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Abstract: Given a graph and a weight function defined on the vertex set of a graph, the maximum weighted clique
(MWC) problem calls for finding the number of vertices with maximum total weight and also any two of vertices
are pairwise adjacent. In this paper, an edge based local search algorithm, called ELS, is proposed for the MWC,
a well-known combinatorial optimization problem. ELS is a two phased local search method effectively finds the
near optimal solutions for the MWC. A parameter ‘support’ of vertices defined in the ELS greatly reduces the more
number of random selections among vertices and also the number of iterations and running times. Computational
results on DIMACS benchmark graphs indicate that ELS is capable of achieving state-of-the-art-performance for
the maximum weighted clique with reasonable average running times.
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1 Introduction
Local search (or local improvement) is a practical tool
and a common technique for finding near-optimal so-
lutions in reasonable time for combinatorial optimiza-
tion problems. In many cases, local search can be
incorporated into more sophisticated methods called
meta-heuristics, in order to obtain more high-quality
solutions. The basic idea of local search is start from
a feasible solution x and repeatedly replace x with
better x′ which is selected from neighborhood of x
defined as the set of neighbor solutions that can be
reached by making slight modifications to x. If no
better solutions can be found in its neighborhood, lo-
cal search immediately stops and returns as final the
best solution found during search.

The concept of local search was first applied by
Lin and Kernighan to the traveling salesman problem
(TSP) in 1973 [20] and graph partitioning problem
(GPP) in 1970 [19]. The basic concept is to search a
portion of the large neighborhood within a reasonable
amount of computation time.

In the early 2000, for TSP and GPP, the variable
depth search based heuristics have been incorporated
into several metaheuristic frameworks, such as iter-
ated local search [16, 1] and evolutionary algorithm
[24, 23]. Generally, the performance of metaheuris-
tics embedded with local search is remarkably effec-
tive for the hard problems TSP and GPP. For some
other hard problems effective local search algorithms

have been proposed. For the generalized assignmen-
t problem, Yagiura et al [32] suggested an algorithm.
For the unconstrained binary quadratic programming
problem (UBQP), Merz and Katayama [25] proposed
a memetic algorithm with the variant VDS-based lo-
cal search and reported that the memetic algorithm is
highly effective.

More recently K. Katayama et al [17] proposed
a local search algorithm inspired by VDS for the
maximum clique problem (MCP) and they claimed
that their algorithm capable of finding better aver-
age solutions than compared metaheurstics. Pullan
[28, 29] proposed a phased local search algorithm for
both MCP and weighted MCP and he claimed that it
achieves state-of-the-art performance for those prob-
lems. Judging from these contributions, we can ex-
pect that metaheuristics embedded with local search
heuristics to offer promising approaches to other hard
problems, such as the minimum vertex cover problem
and its associated decision problems.

Such an embedding into metaheuristic frame
works would not be possible without developing back-
bone of local search for the maximum clique problem.
In this paper an edge based local search proposed for
the MWC. It is referred as ELS. Edges considered in
the proposed algorithm are whole edge set of a graph,
edges incident on a particular vertex of a graph and
the set of all edges of an induced subgraph of G. ELS
efficiently iterates searches for the best neighbor solu-
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tion with the help of these edge based condition until
better one is found.

To show the effectiveness of ELS for the MWC,
ELS is repeatedly applied for each of several well
known DIMACS benchmark graphs [15]. Based on
extensive computational experiments, it is worthwhile
to note that ELS is simple, capable of finding better
average solutions than those of state-of-the-art meta-
heuristics, on a broad range of widely studied bench-
mark instances and hence represent an improvemen-
t in heuristic MWC solving algorithms. For most
graphs, this approach is comparable to the best avail-
able metaheuristic PLS [28] that is based on vertex
penalties.

2 Preliminaries
Let G = (V,E) be an undirected graph, where V =
{v1, v2, ..., vn} is the set of vertices and E ⊆ V × V
(not in ordered pairs) is the set of edges with car-
dinality of |V | = n and |E| = m and the comple-
ment graph of G(V,E) is the graph G(V,E), where
E = {vi, vj ∈ V, vi ̸= vj and (vi, vj) /∈ E}. Then
we have the following basic definitions relative to this
work:
Neighborhood of a vertex: For each v ∈ V ,
the neighborhood of v is defined by N(v) =
{u ∈ V |u is adjacent to v} and the closed neigh-
bourhood of v is defined by N [v] = {v} ∪N (v).
Degree of a vertex: The degree of a vertex v ∈ V , de-
noted by d(v) and is defined by the number of neigh-
bors of v i.e., d(v) = |N(v)|.
Minimum Vertex Cover: A set S ⊆ V is a minimum
vertex cover of G if (i) for every edge (u, v) ∈ E,
either u ∈ S or v ∈ S or both u, v ∈ S and (ii) among
all covers of E, S has the minimum cardinality. The
cardinality of a minimum vertex cover of G is called
vertex cover number of G and is denoted by ν(G).
Minimum weighted vertex cover (MWVC) problem
is a generalization of minimum vertex cover (MVC)
problem, in which a weight function ω : V → R is
associated with the vertex set V and one has to find a
vertex cover with minimum weight.
Maximum Independent Set: Two distinct vertices u
and v are called adjacent if they are connected by an
edge. An independent set S of G is a subset of V
whose elements are pairwise non-adjacent. The max-
imum independent set problem seeks to find an inde-
pendent set with maximum cardinality. The size of the
maximum independent set of G is called the stability
number of G and is denoted by α.
Maximum Clique: A clique of G is a subset C ⊆ V
in which every pair of vertices are adjacent. A clique
is called maximal if it is not a subset of another clique

and a maximal clique with the highest cardinality is
called maximum. The cardinality of maximum clique
is denoted by ω. The objective of maximum clique
problem is to find a clique of maximum possible order.

Maximum weighted clique (MWC) problem and
maximum weighted independent set (MWIS) problem
is a generalization of maximum clique problem (M-
CP) and maximum independent set (MIS) problem re-
spectively, in which vertices have positive weight i.e.,
a weight function ω : V → R is associated with the
vertex set V and one has to find a clique with max-
imum weight and an independent set with maximum
weight. There are some relations between the maxi-
mum clique maximum independent set and minimum
vertex cover:

Property: Let G = (V,E) be a graph and G is the
complemented graph of G, then

• ω(G) = α(G)

• α(G) = n− ν(G)

• ω(G) = n− ν(G)
Remark: The relations identified above also hold for
the maximum weighted clique, maximum weighted
independent set and minimum weighted vertex cover.
In addition, if WT is the total weight of the vertices in
G or G and WC , WS denotes the total weights in the
maximum weighted clique in G, minimum weighted
vertex cover in G then WT =WC +WS .

3 Related Works
The MC problem is a classic one in computer science
and in graph theory. It is related to many real-life
problems which includes classification theory, coding
theory, project selection, fault tolerance, signal trans-
mission and computer vision [5, 31]. VLSI circuit de-
sign and more recently its application in bioinformat-
ics [27, 30] have become important. Both maximum
clique and maximum weighted clique problems are
NP-hard [13]. Hence simple algorithms which yield
acceptable solutions sufficiently fast are quite impor-
tant for such related practical problems.

The MWC problem is computationally intractable
even to approximate with certain absolute perfor-
mance bounds [10, 12]. Very few numbers of al-
gorithms has been proposed for the MWC. Xiutang
Geng [14] proposed a simple simulated annealing al-
gorithm for the MC and he reported with computa-
tional experiments that their algorithm outperformed
recently proposed efficient simulated annealing algo-
rithms. Balas and Niehaus [4] developed an opti-
mized crossover based steady-state genetic algorith-
m; it takes two cliques and produces a single child.
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The child is produced by finding a maximum weight
clique in a subgraph induced by the union of vertex
sets of two cliques through solving the maximum flow
problems in the complement of a subgraph. Kataya-
ma et al. [17, 18] showed an effective heuristic algo-
rithm k-opt local search for the MC and MWC based
on variable depth search. They reported with compu-
tational experiments over DIMACS [15] benchmark
graphs that their algorithm outperformed previously
reported metaheuristic based on a simple local search.
Busygin [9] proposed a heuristic based on trust re-
gion technique. In which he claimed with computa-
tional experiments that the proposed algorithm is ex-
act on small graphs and efficient on DIMACS [15]
graphs. Babel [2] proposed an efficient branch and
bound procedure. This method uses upper and lower
bounds, for the maximum weight clique that is com-
puted by coloring the weighted graph. Östergárd [26]
also developed a fast branch and bound based exac-
t method. Bomze et al. [8, 7] proposed a method
based on replicator dynamics. It uses the continu-
ous formulation of maximum weight clique problem.
Recently, Pullan [29]proposed a local search proce-
dure for maximum weighted clique problem, which
was supported by computational experiments. Other
recent heuristics include complementary pivoting ap-
proach [22], branch and bound [33] and augmenting
sequences [21]. These are all proposed for the MWC
or its related problems like the maximum weighted
independent set problem and the minimum weighted
vertex cover problem.

4 Driven Parameter-Advantage
From the recent literature on MCP algorithm, it seems
that, most algorithms have been constructed by taking
into account of some troublesome parameters and ver-
tices with maximum degree or minimum degree were
added into a feasible solution. These selection pro-
cess yields more number of random selections (due
to tie in maximum or minimum degree) and it in-
deed yields more number of combinations of feasi-
ble solution. Therefore time taken by an algorithm to
get a near optimal solution from these more number
of feasible solutions becomes very high. In order to
avoid the more number of random selections as much
as possible and to make a heuristic better a new pa-
rameter called ‘support’ of a vertex is defined and
implemented in our previous research [3]. In which
for each v ∈ V , the parameter support of a vertex
is defined by support(v) = s(v) = Σu∈N(v)dG(u)
where the quantity Σu∈N(v)dG(u) is the sum of the
degree of vertices which are adjacent to v. Based on
this parameter, a greedy heuristic approach applied

on the MCP. But that heuristic fails to reach good
quality solution for large dense graphs of DIMAC-
S namely c − fat200 − 5, keller6, p hat700 − 3,
p hat1000− 3 and all MANN type of instances ex-
cept MANN a9. In order to obtain good quality so-
lution for large dense graphs, based on our previous
work, a novel edge based local search algorithm is
proposed for MCP. This edge based local search al-
gorithm refines the procedure with the modified def-
inition of the parameter support, in order to increase
its strength, produce best solution for large set of in-
stances. The modified definition is given by adding
degree of vertex with its s(v) value. i.e. For each
v ∈ V , support of a vertex is defined by

s(v) = d(v) + Σu∈N(v)dG(u)

and an additional parameter ratio of a vertex r(v) of
each v ∈ V is defined by the relation

r(v) =
s(v)× d(v)

w(v)

because of a weight function ω : V → R is associat-
ed for the vertex set V . It is worthy to note that the
selection of vertices with maximum ‘support’value
or minimum ‘support’value into the feasible solution
decidedly reduce the number of random selection and
the number of trials and also the execution time to get
a near optimal solution.

4.1 Example
To illustrate how the degree based selection and the
new parameter support based selection of vertices d-
iffers, Figure 1 gives an example for selection of a
vertex based on maximum support value of a vertex.
In this figure vertices are numbered 1 to 5. When se-
lecting vertices with maximum degree, there is a tie
situation with the vertices 1, 2 and 4, each of them
shares same degree 2. But selecting vertices based on
maximum support value of a vertex selects the only
one vertex 2 as maximum support value vertex. i.e.
there is no tie situation. In this way the new param-
eter reduces the number of random selection among
vertices as much as possible and also the number of
iterations to get a near optimal solution.

5 Edge based local search algorithm
- ELS

In this section we will look at some different approach
to solve the maximum clique problem based on the
relation between maximum weighted clique and min-
imum weighted vertex cover problem. i.e., MWCP
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Figure 1: Selection of a vertex based on support value

is approximated by the edge based local search ap-
proach proposed for the MWVC. Edges considered in
the proposed algorithm are whole edge set of a graph,
edges incident on a particular vertex of a graph and
the set of all edges of an induced subgraph of G. This
local search method efficiently iterates searches for
the best neighbor solution with the help of these edge
based condition until better one is found. To show the
effectiveness of the proposed method for the MWCP,
it is repeatedly applied for each of several well known
DIMACS benchmark graphs . Based on the extensive
computational experiments, it is worthwhile to note
that ELS is simple, capable of finding better average
solutions than those of state-of-the-art metaheuristic-
s, in particular KLS [17], on a broad range of widely
studied benchmark instances and hence represent an
improvement in heuristic MWCP solving algorithms.
For most graphs, this approach is comparable to the
best available metaheuristic PLS [29] that is based on
vertex penalties.

The ELS algorithm is now described using fol-
lowing notations.

5.0.1 Notations:

E - edge set of a graph G(V,E);
E

′
(v)- set of all edges incident with v in a given graph

G;
ES(v) - set of all edges incident with v in a induced
subgraph G[S];
Vc - minimum vertex cover of a graph G.
Vwc - minimum weighted vertex cover of a graph G.

5.1 The ELS Algorithm

Input: G(V,E) with adjacency matrixA = (aij) and
a weight function ω : V → R
Output: |Vwc|

1. Vwc ← ϕ;D ← ϕ
2. ∀v ∈ V and ∀e ∈ E
3. while E ̸= ϕ do

4. d(v) = |N(v)|, s(v) = d(v) + Σu∈N(v)dG(u)

and r(v) = d(v)×s(v)
w(v)

5. u ← maxv∈V r(v) if multiple vertices with
same maximum r(v) is found then select one vertex
randomly among them.

6. D ← D ∪ {u}
7. E ← E − E′

(u)
8. end while
9. (V,E,D) /*Local search procedure*/
10. repeat ∀v ∈ G[D], update d(v), s(v) and

r(v)
11. w ← maxv∈Dr(v), apply the condition as in

step 5, for selecting a vertex having minimum r(v)
12. if ED(w) ⊆ ∪v∈D−{w}E(v)

13. if ∀v ∈ D − {w} , E ⊆ E′
(v)

14. then Vwc ← D − {w} ;D ← D − {w}
15. else if ∀v ∈ D − {N(w) ∩D} , E ⊆ E′

(v)
16. then Vwc ← D − {w} ;D ← D − {w}
17. else Vwc ← Vwc ∪ {w} ;D ← D − {w}
18. else
19. Vwc ← Vwc ∪ {w} ;D ← D − {w}
20. until D = ϕ
21. end
22. return updated Vwc
The ELS operates as follows: The algorithm is

working in two phases. First phase of the algorithm
greedily select vertices in to a weighted vertex cov-
er, which is described in the lines 3-8 and the sec-
ond phase of the algorithm is a local search (pruning)
technique stated in the lines 9-21. In this technique
an edge based local search procedure is applied and it
refines the solution space, obtained in the first phase
of the algorithm, in order to make it as a near opti-
mal solution for the minimum weighted vertex cover
problem. The description of the algorithm as follows:

For a given graph G, an adjacency has been gen-
erated and this graph is being input to the ELS. After
calculating degree, support and ratio of each ver-
tices (line 4), to select a vertex in to a temporary
weighted vertex cover set D search starting in the line
5. This search space terminates when an edge set E
becomes empty. In this search a vertex with maxi-
mum ratio value added into the set D. Once a ver-
tex is selected into D, the corresponding vertex and
its incident edges removed from G. i.e., in the line
7, the adjacency matrix of G updated by putting zero
in to the row and column entries of the correspond-
ing vertex which has been included in D. In selecting
a vertex with maximum ratio value, if multiple ver-
tices have equivalent maximum ratio value, to add a
vertex into the set D, a random selection is executed
among them.

The second phase of the algorithm is a pruning
technique (line 9-21). In this phase an edge based
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local search procedure is applied. This variant was
inspired by the local search procedure used in the
GRASP program for the maximum clique designed by
Feo et al. [28]. Based on the above, a simple and ef-
fective procedure with minimum number of iterations
is implemented in the local search. i.e., an edge based
local search procedure is applied to determine whether
it is possible to remove any of the vertices from D
and replace them with one or no vertices while still
remaining a minimum weighted vertex cover.

In order to implement the above idea,
degree, support and ratio values are updated
for all the vertices in the subgraph induced by D.
Among these vertices, a vertex with minimum ratio
value is selected. If one or more vertices have the
same criteria, a random selection is made among
them. Then add or drop move adopted to achieve a
near optimal solution in the local search. An add or
drop moves based on the following cases:

Case 1: For a vertex with minimum ratio value if
its edges in the induced subgraph G[D] is a subset
of union of all edges of the induced subgraph G[D]
(D is a vertex set updated by excluding the minimum
ratio value vertex) then add or drop moves proceeded
by the following three sub cases 1(a), 1(b) and 1(c).
If the case 1 fails, the corresponding minimum ratio
value vertex will be added in to the final MVC set Vwc.

Case 1(a): If the edge set E of G is a subset of set
of all edges of G[D] where D is a vertex set up-
dated by excluding the minimum ratio value vertex
then the corresponding minimum ratio value vertex
is dropped from the final MWVC set Vwc. If this con-
dition fails, search move follows case 1(b).

Case 1(b): If the set of all edges E of G is
a subset of set of all edges of G[D], where D
is a vertex set updated by removing a vertex set
{N(min. support value vertex) ∩D} from itself,
then the corresponding minimum support value ver-
tex dropped from the final MWVC set Vwc.

Case 1(c): If both the above two conditions 1(a) and
1(b) fails then simply add the corresponding minimum
support value vertex in to the final MWVC set Vwc.

In all the above main and sub cases after adding a
vertex in the final MWVC set Vwc or dropping a ver-
tex from the final MWVC set Vwc, the corresponding
vertex removed from the temporary vertex cover set
D. These add or drop moves repeated until the tem-
porary vertex cover set D is non empty. The final step
(line 23) of second phase of the algorithm returns a
final MVC set Vwc.

5.2 Algorithm for maximum weighted clique
Problem

1. Input: G(V,E) with adjacency matrix A = (aij)
and a weight function ω : V → R
2. Generate: Complemented graph G(V,E) with
an adjacency matrix B = (bij) (i = 1, 2, ..., n; j =
1, 2, ..., n)
3. Apply steps 1 to 22 of ELS for G(V,E)
4. Output: Maximum weighted Clique C(G) = V −
Vwc where Vwc is the minimum weighted vertex cover
of G

A vertex with maximum ratio value in a comple-
mented graph (less ratio in the original graph) is se-
lected into a weighted vertex cover of a complement-
ed graph and exceedingly which is not included in the
weighted clique of the original graph. As a conse-
quence a vertex with maximum ratio value in the o-
riginal graph, which in turn adjacent with more num-
ber of vertices and forms maximum sized complete
subgraph, has been added into the clique of a given
graph. In such a way the ELS finds the maximum
weighted clique of a graph.

6 Computational Complexity
To determine the time complexity of ELS, note that in
the first phase, while loop executed atmost mn times.
In the second phase of the algorithm, the process is
repeated for all the vertices in the temporary vertex
cover D. Since D ⊆ V , the number of vertices in
D is ≤ n(= |V |). Moreover for each and every ver-
tex in D, local search searching all its edges. At the
most level the search space may move up tom(= |E|)
times. Therefore the second phase of the algorithm
runs at most mn times. Hence the time complexity of
the algorithm is O(mn).

7 Experimental Results and Analysis
In order to evaluate the performance of ELS, for
MWC, extensive computational experiments were
carried out on random and benchmark instances iden-
tified below. All the procedures of ELS have been
coded in C++ language. The experiments were car-
ried out on an Intel Pentium Core2 Duo 1.6 GHz CPU
and 1 GB of RAM.

7.1 Random Graphs-G(n, p) Model
This section outlines the G(n, p) graph model, ran-
dom graphs, used to assess the effectiveness of the
proposed algorithm in the previous section.

TheG(n, p) model is also called Erdös Renyi ran-
dom graph model [6], consists of graphs of n vertices
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Figure 2: E(ω) for n = 15, 50 and for different p val-
ues

for which the probability of an edge between any pair
of nodes is given by a constant p > 0. To ensure that
graphs are almost always connected, p is chosen so
that p >> log(n)

n . To generate a G(n, p) graph we
start with an empty graph. Then we iterate through
all pairs of nodes and connect each of these pairs with
probability p.

7.1.1 Algorithm to generate G(n, p) graphs
The pseudo code for generating G(n, p) graphs as fol-
lows

1. initialize graph G(V,E)
2. for i← 1 to n
3. for j ← i+ 1 to n
4. add edge (i, j) to E with probability p
5. return (G).
The expected number of edges of G(n, p) graph

is pn(n− 1)/2 and expected degree is np. Graphs are

generated for different p and n values.

7.2 DIMACS benchmarks
These benchmarks were constructed using the maxi-
mum clique instances from the second DIMACS Im-
plementation Challenge [15] which has been used ex-
tensively for benchmarking purposes in the recen-
t literature on maximum clique algorithm. The 80
DIMACS maximum clique instances were generat-
ed from problems in coding theory, fault diagnosis
problems, Keller’s conjuncture on tailings using hy-
percubes and the Steiner triple problem, in addition
to randomly generated graphs and graphs where the
maximum clique has been ‘hidden’ by incorporating
low-degree vertices. These problems range in size
from less than 50 vertices and 1000 edges to greater
than 3300 vertices and 500000 edges.

All experiments for this study were performed
on a Dell Vostro 1400 workstation with Intel Pen-
tium Core2 Duo 1.6 GHz CPU and 1 GB of RAM.
When executing the required user times, for DIMAC-
S benchmark instances are 0.24 CPU seconds for
r300.5, 1.02 CPU seconds for r400.5 and 5.32 CPU
seconds for r500.5. In the performed experiments of
ELS, described local search is repeatedly applied with
different feasible solutions. i.e., in a single trial of lo-
cal search method of ELS (line 9) is repeatedly ex-
ecuted up to |D| times where D ⊆ V is a tempo-
rary vertex cover which is obtained during the greedy
search of first phase of the ELS.

7.3 Results on Random Graphs
For finding clique number, the proposed ELS tested
on G(n, p) random graphs [6] for various values of
n and p. Since finding clique number is a computa-
tionally difficult problem, we had to limit ourselves
to moderate values of n and/or p. It is well known
that [6] the clique number of the G(n, p) graph is,
with probability converging to one, within a constant
of 2log1/pn− 2log1/plog1/pn when p is held fixed as
n grows, called asymptotic formula for clique num-
ber. The obtained results on random graphs shown in
the Figure 2 and Figure 3. In these figuresG(n, p) de-
notes the expected clique number of the correspond-
ing G(n, p) graph, which was obtained by the above
asymptotic formula and ELS denotes the expected
clique number E(ω) obtained by the proposed ap-
proach ELS and is approximated by averaged over 100
independent trials of each instance of G(n, p) for dif-
ferent values of n and p. For small values of p, the
ELS finds best solution than the result obtained by the
asymptotic formula and ELS get coincides with the
asymptotic formula values when the values of p are
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Figure 3: E(ω) for n = 100, 200 and for different p
values

large. From these Figure 1 and Figure 2, we see that
average clique number obtained by ELS matches with
the analytical average of the clique number of the cor-
responding random graphs and also the proposed ap-
proach finds best solution for maximum clique even in
the increasing values of n of G(n, p) random graphs.

7.4 Results on Benchmark graphs
As there are no resulted benchmark set for the maxi-
mum weighted clique, to test the performance of ELS
approach and also design easily reproducible experi-
ments, the DIMACS benchmarks instances of maxi-
mum clique problem were used. Those DIMACS in-
stances were converted into weighted instances by al-
locating wi, for vertex vi (1 ≤ i ≤ n), uniformly ran-
dom in the range [1, 100]. i.e., the nodes of G(V,E)
allocated by the weights (vi mod 100) + 1. The con-
stant 100 in the weight calculation was determined af-
ter a number of experiments showed in the previous
chapters that the generated problems appeared to be

reasonably difficult for ELS. To evaluate the perfor-
mance of ELS on the converted weighted DIMACS
instances, 100 independent trials were performed for
each instance using different feasible solution. The
results from these experiments are displayed in Tables
1, 2, 3 and 4. In Table 1 and Table 2, the first three
columns reports the name, size and density of the
graphs and the fourth column ω(G) reports the car-
dinality of maximum clique without weight; For the
maximum weighted clique of G, the fifth column WC

is the total weight in the maximum weighted clique
of G. The remaining obtained results are displayed
in Table 3 and Table 4. In which first column reports
the name of the instances. For the maximum weighted
clique of G, the second and third columns ωv(G) re-
ports the cardinality obtained by ELS and A(C) is the
average vertex weight; Time(s) in the fourth column
is the run-time in CPU seconds of ELS, averaged over
all successful runs, for each instance; and in the fifth
column ∆ reports the difference between the cardinal-
ity of maximum clique and maximum weighted clique
instances obtains by ELS i.e. ∆ = ω(G) − ωv(G).
When compared to MCP, adding vertex weights can
increase the difficulty of the problem to ELS. i.e. as
can be seen from Tables 3 and 4 and from the result-
s reported in [3], the running time to find the maxi-
mum weighted clique by ELS is higher than to find
the maximum clique in the unweighted instances and
also from the Figure 4, the number of iterations re-
quired to find the maximum weighted clique for the
p.hat type of instances are larger than the unweighted
case of p.hat instances.

It is difficult to compare the experimental results
of weighted cliques of ELS with other heuristics ap-
proaches not only because of non availability of re-
sults on a standard benchmark set (such as DIMACS
for maximum cliques) in the literature but also differ-
ences in the respective experimental protocols, ran-
dom number generators and run-time environments.
Other than that of these conditions to check whether
the ELS reaches the best solution for these maximum
weighted clique instances, the experimental results re-
ported in Bomze et al., [7], Babel [2] and Pullan [29]
are taken for the comparative study. We have obtained
some statistical quantities from the percentage of de-
viation of these heuristics with the proposed algorith-
m. i.e., for some of these instances of same condition
and we compared the performance of ELS with other
heuristics Babel [2], RD [7] and PLS [29]. The cor-
responding statistical values are shown in the Table
5. In the obtained results positive values tells us that
ELS reaches the best solution, negative values repre-
sents the ELS fails to reach the optimum solution than
the other heuristics compared and if the values are ex-
actly equal to zero then ELS and compared heuristics
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Figure 4: Number of iterations taken to find MC and
MWC of DIMACS p.hat instances by ELS

reaches the same solution. Hence from Table 5, we i-
dentified that Babel heuristic deviated highly and PLS
gets low deviation from ELS. From these results we
see that the quality of the solution delivered by EL-
S is much better than the other heuristics involved in
this experiment and ELS obtained best known solu-
tion for the converted weighted DIMACS instances.
It will be useful for future researchers to benchmark
their results.

8 Conclusions
Local search algorithms are known to be highly effec-
tive for several combinatorial optimization problems.
It is worthwhile considering a new local search based
on a new parameter ‘support’of vertex and edges of
a graph for solving the hard problems like maximum
weight clique problem. Based on this motivation a
new heuristic algorithm ELS is developed and imple-
mented. It is worthy to note that the parameter de-
fined in the heuristic not only greatly reduce the ran-
dom selections among vertices in the feasible solution
but also the number of iterations and running times in
getting the near optimal solution. Although that alone
gives ELS a remarkable advantage, an even more sig-
nificant advantage is that its two phased procedure.
The feasible solution obtained by the greedy approach
in the first phase refined in the second phase for get-
ting near optimal solution with the help of an edge

Table 1: Simulation results for the weighted DIMACS
instances

G(V,E) V Density ω(G) WC

brock400 1 400 0.748 27 211

brock400 2 400 0.749 29 210

brock400 3 400 0.748 31 237

brock400 4 400 0.749 33 237

brock800 1 800 0.649 23 163

brock800 2 800 0.651 24 163

brock800 3 800 0.649 25 165

brock800 4 800 0.65 26 172

c-fat200-1 200 0.077 12 86

c-fat200-2 200 0.163 24 156

c-fat200-5 200 0.426 58 384

c-fat500-1 500 0.036 14 96

c-fat500-2 500 0.073 26 186

c-fat500-5 500 0.186 54 423

Hamming6-2 64 0.905 32 211

Hamming6-4 64 0.349 4 29

Hamming8-2 256 0.969 128 718

Hamming8-4 256 0.639 16 102

Hamming10-2 1024 0.99 512 2906

Hamming10-4 1024 0.829 40 316

Johnson8-2-4 28 0.556 4 29

Johnson8-4-4 70 0.768 14 86

Johnson16-2-4 120 0.765 8 51

Johnson32-2-4 496 0.879 16 96

based procedure. This search technique yields highly
effective cliques even in a short running time.

The excellent performance of ELS, reported that
the underlying edge based local search has substan-
tial potential for solving the maximum weight clique
problem and the relevant hard problems.
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