-
merical simulation is also given. In Section 6, the
active control technique is applied to synchronize
the novel fractional-order autonomous system and
the fractional-order Liu system [9]. Finally, in
Section 7, concluding comments are given.

2 The integer-order chaotic au-
tonomous system

Ref. [10] reported a three-dimensional au-
tonomous system which relies on two multiplier-
s and one quadratic term to introduce the non-
linearity necessary for folding trajectories. The
chaotic attractor obtained from the new system
according to the detailed numerical as well as
theoretical analysis is also the butterfly shaped
attractor, exhibiting the abundant and complex
chaotic dynamics. This chaotic system is a new
attractor which is similar to Lorenz chaotic at-
tractor. The chaotic system is described by the
following nonlinear integer-order differential e-
quations, called system (1):

dx
dt = −ax− ey2
dy
dt = by + kxz
dz
dt = −cz −mxy

(1)

Liu et al. had studied and analyzed its forming
mechanism. The compound structure of the but-
terfly attractor obtained by merging together two
simple attractors after performing one mirror op-
eration was explored.

When a = 1, b = 2.5, c = 5, e = 1,
k = 4, m = 2, the system (1) has three real
equilibria E1(0, 0, 0), E2(−1.250,−1.118,−0.559)
and E3(−1.250, 1.118, 0.559). The chaotic attrac-
tor and the equilibria are show in Fig.1, and
the initial value of the system is selected as
(0.2, 0, 0.5),as in Ref. [10].

At equilibrium E1(0, 0, 0), the Jacobian ma-
trix of system (1) is given by

J1 =

 −a −2ey 0
kz b kx
−my −mx −c



=

 −1 0 0
0 2.5 0
0 0 −5

 (2)

These eigenvalues of the Jacobian matrix comput-
ed at equilibrium E1(0, 0, 0) are given by

λ1 = −1, λ2 = 2.5, λ3 = −5

Here λ2 is a positive real number, λ1 and λ3 are
two negative real numbers. Therefore, the equi-
librium E1(0, 0, 0) is a saddle point. So, this equi-
librium point is unstable.

At equilibrium E2(−1.250,−1.118,−0.559),
the Jacobian matrix of system (1) is equal to

J2 =

 −1 2.236 0
−2.236 2.5 −5
2.236 2.5 −5

 (3)

These eigenvalues of the Jacobian matrix comput-
ed at equilibrium E2(−1.250,−1.118,−0.559) are
given by

λ1 = −4.38776, λ2 = 0.443881 + 3.34638j

λ3 = 0.443881− 3.34638j

Here λ1 is a negative real number, λ2 and
λ3 are a pair of complex conjugate eigen-
values with positive real parts. Therefore,
the equilibrium E2(−1.250,−1.118,−0.559) is a
saddle-focus point. So, this equilibrium point
E2(−1.250,−1.118,−0.559) is unstable.

At equilibrium E3(−1.250, 1.118, 0.559), the
Jacobian matrix of system (1) is equal to

J3 =

 −1 −2.236 0
2.236 2.5 −5
−2.236 2.5 −5

 (4)

These eigenvalues of the Jacobian matrix com-
puted at equilibrium E3(−1.250, 1.118, 0.559) are
given by

λ1 = −4.38776, λ2 = 0.443881 + 3.34638j

λ3 = 0.443881− 3.34638j

Here λ1 is a negative real number, λ2 and
λ3 are a pair of complex conjugate eigenval-
ues with positive real parts. Therefore, the
equilibrium E3(−1.250, 1.118, 0.559) is also a
saddle-focus point, and the equilibrium point
E3(−1.250, 1.118, 0.559) is also unstable.

For dynamical system (1), we can obtain

∇V =
∂

∂x
(
dx

dt
)+

∂

∂y
(
dy

dt
)+

∂

∂z
(
dz

dt
) = −a+b−c = p

(5)
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Figure 1: The chaotic attractor and the equilibria of system (1).

With p = −a + b − c = −3.5, here p is a nega-
tive constant, dynamical system described by (1)
is one dissipative system, and an exponential con-
traction of the system (1) is

dV

dt
= ept = e−3.5t (6)

In dynamical system (1), a volume element V0 is
apparently contracted by the flow into a volume
element V0e

pt = V0e
−3.5t in time t. It means that

each volume containing the trajectory of this dy-
namical system shrinks to zero as t→ +∞ at an
exponential rate p. So, all this dynamical system
orbits are eventually confined to a specific sub-
set that have zero volume, the asymptotic motion
settles onto an attractor of the system (1) [16].

3 Fractional derivatives and
chaos in the fractional-order
chaotic autonomous system

3.1 Fractional derivatives and the
fractional-order autonomous sys-
tem

There are several definitions for the fractional-
order differential operator, but the following def-
inition is most used:

Dαy(x) = Jm−αy(m)(x), α > 0 (7)

Wherem = ⌈α⌉, i.e.,m is the first integer which is

not less than α, y(m) is the generalm-order deriva-
tive, Jβ is the β-order Riemann-Liouville integral
operator [17], which is expressed as follows:

Jβz(x) =
1

Γ(β)

∫ x

a
(x− t)β−1z(t)dt, β > 0 (8)

The operator Dα is generally called ”α-order Ca-
puto differential operator”. If the initial value
a = 0, Dα is denoted by D

α

∗ .

The fractional-order autonomous system is
described by the following nonlinear fractional-
order differential equations, called system (9):


dq1x
dtq1 = −ax− ey2
dq2y
dtq2 = by + kxz
dq3z
dtq3 = −cz −mxy

(9)

where the fractional differential operator is the
Caputo differential operator; i.e., dqix/dtqi =
Dqi , i = 1, 2, 3, 0 < q1, q2, q3 ≤ 1, and it-
s order is denoted by q = (q1, q2, q3), D

q =
(dq1x/dtq1 , dq2x/dtq2 ,dq3x/dtq3) here. For com-
paring with the integer-order system (1), we also
let a = 1, b = 2.5, c = 5, e = 1, k = 4 and m = 2,
with initial state (0.2, 0, 0.5).
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3.2 Chaos in the fractional-order au-
tonomous system

Consider the following fractional-order differential
equation:

Dqy(x) = f(t, y(t)), 0 ≤ t ≤ T
y(k)(0) = y

(k)
0 k = 0, 1, · · · ,m− 1,m = ⌈q⌉

(10)

It is equivalent to the Volterra integral equa-
tion

y(t) =
m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(q)

∫ t

0
(t− s)q−1f(s, y(s))ds

(11)
Diethelm et al. have given a predictor-

correctors scheme [18, 19], based on the Adams-
Bashforth-Moulton algorithm to integrate E-
q.(11). By applying this scheme to the fractional-
order autonomous system, and setting h = T/N ,
tn = nh, n = 0, 1, · · · , N ∈ Z+, system (9) can be
discredited as follows:

xn+1 = x0 +
hq1

Γ(q1 + 2)
(−axpn+1 − ey

p
n+1y

p
n+1)

+
hq1

Γ(q1 + 2)

n∑
j=0

α1,j,n+1(−axj − eyjyj)

yn+1 = y0 +
hq2

Γ(q2 + 2)
(bypn+1 + kxpn+1z

p
n+1)

+
hq2

Γ(q2 + 2)

n∑
j=0

α2,j,n+1(byj + kxjzj)

zn+1 = z0 +
hq3

Γ(q3 + 2)
(−czpn+1 −mx

p
n+1y

p
n+1)

+
hq3

Γ(q3 + 2)

n∑
j=0

α3,j,n+1(−czj −mxjyj)

where

xp
n+1

= x0 +
1

Γ(q1)

n∑
j=0

β1,j,n+1(−axj − eyjyj)

yp
n+1

= y0 +
1

Γ(q2)

n∑
j=0

β2,j,n+1(byj + kxjzj)

zp
n+1

= z0 +
1

Γ(q3)

n∑
j=0

β3,j,n+1(−czj −mxjyj)

αi,j,n+1 =



nqi+1 − (n− nqi)(n+ 1)qi , j = 0

(n− j + 2)qi+1

+(n− j)qi+1

−2(n− j + 1)qi+1,
1 ≤ j ≤ n

1, j = n+ 1

βi,j,n+1 =
hqi

qi
((n− j+2)qi +(n− j)qi), 0 ≤ j ≤ n.

The error estimate of the above scheme is
maxj=0,1,···,N{|y(tj)− yh(tj)|} = O(hp), in which
p = min(2, 1 + qi) and qi > 0, i = 1, 2, 3.

Using predictor-correctors scheme, when q1 =
q2 = q3 = α, the simulation results demonstrate
that the lowest order for the system (9) to remain
chaotic is α = 0.91. When α = 0.89, α = 0.90
and α = 0.91, the x− y phase portrait is show in
Fig.2 to Fig.4.

4 Stability analysis of the
fractional-order chaotic au-
tonomous system

4.1 Fractional-order Routh-Hurwitz
conditions

Consider a three-dimensional fractional-order sys-
tem 

dq1x(t)
dtq1 = f(x, y, z)

dq2y(t)
dtq2 = g(x, y, z)

dq3z(t)
dtq3 = h(x, y, z)

(12)

Where q1, q2, q3 ∈ (0, 1). The Jacobian matrix of
the system (12) at the equilibrium points is ∂f/∂x ∂f/∂y ∂f/∂z

∂g/∂x ∂g/∂y ∂g/∂z
∂h/∂x ∂h/∂y ∂h/∂z

 (13)

The eigenvalues equation of the equilibrium point
is given by the following polynomial:

P (λ) = λ3 + a1λ
2 + a2λ+ a3 (14)

a1, a2 and a3 is the coefficients of the polynomial
and its discriminant D(P ) is given as:

D(P ) = 18a1a2a3 + (a1a2)
2 − 4a3a

3
1 − 4a32 − 27a23

(15)

Lemma 1 If the eigenvalues of the Jacobian ma-
trix (13) satisfy

|arg(λ)| ≥ πα/2, α = max(q1, q2, q3) (16)
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Figure 2: The x− y phase portrait of system (9) when α = 0.89.

i.e. all the roots of the polynomial Eq.(14) satisfy
Eq.(16), then the system is asymptotically stable
at the equilibrium points.

The stability region of the fractional-order
system is illustrated in Fig.5, in which σ, ω refer
to the real and imaginary parts of the eigenvalues,
respectively. It is easy to show that the stabili-
ty region of the fractional-order case is greater
than the stability region of the integer-order case.
Using the results of Ref. [13, 19], we have the
following fractional Routh-Hurwitz conditions:

(i) If D(P ) > 0, then the necessary and suf-
ficient condition for the equilibrium point to be
locally asymptotically stable, is a1 > 0, a3 > 0,
a1a2 − a3 > 0.

(ii) If D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0,
then the equilibrium point is locally asymptoti-
cally stable for α < 2/3. However, if D(P ) < 0,
a1 < 0, a2 < 0, α > 2/3, then all roots of Eq.(14)
satisfy the condition .

(iii) If D(P ) < 0, a1 > 0, a2 > 0, a1a2 − a3 =
0, then the equilibrium point is locally asymptot-
ically stable for all α ∈ [0, 1).

(iv) The necessary condition for the equilib-
rium point, to be locally asymptotically stable, is
a3 > 0. The proof for above conditions can be
seen in detail from Ref. [12, 13].

4.2 The stability of equilibrium points

We assume q1 = q2 = q3 = α, and
the fractional system (9) has the same equi-

libria E1(0, 0, 0), E2(−1.25,−1.118,−0.559) and
E3(−1.25, 1.118, 0.559) as integer system (1).
When α ≥ 0.91system (9) exhibits chaotic be-
havior, and the attractor and the equilibria are
shown in Fig.6, when α = 0.91.

If the equilibrium point is E(x∗, y∗, z∗), the
Jacobian matrix of system (9) is

J =

 −a −2ey 0
kz b kx
−my −mx −c


The characteristic equation of the Jacobian ma-
trix J is

λ3+(a−b+c)λ2+(−ab−bc+ac+kmx∗2+2eky∗z∗)λ

+(−abc+akmx∗2−2ekmx∗y ∗2+2ceky ∗z∗) = 0
(17)

Theorem 2 For the parameters a = 1, b = 2.5,
c = 5, e = 1, k = 4 and m = 2, the equilibrium
point E1 of system.(9) is unstable for any α ∈
(0, 1) .

Proof: When a = 1, b = 2.5, c = 5, e = 1, k = 4
and m = 2, substituting coordinate of E1 into
Eq.(17), we can get the characteristic polynomial
as follows

λ3 + 3.5λ2 − 10λ− 12.5 = 0 (18)

The eigenvalues of Eq.(18) is λ1 = −5, λ2 = −1,
λ3 = 2.5. Here λ3 is a positive real number.
Therefore, according to Lemma 1 the equilibrium
point E1 is unstable for any α ∈ (0, 1). ⊓⊔
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Figure 3: The x− y phase portrait of system (9) when α = 0.90.

Theorem 3 When the parameters a = 1, b =
2.5, c = 5, e = 1, k = 4 and m = 2, if α < 0.91,
then equilibrium points E2 and E3 of system (9)
are stable.

Proof: When a = 1, b = 2.5, c = 5, e = 1,
k = 4 and m = 2, substituting coordinate of E2

or E3 into Eq.(17), we can get the characteristic
polynomial as follows

λ3 + 3.5λ2 + 7.49998λ+ 49.9997 = 0 (19)

The eigenvalues of Eq.(18) is λ1 = −4.388, λ2 =
0.444− 3.346j, λ3 = 0.444 + 3.346j. λ1 = −4.388
is a negative real number, and the arguments of
λ2 = 0.444 − 3.346j, λ3 = 0.444 + 3.346j are -
1.43892 and 1.43892, respectively. |arg(λ2,3)| =
1.43892 > πα/2 = 1.42942. Therefore, according
to Lemma 1, if α < 0.91, then system (9) is stable
at equilibrium points E2 and E3, although the real
part of the eigenvalues is positive. ⊓⊔

5 Chaos control of the
fractional-order autonomous
system

5.1 Chaos control of the fractional-
order autonomous system

The controlled fractional-order autonomous sys-
tem is given by:

dq1x
dtq1 = −ax− ey2 − k1(x− x∗)
dq2y
dtq2 = by + kxz − k2(y − y∗)
dq3z
dtq3 = −cz −mxy − k3(z − z∗)

(20)

where E(x∗, y∗, z∗) represents an arbitrary equi-
librium point of system (9). The parameters
k1, k2, k3 ≥ 0 are feedback control gains which
can make the eigenvalues of the linearized equa-
tion of the controlled system (20) satisfy one of
the above-mentioned Routh-Hurwitz conditions,
then the trajectory of the controlled system (20)
asymptotically approaches the unstable equilibri-
um point E(x∗, y∗, z∗).

Substituting the coordinate of E(x∗, y∗, z∗)
into system (20), we get the Jacobian matrix
refers to E(x∗, y∗, z∗) as follows

J =

 −k1 − a −2ey∗ 0
kz∗ −k2 + b kx∗
−my∗ −mx∗ −k3 − c

 (21)

and the corresponding characteristic equation is

P (λ) = λ3 + (a− b+ c+ k1 + k2 + k3)λ
2

+(−ab− bc+ ac− bk1 + ck1 + ak2 + ck2 + k1k2
+ak3 − bk3 + k1k3 + k2k3 + kmx ∗2 +2eky ∗ z∗)λ
+(−abc− bck1 + ack2 + ck1k2 − abk3 − bk1k3
+ak2k3 + k1k2k3 + akmx ∗2 +kk1mx∗2
−2ekmx ∗ y ∗2 +2ceky ∗ z ∗+2ekk3y ∗ z∗) = 0

(22)
and its discriminant is

D(P ) = 18a1a2a3 + (a1a2)
2 − 4a3a

3
1 − 4a32 − 27a23
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Figure 4: The x− y phase portrait of system (9) when α = 0.91.

where



a1 = a− b+ c+ k1 + k2 + k3

a2 = −ab− bc+ ac− bk1 + ck1 + ak2 + ck2 + k1k2
+ak3 − bk3 + k1k3 + k2k3 + kmx ∗2 +2eky ∗ z∗

a3 = −abc− bck1 + ack2 + ck1k2 − abk3 − bk1k3
+ak2k3 + k1k2k3 + akmx ∗2 +kk1mx∗2
−2ekmx ∗ y ∗2 +2ceky ∗ z ∗+2ekk3y ∗ z∗

(23)

5.2 Some conditions for stabilizing the
equilibrium point

When a = 1, b = 2.5, c = 5, e = 1, k = 4 and
m = 2, because of the complexity of the condition,
we only consider the situation k1 = k2 = k3 = β.
When β > 2.5, we have D(P ) > 0, a1 > 0, a3 > 0,
a1a2 > a3 at the equilibrium point E1, and all
the eigenvalues are real and located in the left
half of the s-plane. So Routh-Hurwitz conditions
are the necessary and sufficient conditions for the
fulfillment of Lemma 1.

When a = 1, b = 2.5, c = 5, e = 1, k = 4,
m = 2 and k1 = k2 = k3 = β ∈ R, we can obtain
D(P ) < 0, a1 > 0, a2 > 0, a3 > 0, then the equi-
librium point E2 and E3 is locally asymptotically
stable for any α < 2/3.

5.3 Simulation results

The parameters are chosen as α = 0.92, to ensure
the existence of chaos in the absence of control.
The initial state is taken as (0.2, 0, 0.5), the time
step is 0.1(S) , and the control is active when
t ≥ 80(s) in order to make a comparison between
the behavior before activation of control and after
it.

We simulate the process of which system
(20) stabilizes to the equilibrium point E1(0, 0, 0).
When k1 = k2 = k3 = β = 3, we have D(P ) > 0,
a1 > 0, a3 > 0 and a1a2 > a3, and the three root-
s are λ1 = −8, λ2 = −4, λ3 = −0.5, so system
(20) is asymptotically stable at E1(0, 0, 0), Fig.7
displays the simulation result.

We have also simulated the process of
which system (20) stabilizes to equilibri-
um points E2(−1.250,−1.118,−0.559) and
E3(−1.250, 1.118, 0.559), using the feedback
control method. When k1 = k2 = k3 = β = 0.1,
α = 0.6, we have D(P ) < 0, a1 ≥ 0, a2 ≥ 0,
a3 > 0 and the roots of P (λ) = 0 are λ1 = −4.488,
λ2 = 0.344 + 3.346j, λ3 = 0.344− 3.346j. In this
case, the integer-order system is unstable because
the real part of λ2 and λ3 is positive, however,
the arguments of the right half-plane eigenvalues
are 84.1◦ , indicating that the eigenvalues are
located in the stable region of the fractional-order
autonomous system as shown in Fig.5, and the
system’s cone makes an angle 54◦. Hence,
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Figure 5: Stability region of the fractional-order system.
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Figure 6: The chaotic attractor and the equilibria of system (9).

WSEAS TRANSACTIONS on MATHEMATICS Wang Hongwu, Ma Junhai

E-ISSN: 2224-2880 707 Issue 8, Volume 11, August 2012



0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

t(s)

x,
y,

z

 

 
x
y
z

Figure 7: Stabilizing the equilibrium point E1.

the controlled fractional-order system (20) is
asymptotically stable at E2 and E3, as shown in
Fig.8. and Fig.9.

6 Synchronization between two
different fractional-order sys-
tems

The synchronization of chaotic fractional-order
systems have attracted increasing attention, be-
cause of its application in secure communication
and control processing [20, 21]. In this section, we
focus on investigating two different systems: the
novel fractional-order autonomous system and the
fractional-order Liu system, using the active con-
trol technique in Ref. [?].

Let the novel fractional-order autonomous
system (9) be the drive system:

dq1x1
dtq1 = −ax1 − ey21
dq2y1
dtq2 = by1 + kx1z1
dq3z1
dtq3 = −cz1 −mx1y1

(24)

and the response system is the fractional-order
Liu system, which given as

dq1x2
dtq1 = α(y2 − x2) + u1
dq2y2
dtq2 = βx2 − θx2z2 + u2
dq3z2
dtq3 = −δz + hx22 + u3

(25)

Where U = (u1, u2, u3)
T is the active control

function. Here, the aim is to determinate the

controller U which is required for the drive sys-
tem (24) to synchronize with the response system
(25). For this purpose, we define the error states
between (24) and (25) as e1 = x2−x1, e2 = y2−y1
and e3 = z2 − z1. The error dynamic system can
be expressed by


dq1e1
dtq1 = α(e2 − e1) + (a− α)x1 + αy1 + ey21 + u1
dq2y2
dtq2 = βe1 + βx1 − by1 − θx2z2 − kx1z1 + u2
dq3z2
dtq3 = −δe3 + (c− δ)z1 + hx22 +mx1y1 + u3

(26)
Define the active control function U =
(u1, u2, u3)

T as follows:
u1 = −(a− α)x1 − αy1 − ey21 + V1(t)
u2 = −βx1 + by1 + θx2z2 + kx1z1 + V2(t)
u3 = −(c− δ)z1 − hx22 −mx1y1 + V3(t)

(27)
and V1(t), V2(t) and V3(t) are the control inputs.
Substituting (27) into (26) gives

dq1e1
dtq1 = α(e2 − e1) + V1(t)
dq2y2
dtq2 = βe1 + V2(t)
dq3z2
dtq3 = −δe3 + V3(t)

(28)

The error system (28) is a linear system
with the control input function [V1, V2, V3]

T =
H[e1, e2, e3]

T , where H is a 3 × 3 matrix. Let
J denote the Jacobi matrix of system (28) at e-
quilibrium point ei = 0(i = 1, 2, 3).

J = H +

 −α α 0
β 0 0
0 0 −δ


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Figure 8: Stabilizing the equilibrium point E2.
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Figure 9: Stabilizing the equilibrium point E3.
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We can choose the suitable matrix H, and
let the eigenvalues of J satisfy the Lemma
1:|arg(λ)| ≥ πα/2,α = max(q1, q2, q3). Thus syn-
chronization between the fractional-order drive
system (24) and the fractional-order response sys-
tem (25) is achieved. For example, we can choose

H =

 α− 1 −α 0
−β −1 0
0 0 δ − 1

 .
In the following numerical simulation, the pa-

rameters are chosen as a = 1, b = 2.5, c = 5,
e = 1, k = 4, m = 2, α = 10, β = 40, δ = 2.5,
θ = 1 and h = 4. The fractional order is set
as q1 = q2 = q3 = 0.98, and the initial states
of the drive system (24) and the response system
(25) are taken as (0.2, 0, 0.5) and (2.2, 2.4, 38) re-
spectively. Simulation results of the synchroniza-
tion between the fractional systems (24) and (25)
are displayed in Fig.10.From Fig.10, we can find
the novel autonomous system and Liu system are
globally synchronized asymptotically for t > 198.

7 Conclusion

In this paper, chaos control of a fractional-order
autonomous chaotic system is studied. Using
predictor-correctors scheme the lowest order for
the fractional-order autonomous system to remain
chaotic is found via numerical simulation. Fur-
thermore, we have studied the local stability of
the equilibria using the fractional Routh-Hurwitz
conditions. Analytical conditions for linear feed-
back control have been implemented, showing
the effect of the fractional order on controlling
chaos in this system. The synchronization of
the fractional-order autonomous system and the
fractional-order Liu system is also investigated us-
ing the active control method. Simulation results
have illustrated the effectiveness of the proposed
controlled method.
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