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1 Introduction

In multiobjective optimization problems, several ob-
jective functions f1, . . . , fm : Rn → R have to be
minimized simultaneously. However, in many practi-
cal problems, there usually does not exist a point that
is a simultaneous minimizer of all the objective func-
tions. Thus the concept of Pareto optimality was intro-
duced. A point is called Pareto optimal, if there does
not exist a different point with the same or smaller ob-
jective function values, such that there is a decrease
in at least one objective function value. This type
of problem (denoted by (MOP)) has attracted much
attention due to its various applications in engineer-
ing [7] (especially truss optimization [5, 22], design
[7, 14, 21, 32, 33], space exploration [34]), statistics
[3], management sciences [1, 9, 17, 30, 36], environ-
mental analysis [11, 23], cancer treatment planning
[18], etc.

In the literature, many methods have been pro-
posed to find a Pareto optimal point of multiobjec-
tive optimization problems. The most notable among
them are the steepest descent based methods [12],
the scalarization approach [6], Newton methods [13],
evolutionary algorithms [41], approximation methods
[31], Levenberg-Marquardt algorithms [10], etc. To
determine Pareto optimal points, a prevalent approach
is to convert the multiobjective problem into a scalar
optimization problem and minimize a convex combi-
nation of the different objectives (see, e.g., [6, 33]).
In other words, m weights λi are chosen such that
λi ≥ 0, i = 1, . . . ,m and

∑m
i=1 λi = 1 and the fol-

lowing problem is solved

min fλ(x) :=
m∑
i=1

λifi(x). (1)

It follows immediately that the global minimizer
x∗ of problem (1) is a Pareto optimal point for (MOP).
But most of the methods for solving the problem (1)
can only find the stationary points or local minimizers,
which is not desirable. In this paper, we propose a
filled function algorithm, which can find the global
minimizer of the problem (1).

Over the last four decades, different approaches
and algorithms have been developed for solving glob-
al optimization problems [4, 15, 16, 19, 24, 25, 26,
38, 39]. Recently, the filled function methods have at-
tracted much attention from both the theoretical and
the algorithmic points of view. The filled function al-
gorithm is an efficient deterministic global optimiza-
tion algorithm (see, e.g., [2, 15, 16, 35, 37, 40]).

The filled function was firstly introduced by Ge in
[15]. The definition of the filled function is as follows.

Definition 1 Let x∗1 be a current minimizer of f(x).
A function P (x) is called a filled function of f(x) at
x∗1 if P (x) has the following properties:

(1) x∗1 is a maximizer of P (x) and the whole basin
B∗

1 of f(x) at x∗1 becomes a part of a hill of
P (x);

(2) P (x) has no minimizers or saddle points in any
higher basin of f(x) than B∗

1;
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(3) If f(x) has a lower basin thanB∗
1 , then there is a

point x′ in such a basin that minimizes P (x) on
the line through x and x∗1.

The definitions of a basin and a hill are given in
[15].

The filled function given at x∗1 in the paper [15]
has the following form:

P (x, x∗, r, ρ) =
1

r + f(x)
exp(−∥x− x

∗∥2

ρ2
) (2)

where the parameters r and ρ need to be chosen appro-
priately. By adopting the concept of the filled func-
tions, a global optimization problem can be solved via
a two-phase cycle. In Phase 1, we start from a giv-
en point and use any local minimization method to
find a local minimizer x∗1 of f(x). In Phase 2, we
construct a filled function (2) at x∗1 and minimize the
filled function in order to identify a point x′ with that
f(x′) < f(x∗1). If it is identified, x′ is certainly con-
tained in a lower basin than the whole basin B∗

1 of
f(x) at x∗1. We can then use x′ as the initial point in
Phase 1 again, and hence we can find a better minimiz-
er x∗2 of f(x) with f(x∗2) < f(x∗1). This process re-
peats until the minimization of a filled function could
not yield a better solution. The current local minimiz-
er will be taken as a global minimizer of f(x).

However, the filled function algorithm proposed
in the paper [15] has some drawbacks:

1. The efficiency of the filled function algorith-
m strongly depends on two parameters r and
ρ. It is not easy to adjust the parameters to
make them satisfy that r is small and the ration
ρ2/[r + f(x∗1)] is large.

2. When the domain is large or ρ is small, the factor
exp(−||x−x∗||2/ρ2) will be approximately zero.
Since smoothing increases with this factor, the
filled function (2) will become very flat. This
makes the filled function algorithm less efficient.

3. The stopping criterion is not efficient because it
requires a large computational effort to find a
global minimizer.

Although some other filled functions [16, 25, 26,
38] have been proposed later, all of them are still no
satisfactory for global optimization due to the draw-
backs above. In this paper, a new filled function with
one parameter is proposed. An algorithm based on the
proposed filled function for solving the multiobjec-
tive optimization problem is presented. The objective
function value can be reduced by half in each iteration

of our algorithm. The implementation of the algorith-
m on several test problems is reported with numerical
results.

The rest of the paper is organized as follows. A
filled function with one parameter for the global op-
timization problem is proposed in Section 2. Some
properties of the filled function are investigated and
discussed. In Section 3, an algorithm based on the
proposed filled function for solving the multiobjective
optimization problem is presented. Application of the
filled function algorithm on several test problems is
reported in Section 4 with numerical results. Finally,
some conclusions are drawn in Section 5.

2 Filled Function and Its Some Prop-
erties

In the following, basic definitions and notations used
in this paper are given.

The multiobjective optimization problem (MOP)
is formulated as

min f(x) = (f1(x), . . . , fm(x))T

s.t. x ∈ Rn,

where f : Rn → Rm is composed of m real-
valued objective functions, and Rn and Rm are finite-
dimensional Euclidean vector spaces. For the special
case m = 2 , we refer to this problem as the biobjec-
tive problem (BOP).

Throughout the rest of the paper, we always as-
sume that the following assumptions for (MOP) hold.

Assumption 2 f1, . . . , fm : Rn → R are continu-
ously differentiable functions.

Assumption 3 f1, . . . , fm are coercive, i.e., fi(x)→
+∞ for each i as ||x|| → +∞, where || · ||is the usual
Euclidean norm.

By Assumption 3, there exists a closed bounded
box X ⊂ Rn containing all Pareto optimal points of
(MOP) in its interior.

In this paper, λi(i = 1, . . . ,m) is defined as fol-
lows:

λi =
fmax
i − fi(x)
fmax
i − f0i

≥ 0, i = 1, . . . ,m, (3)

where fi(x) is the ith objective function, f0i and fmax
i

are defined as follows:

f0i = min
x
{fi(x)|x ∈ Rn},

fmax
i = max

1≤j≤m,i̸=j
fi(x

∗
j ),
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where x∗j is the point that minimizes the jth objective
function.

Consequently, problem (1) is equivalent to the
following problem:

min h(x) = fλ(x)
s.t. x ∈ X,

m∑
i=1

λi = 1,
(4)

where λi is defined by (3).
The following theorem shows that the global min-

imizer of problem (4) is a Pareto optimal point for
(MOP), the proof of which can be found in [33].

Theorem 4 If x∗ is the global minimizer of problem
(4), then x∗ is a Pareto optimal point of (MOP).

The set of local minimizers of problem (4) is de-
noted by L(P), and the set of global minimizers is de-
noted by G(P).

Assumption 5 The set L(P) is nonempty and finite.

For a given x∗ ∈ X, the definition of the filled
function is given as follows.

Definition 6 ([37]) Suppose that x∗ is a current lo-
cal minimizer of problem (4). A continuously differen-
tiable function p(x, x∗) is called a filled function of
problem (4) at x∗, if it satisfies the following condi-
tions:

(1) x∗ is a strict local maximizer of p(x, x∗);

(2) ∇p(x, x∗) ̸= 0 when x ∈ S1, where S1 =

{x|h(x) ≥ h(x∗)
2 , x ∈ X\{x∗}};

(3) If x∗ is not a global minimizer and S2 =

{x|h(x) < h(x∗)
2 , x ∈ X} is nonempty, then

there exists a point x̄ ∈ S2 such that x̄ is a lo-
cal minimizer of p(x, x∗).

Remark: With the definition above, we know that
these conditions of the filled function ensure that
when a descent method, for example, the steepest de-
scent method, is employed to minimize the construct-
ed filled function, the sequence of iteration points will
not terminate at any point where the objective function
value is larger than h(x∗)

2 ; If x∗ is not a global mini-
mizer of problem (4), then there must exist a minimiz-
er of the filled function at which the objective function
value is less than the half of h(x∗), namely any local
minimizer of the filled function p(x, x∗) must belong
to the set S2 = {x | h(x) < h(x∗)

2 , x ∈ X}. There-
fore the present local minimizer of the objective func-
tion escapes and a better minimizer can be found by a

local search algorithm starting from the minimizer of
the filled function.

In the following, a one-parameter filled function
satisfying Definition 6 is introduced. To begin with,
we design a continuously differentiable functionφr(t)
with the following properties: it is equal to 1 when
t ≥ r and increasing on R.

More specifically, for any given r > 0, φr(t) is
constructed as follows

φr(t) =


1, t ≥ r,

r−2
r3
t3 + 3−2r

r2
t2 + t, 0 < t < r,

t, t ≤ 0.
(5)

Note that the requirement for continuous differen-
tiability of φr(t) justifies the use of cubic polynomial
in constructing φr(t).

Obviously, we have

φ′
r(t) =


0, t ≥ r,

3(r−2)
r3

t2 + 2(3−2r)
r2

t+ 1, 0 < t < r,
1, t ≤ 0.

(6)
It is easy to see that φr(t) is continuously differen-
tiable and increasing on R.

Given an x∗ ∈ L(P ), the following filled function
with one parameter is constructed

F (x, x∗, q) =
1

1 + ∥x− x∗∥
+qφh(x∗)

4

(h(x)−h(x
∗)

4
),

(7)
where the only parameter q > 0. Clearly, F (x, x∗, q)
is continuously differentiable on Rn.

The following theorems show that F (x, x∗, q)
satisfies Definition 6 when the positive parameter q
is sufficiently large.

Theorem 7 Let x∗ ∈ L(P ), q > 0. Then x∗ is a strict
local maximizer of F (x, x∗, q).

Proof: Since x∗ ∈ L(P ), there exists a neighborhood
N(x∗, σ) of x∗ with σ > 0 such that h(x) ≥ h(x∗) for
all x ∈ N(x∗, σ), where N(x∗, σ) = {x| ∥x− x∗∥ <
σ}. Then for any x ∈ N(x∗, σ), x ̸= x∗ and q > 0,
we have

F (x, x∗, q) =
1

1 + ∥x− x∗∥
+1 < 1+q = F (x∗, x∗, q).

Thus, x∗ is a strict local maximizer of F (x, x∗, q). ⊓⊔
Theorem 7 reveals that the proposed filled func-

tion satisfies condition (1) of Definition 6.

Theorem 8 Let x∗ ∈ L(P ), q > 0 and x̄ be a point
such that x̄ ∈ S1 = {x|h(x) ≥ h(x∗)

2 , x ∈ X\{x∗}}.
Then∇F (x̄, x∗, q) ̸= 0 holds.

WSEAS TRANSACTIONS on MATHEMATICS Liuyang Yuan, Zhongping Wan, Jiawei Chen

E-ISSN: 2224-2880 661 Issue 8, Volume 11, August 2012



Proof: Assume that x̄ ∈ S1, namely h(x̄) ≥ h(x∗)
2

and x̄ ̸= x∗. Then, we have

∇F (x̄, x∗, q) = −(x̄− x∗)
(1 + ∥x̄− x∗∥)2 ∥x̄− x∗∥

,

∇F (x̄, x∗, q) (x̄− x
∗)

∥x̄− x∗∥
=

−1
(1 + ∥x̄− x∗∥)2

< 0.

It implies that when x̄ ∈ S1, ∇F (x̄, x∗, q) ̸= 0. ⊓⊔

Theorem 9 Let x∗ ∈ L(P ), q > 0. Suppose that x1
and x2 are two points in X such that ∥x1 − x∗∥ <
∥x2 − x∗∥ and h(x∗)

2 ≤ min{h(x1), h(x2)}. Then we
have

F (x2, x
∗, q) < F (x1, x

∗, q) < 1 + q = F (x∗, x∗, q).

Proof: Obviously, by the condition above, we have

F (x1, x
∗, q) =

1

1 + ||x1 − x∗||
+ q,

F (x2, x
∗, q) =

1

1 + ||x2 − x∗||
+ q.

So, the conclusion can be obtained immediately. ⊓⊔

Theorem 10 Let x∗ ∈ L(P ), q > 0. Suppose that
x̄ ∈ int(X) is a point such that h(x̄) ≥ h(x∗)

2 , x̄ ̸= x∗.
Then for any small ε1 > 0, there exists d1 such that

0 < ||d1|| ≤ ε1,

x̄− d1, x̄+ d1 ∈ X,

||x̄− d1 − x∗|| < ||x̄− x∗|| < ||x̄+ d1 − x∗||,

h(x̄± d1) ≥
h(x∗)

2
,

F (x̄+ d1, x
∗, q) < F (x̄, x∗, q) < F (x̄− d1, x∗, q)

< 1 + q = F (x∗, x∗, q).

Proof: For a given ε1 > 0, let

d1 = ε2
x̄− x∗

||x̄− x∗||
,

where 0 < ε2 ≤ ε1. Then 0 < ||d1|| ≤ ε1.
Furthermore, if ε1 is sufficiently small, then

∥x̄+ d1 − x∗∥ = (1 + ε) ∥x̄− x∗∥ > ∥x̄− x∗∥ ,

∥x̄− d1 − x∗∥ = (1− ε)||x̄− x∗|| < ∥x̄− x∗∥ ,

h(x̄± d1) ≥
h(x∗)

2
,

where ε = ε2\||x̄− x∗||.

Hence, by Theorem 9,

F (x̄+ d1, x
∗, q) < F (x̄, x∗, q) < F (x̄− d1, x∗, q)

< 1 + q = F (x∗, x∗, q).

⊓⊔
The implication of Theorem 10 is clear: For any

point x̄ ∈ int(X) with h(x̄) ≥ h(x∗)
2 and x̄ ̸= x∗, it

will never be a local minimizer of F (x, x∗, q).

Theorem 11 Let x∗ ∈ L(P ), q > 0. Then any local
minimizer or saddle point of F (x, x∗, q) must belong
to the set S2 = {x ∈ X|h(x) < h(x∗)

2 }.

Proof: Suppose that the theorem is not true.
Then there is a local minimizer or saddle point of
F (x, x∗, q), x∗1, such that x∗1 /∈ S2 and h(x∗1) ≥

h(x∗)
2 .

Since x∗ is a strict local maximizer of F (x, x∗, q) and
x∗1 is a local minimizer or saddle point of F (x, x∗, q),
thus x∗ ̸= x∗1. If x∗1 is a local minimizer of
F (x, x∗, q), it contradicts Theorem 10. Similarly, if
x∗1 is a saddle point of F (x, x∗, q), it contradicts The-
orem 8. Consequently, the theorem is true. ⊓⊔

Condition (2) in definition 6 is satisfied for the
proposed filled function F (x, x∗, q) due to Theorem 8
and 10.

Theorem 12 Let x∗ ∈ L(P ), but x∗ /∈ G(P ). Then
F (x, x∗, q) does have a local minimizer in the region
S2 = {x ∈ X|h(x) < h(x∗)

2 } when q > 0 is suffi-
ciently large.

Proof: Since x∗ ∈ L(P ), but x∗ /∈ G(P ). Without
loss of generality, suppose that S3 = {x ∈ X|h(x) ≤
h(x∗)

4 } is nonempty, there exists an x̄∗ ∈ L(P ) such
that h(x̄∗) ≤ h(x∗)

4 . As to the case when S3 is empty,
the proof is the same. By the continuity of h(x) and
Assumption 3, there exists an ε small enough, it holds
h(x̄∗) + ε < h(x∗)

4 and

{x ∈ X|h(x) = h(x̄∗) + ε} ⊂ int(X).

Define that

S= = {x ∈ X|h(x) = h(x̄∗) + ε} ⊂ int(X),

where for all x ∈ S= , it holds

h(x)− h(x∗)

4
= h(x̄∗) + ε− f(x∗)

4
< 0.

Therefore, for each x ∈ S= , there are two cases:

(1) ∥x̄∗ − x∗∥ ≥ ∥x− x∗∥;

(2) ∥x̄∗ − x∗∥ < ∥x− x∗∥.
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For case (1), by

h(x̄∗)− f(x∗)

4
< h(x)− h(x∗)

4
< 0

and ||x̄∗ − x∗|| ≥ ||x− x∗||, we have

F (x̄∗, x∗, q) = 1
1+∥x̄∗−x∗∥ + q(h(x̄∗)− h(x∗)

4
)

< 1
1+∥x−x∗∥ + q(h(x)− h(x∗)

4
)

= F (x, x∗, q).

For case (2), F (x̄∗, x∗, q) < F (x, x∗, q) if and only if

1
1+∥x̄∗−x∗∥ + q(h(x̄∗)− h(x∗)

4 ) < 1
1+∥x−x∗∥

+q(h(x)− h(x∗)
4 ),

if and only if

1

1 + ∥x̄∗ − x∗∥
− 1

1 + ∥x− x∗∥
< q(h(x)− h(x̄∗)),

which is equivalent to

q >
∥x− x∗∥ − ∥x̄∗ − x∗∥

(1 + ∥x− x∗∥) (1 + ∥x̄∗ − x∗∥) (h(x)− h(x̄∗))
.

Let

q0 =
∥x− x∗∥ − ∥x̄∗ − x∗∥

(1 + ∥x− x∗∥) (1 + ∥x̄∗ − x∗∥) (h(x)− h(x̄∗))
.

Thus, there exists sufficiently large q0 > 0 as function
h(x) approaches h(x̄∗) . Consequently, we must have
that F (x̄∗, x∗, q) < F (x, x∗, q) for all x ∈ S= and
q ∈ (q0,+∞) . Now we denote

S≤ = {x ∈ X | h(x) ≤ h(x̄∗) + ε} ⊂ int(X),

and we have

min
x∈S≤

F (x, x∗, q) = F (x∗0, x
∗, q).

Since S= , S≤ are compact sets, it is obvious that
F (x∗0, x

∗, q) ≤ F (x̄∗, x∗, q) . Since

min
x∈S≤

F (x, x∗, q) = F (x∗0, x
∗, q) = min

x∈S≤\S=
F (x, x∗, q).

and S≤\S= is an open set, thus x∗0 ∈ S≤\S= ⊂
int(X) is a local minimizer of F (x, x∗, q), we have
∇F (x∗0, x∗, q) = 0. By Theorem 8, h(x∗0) <

h(x∗)
2

holds. ⊓⊔
Theorem 12 clearly states that the proposed filled

function satisfies condition (3) of Definition 6. There-
fore three conditions of the filled function definition
are satisfied by the proposed filled function.

Theorem 13 If x∗ ∈ G(P ) , then F (x, x∗, q) > 0 for
all x ∈ X .

Proof: Since x∗ ∈ G(P ), we have h(x) ≥ h(x∗) for
all x ∈ X . Thus,

F (x, x∗, q) =
1

1 + ∥x− x∗∥
+ q > 0.

⊓⊔
Remark: In the phase of minimizing the filled func-
tion, Theorems 7-12 guarantee that the present local
minimizer x∗ of the objective function is escaped and
the minimum of the filled function will be always
achieved at a point where the objective function value
is not greater than the half of the current minimum of
the objective function. Moreover, the proposed filled
function doesn’t include exponential terms or loga-
rithmic terms. A continuously differentiable function
is used in the construction of the filled function, which
possesses many good properties and is efficient in nu-
merical implementation.

3 Filled Function Algorithm
In this section, a global optimization algorithm for
solving problem (4) is presented based on the con-
structed filled function (7), which leads to a Pareto
optimal point or an approximate Pareto optimal point
for (MOP).

The general idea of the global optimization
method is as follows. Let x0 ∈ X be a given initial
point. Starting from this initial point, a local mini-
mizer x∗0 of problem (4) is obtained with a local mini-
mization method. The main task is to find deeper local
minimizers of problem (4) if x∗0 is not a global mini-
mizer.

Consider the following filled function problem
(for short, (FFP))

(FFP) min
x∈X

F (x, x∗k, q),

where F (x, x∗k, q) is given by (7).
Let x̄∗0 be a obtained local minimizer of prob-

lem (FFP) on X . Then by theorem 12, we have
h(x̄∗0) <

h(x∗
0)

2 and x̄∗0 ∈ int(X). Starting from this
initial point x̄∗0, we can obtain a local minimizer x∗1
of problem (4). If x∗1 is a global minimizer, then x∗1
is a Pareto optimal point of (MOP); Otherwise local-
ly solve problem (FFP). Let x̄∗1 be the obtained lo-
cal minimizer. Then we have that h(x̄∗1) <

h(x∗
0)

22
and

x̄∗1 ∈ int(X). Repeating this process, we can finally
obtain a Pareto optimal point of (MOP) or a sequence
{x̄∗k} ⊂ int(X) with h(x̄∗k) <

h(x∗
0)

2k
, k = 1, 2, . . .. For
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such a sequence {x̄∗k}, k = 1, 2, . . ., when k is suffi-
ciently large, x̄∗k can be regarded as an approximate
Pareto optimal point of (MOP).

Let x∗ ∈ X and ε > 0. Then x∗ is called a ε-
approximate Pareto optimal point of (MOP) if x∗ ∈ X
and h(x∗) ≤ ε.

The corresponding filled function algorithm for
the problem (4) is described as follows.

Algorithm 3.1

Step 0: Choose small positive numbers ε, λ, a large pos-
itive number qU , and an initial value q0 for the
parameters q. (e.g., ε = 10−8, λ = 10−5,
qU = 1015 and q0 = 1012 ). Choose a positive
integer number K (e.g., K = 2n ) and directions
ei, i = 1, . . . ,K, are the coordinate directions.
Choose an initial point x0 ∈ X . Set k := 0.

If h(x0) ≤ ε, then let x∗k := x0 and go to Step 6;
Otherwise, let q := q0 and go to Step 1.

Step 1: Find a local minimizer x∗k of the problem (4)
by local search methods starting from xk. If
h(x∗k) ≤ ε, go to Step 6.

Step 2: Let

F (x, x∗k, q) = 1
1+∥x−x∗

k∥
+qφh(x∗

k
)

4

(h(x)− h(x∗
k)

4 ),
(8)

where φr(t) is defined by (5). Set l = 1 and
u = 0.1.

Step 4: (a) If l > K, then set q := 10q, and go to Step
5; Otherwise, go to (b).

(b) If u ≥ λ, then set ylk := x∗k + uel, and go
to (c); Otherwise, set l := l + 1, u = 0.1,
go to (a).

(c) If ylk ∈ X , then go to (d); Otherwise, set
u := u/10, go to (b).

(d) If h(ylk) <
h(x∗

k)

2 , then set xk+1 := ylk, k :=
k + 1, and go to Step 1; Otherwise, go to
Step 4.

Step 4: Search for a local minimizer of the following
filled function problem starting from ylk

min
x∈Rn

F (x, x∗k, q). (9)

Once a point y∗k ∈ int(X) with h(y∗k) <
h(x∗

k)

2 is
obtained in the process of searching, set xk+1 :=
y∗k, k := k + 1 and go to Step 1; Otherwise con-
tinue the process. Let x̄∗k be an obtained local
minimizer of problem (9). If x̄∗k satisfies h(x̄∗k) <

h(x∗
k)

2 and x̄∗k ∈ int(X), then set xk+1 := x̄∗k,
k := k + 1 and go to Step 1; Otherwise, set
u := u/10, and go to Step (3b).

Step 5: If q ≤ qU , then go to Step 2.

Step 6: Let xs = x∗k and stop.

From Theorems 7-12, it can be seen that if λ is
small enough, qU is large enough, and the direction
set {e1, . . . , eK} is large enough, xs can be obtained
from Algorithm 3.1 within finite steps.

4 Numerical Experiment
In this section, five test problems using Algorithm
3.1 are solved to illustrate the efficiency of Algorithm
3.1. All the numerical experiments are implemented
in Matlab2010b. In our programs, the local minimiz-
ers of problem (FFP) and problem (4) are obtained by
the SQP method. ||∇h(x)|| ≤ 10−8 is used as the
terminate condition.

The number of variables n (column 1), the ini-
tial point x0 (column 2), the number of iterations (NI,
column 3), the final function values obtained (h(x∗k),
column 4), the approximation Pareto optimal point of
(MOP) ( x∗k, column 5) are shown in Table 1-5.

Example 1. The first problem is taken from [20] and
is known as JOS. It is biobjective and f is given by

f1(x) :=
1
n

n∑
i=1

x2
i ,

f2(x) :=
1
n

n∑
i=1

(xi − 2)2.

Both of the objective functions of JOS are strong-
ly convex. The Pareto-optimal set of JOS is the set
{(a, a, . . . , a) ∈ Rn|a ∈ [0, 2]}. The computational
results are summarized in Table 1.

Example 2. Consider the biobjective, convex MOP
taken from [42] where the objective functions f1, f2 :
R2 → R are given by

f1(x) = x1,

f2(x) = g(x)
(
1−

√
x1

g(x)

)
,

where g(x) = 1 + 9
n−1

n∑
i=2

x2i , x1 > 0.

The Pareto-optimal solutions are x1 > 0, xi = 0,
i = 2, 3, . . . , n. The computational results are sum-
marized in Table 2.

Example 3. This problem is taken from [13] and is
called FDS, a problem of variable dimension defined
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by

f1(x) :=
1
n2

n∑
k=1

k(xk − k)4,

f2(x) := exp
(

n∑
k=1

xk/n
)
+ ∥x∥22 ,

f3(x) :=
1

n(n+1)

n∑
k=1

k(n− k + 1)e−xk .

These objectives have been designed as a convex
problem with three criteria whose numerical difficulty
is sharply increasing in the dimension n. The compu-
tational results are summarized in Table 3.

Example 4. Consider an academic nonconvex prob-
lem having three objective functions, which is tak-
en from [8]. The objective function fi : R2 →
R (i = 1, 2, 3) are constructed using function
φ(x1, x2) = ψ(x1, x2) − exp(−50ψ(x1, x2)), where
we have ψ(x1, x2) = x21 + x22. The actual uncon-
strained problem is expressed in the following form

f1 = φ(x1, x2),
f2 = φ(x1, x2 − 1),
f3 = φ(x1 − 1, x2).

The computational results are summarized in Ta-
ble 4.

Example 5. Consider a pollution problem of a river
involving four objective functions and two variables
in the following form. This problem considered has
been described in [29] and also considered in [27] and
briefly described in [28].

f1(x) = −4.07− 2.27x1,
f2(x) = −2.60− 0.03x1 − 0.02x2

+ 0.01
x2
1−1.39

+ 0.30
x2
2−1.39

,

f3(x) = −8.21 + 0.71
1.09−x2

1
,

f4(x) = −0.96 + 0.96
1.09−x2

2
.

0.3 ≤ x1, x2 ≤ 1.0.

The computational results are summarized in Table 5.

Table 1: Numerical results of Example 1

n x0 NI h(x∗k) x∗k

2
(

0.5000
0.5000

)
1 1.0023e− 16

(
0.0000
0.0000

)

5

 1.5000
...
1.5000

 1 9.0908e− 17

 2.0000
...
2.0000



Table 2: Numerical results of Example 2
n x0 NI h(x∗k) x∗k

2

(
0.1000
0.1000

)
1 0.3914

(
0.1906
-0.0000

)

5

 0.0000
...
0.0000

 1 0.3915


0.2018
0.0000
...
0.0175



Table 3: Numerical results of Example 3

n x0 NI h(x∗k) x∗k

2
(

0.0000
0.0000

)
1 4.7699e− 14

(
0.0331
0.0547

)
3

 0.0000
0.0000
0.0000

 1 2.7071e− 15

 0.0017
0.0522
0.0175



Table 4: Numerical results of Example 4

n x0 NI h(x∗k) x∗k

2

(
0.5000
0.5000

)
1 −3.0023

(
0.0000
0.0000

)

Table 5: Numerical results of Example 5

n x0 NI h(x∗k) x∗k

2

(
0.5000
0.5000

)
2 −9.8050

(
0.8502
0.7899

)

5 Conclusion
In this paper, the filled function F (x, x∗, q) with one
parameter is constructed for solving unconstrained
multiobjective optimization problem and it has been
proved that it satisfies the basic characteristics of the
filled function definition. Promising computation re-
sults have been observed from our numerical experi-
ments. In the future, the filled function method can be
considered to solve the general constrained multiob-
jective optimization problem.
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