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Abstract: In this paper, a generalized Bernoulli sub-ODE method is proposed to construct exact traveling
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1 Introduction

It is well known that nonlinear evolution equa-
tions (NLEEs) are widely used to describe many
complex physical phenomena such as fluid me-
chanics, plasma physics, optical fibers, biology,
solid state physics, chemical kinematics, chemi-
cal physics, and so on. So, the powerful and ef-
ficient methods to find analytic solutions of non-
linear equations have drawn a lot of interest by
a diverse group of scientists. In the literature,
there is a wide variety of approaches to nonlinear
problems for constructing traveling wave solution-
s. Some of these approaches are the homogeneous
balance method [1, 2], the hyperbolic tangent ex-
pansion method [3, 4], the trial function method
[5], the tanh-method [6-8], the non-linear trans-
form method [9], the inverse scattering transform
[10], the Backlund transform [11, 12], the Hirota’s
bilinear method [13, 14], the generalized Riccati
equation method [15, 16], the Weierstrass elliptic
function method [17], the theta function method
[18-20], the sine-cosine method [21], the Jaco-
bi elliptic function expansion [22, 23], the com-
plex hyperbolic function method [24-26], the trun-
cated Painleve expansion [27], the F-expansion
method [28], the rank analysis method [29], the
exp-function expansion method [30], the (G′/G)-
expansion method [31-40] and so on.

In [41], we proposed a new Bernoulli sub-ODE
method to construct exact traveling wave solu-

tions for NLEEs. In this paper, we will apply
the Bernoulli sub-ODE method to construct ex-
act traveling wave solutions for some special non-
linear equations. First, we reduce the nonlinear
equations to ODEs by a traveling wave variable
transformation. Second, we suppose the solution
can be expressed as an polynomial of single vari-
able G, where G = G(ξ) satisfied the Bernoul-
li equation. Then the degree of the polynomial
can be determined by the homogeneous balance
method, and the coefficients can be obtained by
solving a set of algebraic equations.

The rest of the paper is organized as follows.
In Section 2, we describe the Bernoulli sub-ODE
method for finding traveling wave solutions of
nonlinear evolution equations, and give the main
steps of the method. In the subsequent section-
s, we will apply the method to find exact trav-
eling wave solutions of the variant Boussinseq e-
quation, (2+1)-dimensional NNV equations and
(2+1)-dimensional Boussinesq and Kadomtsev-
Petviashvili equations. In the last Section, some
conclusions are presented.

2 Description Of The Bernoulli
Sub-ODE Method

In this section we describe the Bernoulli Sub-ODE
Method.

First we present the solutions of the following
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ODE:
G′ + λG = µG2, (1)

where λ ̸= 0 , G = G(ξ).
When µ ̸= 0, Eq. (1) is the type of Bernoulli

equation, and we can obtain the solution as

G =
1

µ

λ
+ deλξ

, (2)

where d is an arbitrary constant.
When µ = 0, the solution of Eq. (1) is given

by
G = de−λξ, (3)

where d is an arbitrary constant.
Suppose that a nonlinear equation, say in two

or three independent variables x, y, t, is given by

P (u, ut, ux, uy, , utt, uxt, uxx, uxy...) = 0, (4)

where u = u(x, y, t) is an unknown function, P is a
polynomial in u = u(x, y, t) and its various partial
derivatives, in which the highest order derivatives
and nonlinear terms are involved. By using the
solutions of Eq. (1), we can construct a serials of
exact solutions of nonlinear equations:

Step 1. We suppose that

u(x, y, t) = u(ξ), ξ = ξ(x, y, t). (5)

The traveling wave variable (5) permits us reduc-
ing (4) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (6)

Step 2. Suppose that the solution of (6) can
be expressed by a polynomial in G as follows:

u(ξ) = amGm + am−1G
m−1 + ...+ a0, (7)

where G = G(ξ) satisfies Eq. (1), and am, am−1

..., a0, µ are constants to be determined later
with am ̸= 0. The positive integer m can be de-
termined by considering the homogeneous balance
between the highest order derivatives and nonlin-
ear terms appearing in (6).

Step 3. Substituting (7) into (6) and using
(1), collecting all terms with the same order of
G together, the left-hand side of (6) is converted
to another polynomial in G. Equating each coef-
ficient of this polynomial to zero, yields a set of
algebraic equations for am, am−1..., k, c, λ and
µ.

Step 4. Solving the algebraic equations sys-
tem in Step 3, and by using the solutions of Eq.
(1), we can construct the traveling wave solutions
of the nonlinear evolution equation (6).

In the following sections, we will apply the
method described above to some examples.

3 Application Of The Bernoul-
li Sub-ODE Method For The
Variant Boussinseq Equations

In this section, we will consider the variant
Boussinseq equations [42, 43]:

ut + uux + vx + αuxxt = 0, (8)

vt + (uv)x + βuxxx = 0, (9)

where α and β are arbitrary constants, β > 0.
Supposing that

ξ = k(x− ct), (10)

by (10), (8) and (9) are converted into ODEs

−cu′ + uu′ + v′ − αk2cu′′′ = 0 (11)

−cv′ + (uv)′ + βk2u′′′ = 0. (12)

Integrating (11) and (12) once, we have

−cu+
1

2
u2 + v − αk2cu′′ = g1, (13)

−cv + uv + βk2u′′ = g2, (14)

where g1 and g2 are the integration constants.
Suppose that the solution of (13) and (14) can

be expressed by a polynomial in G as follows:

u(ξ) =

m∑
i=0

aiG
i, (15)

v(ξ) =

n∑
i=0

biG
i, (16)

where ai, bi are constants, G = G(ξ) satisfies Eq.
(1).

Balancing the order of u2 and v in Eq. (13),
the order of u′′ and uv in Eq. (14), then we can
obtain 2m = n, n+2 = m+ n⇒ m = 1, n = 2,
so Eqs. (15) and (16) can be rewritten as

u(ξ) = a2G
2 + a1G+ a0, a2 ̸= 0, (17)

v(ξ) = b2G
2 + b1G+ b0, b2 ̸= 0, (18)

where a1, a0, b2, b1, b0 are constants to be de-
termined later.

Substituting (17) and (18) into (13) and (14)
and collecting all the terms with the same power
of G together, equating each coefficient to zero,
yields a set of simultaneous algebraic equations
as follows:

For Eq. (13):
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G0 : −ca0 − g1 +
1
2a

2
0 + b0 = 0.

G1 : b1 + a0a1 − ca1 − αk2ca1λ
2 = 0.

G2 : −ca2 + b2 + 3αk2ca1µλ + 1
2a

2
1 −

4αk2ca2λ
2 + a0a2 = 0.

G3 : a1a2 − 2αk2ca1µ
2 + 10αk2ca2µλ = 0.

G4 : 1
2a

2
2 − 6αk2ca2µ

2 = 0.

For Eq. (14):
G0 : −cb0 − g2 + a0b0 = 0.

G1 : b1a0 + a1b0 − cb1 + βk2a1λ
2 = 0.

G2 : −cb2+a1b1−3betak2a1µλ+4βk2a2λ
2+

a2b0 + a0b2 = 0.

G3 : 2βk2a1µ
2+a1b2−10βk2a2µλ+a2b1 = 0.

G4 : a2b2 + 6βk2a2µ
2 = 0.

Solving the algebraic equations above yields:

a2 = 12αk2cµ2,
a1 = −12αk2cµλ,

a0 =
1
2(

β+2αc2+2λ2α2k2c2

αc ),

b2 = −6βk2µ2, b1 = 6βk2µλ,

b0 = −β
4 (

−β+2λ2α2k2c2

α2c2
),

g2 = −β
8 (

−β2+4λ4α4k4c4

α3c3
),

g1 =
1
8(

−4c4α2+3β2+4λ4α4k4c4

α2c2
).

(19)

Combining with (2) and (3), under the conditions
µ ̸= 0, we can obtain the traveling wave solutions
of the variant Boussinseq equations (8) and (9) as
follows:

u1(ξ) =
1

2
(
β + 2αc2 + 2λ2α2k2c2

αc
)

−12αk2cµλ( 1
µ
λ + deλξ

)

+12αk2cµ2(
1

µ
λ + deλξ

)2 (20)

v1(ξ) = −β

4
(
−β + 2λ2α2k2c2

α2c2
)

+6βk2µλ(
1

µ
λ + deλξ

)

−6βk2µ2(
1

µ
λ + deλξ

)2 (21)

Remark 1 When µ = 0, we obtain the trivial
solutions.

Remark 2 The exact traveling wave solutions
(20)-(21) of the variant Boussinseq equations are
different from the results in [42, 43], and have not
been reported by other authors to our best knowl-
edge.

4 Application Of The Bernoulli
Sub-ODE Method For (2+1)-
dimensional NNV Equations

In this section, we consider the (2+1)-dimensional
NNV equations [44–46]:

ut + auxxx + buyyy + cux + duy
= 3a(uv)x + 3b(uw)y,

(22)

ux = vy, (23)

uy = wx. (24)

Suppose that

ξ = kx+ ly + ωt. (25)

By (25), (22), (23) and (24) are converted into
ODEs

ωu′ + ak3u′′′ + bl3u′′′ + cku′ + dlu′

= 3ak(uv)′ + 3bl(uw)′,
(26)

ku′ = lv′, (27)

lu′ = kw′. (28)

Integrating (26), (27) and (28) once times, we
have

ωu+ ak3u′′ + bl3u′′ + cku+ dlu
= 3akuv + 3bluw + g1,

(29)

ku = lv + g2, (30)

lu = kw + g3, (31)

where g1, g2, g3 are the integration constants.
Suppose that the solutions of (29), (30) and

(31) can be expressed by polynomials in G as fol-
lows:

u(ξ) =
m∑
i=0

aiG
i, (32)

v(ξ) =
n∑

i=0

biG
i, (33)
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w(ξ) =

s∑
i=0

ciG
i, (34)

where ai, bi, ci are constants, G = G(ξ) satisfies
Eq. (1).

Balancing the order of u′′ and uv in Eq. (29),
the order of u and v in Eq. (30), the order of u
and w in Eq. (31), then we can obtain m + 2 =
m + n, m = n, m = s ⇒ m = n = s = 2, so
Eq.(32), (33) and (34) can be rewritten as

u(ξ) = a2G
2 + a1G+ a0, a2 ̸= 0, (35)

v(ξ) = b2G
2 + b1G+ b0, b2 ̸= 0, (36)

w(ξ) = c2G
2 + c1G+ c0, c2 ̸= 0, (37)

where a2, a1, a0, b2, b1, b0, c2, c1, c0 are con-
stants to be determined later.

Substituting (35), (36) and (37) into (29),
(30) and (31) and collecting all the terms with
the same power of G together, equating each co-
efficient to zero, yields a set of simultaneous alge-
braic equations as follows:

For Eq. (29):

G0 : cka0 + dla0 − 3aka0b0 − 3bla0c0

−g0 + ωa0 = 0.

G1 : −3aka0b1 − 3bla0c1 + dla1 + ak3a1λ
2

+cka1 − 3aka1b0 + bl3a1λ
2 − 3bla1c0

+ωa1 = 0.

G2 : −3ak3a1µλ+ cka2 − 3aka0b2 − 3bla0c2

+4ak3a2λ
2 − 3aka1b1 − 3bl3a1µλ+ ωa2

+4bl3a2λ
2 − 3bla1c1 + dla2 − 3aka2b0

−3bla2c0 = 0.

G3 : −3aka1b2 + 2bl3a1µ
2 + 2ak3a1µ

2

−3aka2b1 − 3bla1c2 − 10ak3a2µλ

−10bl3a2µλ− 3bla2c1 = 0.

G4 : −3aka2b2 − 3bla2c2 + 6ak3a2µ
2

+6bl3a2µ
2 = 0.

For Eq.(30):

G0 : ka0 − lb0 − g2 = 0.

G1 : ka1 − lb1 = 0.

G2 : ka2 − lb2 = 0.

For Eq. (31):

G0 : la0 − kc0 − g3 = 0.

G1 : la1 − kc1 = 0.

G2 : la2 − kc2 = 0.

Solving the algebraic equations above yields:

a2 = 2lkµ2, a1 = −2lµλk, a0 = a0,

b2 = 2k2µ2, b1 = −2µk2λ, b0 = b0,

c2 = 2µ2l2, c1 = −2µl2λ, k = k, l = l, ω = ω,

c0 =
1

3

−3ak3a0 − 3bl3a0 + dl2k + ak4lλ2

bl2k

+
1

3

ck2l − 3ak2lb0 + bl4λ2k + ωlk

bl2k
,

g1 = −a0
−3ak3a0 − 3bl3a0 + ak4lλ2 + bl4λ2k

lk
,

g2 = ka0 − lb0,

g3 = −
1

3

−6bl3a0 − 3ak3a0 + dl2k + ak4lλ2

l2b

−1

3

ck2l − 3ak2lb0 + bl4λ2k + ωlk

l2b
,

(38)

where k, l, ω, a0, b0 are arbitrary constants.

Under the condition µ ̸= 0, combining with
(2) and (3), we can obtain the traveling wave so-
lutions of the (2+1)-dimensional NNV equations
(22)-(24) as follows:

u(ξ) = 2lkµ2(
1

µ
λ + deλξ

)2 − 2lµλk(
1

µ
λ + deλξ

) + a0

(39)

v(ξ) = 2k2µ2(
1

µ
λ + deλξ

)2 − 2µk2λ(
1

µ
λ + deλξ

) + b0

(40)

w(ξ) = 2µ2l2(
1

µ
λ + deλξ

)2 − 2µl2λ(
1

µ
λ + deλξ

)

+
1

3

−3ak3a0 − 3bl3a0 + dl2k + ak4lλ2

bl2k

+
1

3

ck2l − 3ak2lb0 + bl4λ2k + ωlk

bl2k
(41)

where ξ = kx+ ly + ωt.

Remark 3 Some authors have reported some ex-
act solutions for the (2+1)-dimensional NNV e-
quations in [44-46]. To our best knowledge, our
results (39)-(41) have not been reported so far in
the literature.

Remark 4 When µ = 0 , we obtain the trivial
solutions.
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5 Application Of The Bernoulli
Sub-ODE Method For (2+1)
dimensional Boussinesq and
Kadomtsev-Petviashvili equa-
tions

In this section we will consider the following
(2+1) dimensional Boussinesq and Kadomtsev-
Petviashvili equations [47] :

uy = qx, (42)

vx = qy, (43)

qt = qxxx + qyyy + 6(qu)x + 6(qv)y. (44)

In order to obtain the traveling wave solutions of
(42)-(44), we suppose that

u(x, y, t) = u(ξ),
v(x, y, t) = v(ξ),
q(x, y, t) = q(ξ),
ξ = ax+ dy − ct,

(45)

where a, d, c are constants that to be determined
later.

Using the wave variable (45), (42)-(44) can be
converted into ODEs

du′ − aq′ = 0, (46)

av′ − dq′ = 0, (47)

(a3 + d3)q′′′ − cq′ − 6auq′

−6aqu′ − 6dvq′ − 6dqv′ = 0. (48)

Integrating the ODEs above, we obtain

du− aq = g1, (49)

av − dq = g2, (50)

(a3 + d3)q′′ − cq − 6auq − 6dvq = g3.(51)

Supposing that the solutions of the ODEs above
can be expressed by a polynomial in G as follows:

u(ξ) =
l∑

i=0

aiG
i, (52)

v(ξ) =
m∑
i=0

biG
i, (53)

q(ξ) =

n∑
i=0

ciG
i, (54)

where ai, bi, ci are constants, and G = G(ξ) satis-
fies Eq. (1).

Balancing the order of u′ and q′ in Eq. (52),
the order of v′ and q′ in Eq. (53) and the order of

q′′′ and vq′ in Eq. (54), we have l+1 = n+1, m+
1 = n+1, n+3 = m+n+1 ⇒ l = m = n = 2.
So Eq.(52)-(54) can be rewritten as

u(ξ) = a2G
2 + a1G+ a0, a2 ̸= 0, (55)

v(ξ) = b2G
2 + b1G+ b0, b2 ̸= 0, (56)

u(ξ) = c2G
2 + c1G+ c0, c2 ̸= 0, (57)

where ai, bi, ci are constants to be determined
later.

Substituting (55)-(57) into the ODEs (49)-
(51), collecting all terms with the same power
of G together, equating each coefficient to zero,
yields a set of simultaneous algebraic equations
as follows:

For Eq. (49):
G0 : a0d− ac0 − g1 = 0.

G1 : a1d− ac1 = 0.

G2 : a2d− ac2 = 0.

For Eq. (50):
G0 : ab0 − g2 − dc0 = 0.

G1 : ab1 − dc1 = 0.

G2 : −dc2 + ab2 = 0.

For Eq. (51):

G0 : −g3 − cc0 − 6db0c0 − 6aa0c0 = 0.

G1 : −6aa1c0 − 6db1c0 + a3c1λ
2 − 6db0c1

−6aa0c1 + d3c1λ
2 − cc1 = 0.

G2 : 4a3c2λ
2 − 6aa0c2 − 6db1c1 − 6aa1c1

−6aa2c0 + 4d3c2λ
2 − cc2 − 3d3c1µλ

−6db0c2 − 3a3c1µλ− 6db2c0 = 0.

G3 : −6aa2c1 − 6db2c1 + 2a3c1µ
2 − 10d3c2µλ

−6aa1c2 − 10a3c2µλ− 6db1c2

+2d3c1µ
2 = 0.

G4 : 6d3c2µ
2−6aa2c2+6a3c2µ

2−6db2c2 = 0.

Solving the algebraic equations above yield-
s:

WSEAS TRANSACTIONS on MATHEMATICS Bin Zheng

E-ISSN: 2224-2880 622 Issue 7, Volume 11, July 2012



Case 1:

a0 = a0, a1 = −µλa2, a2 = a2µ2,

b0 = b0, b1 = −d2µλ, b2 = d2µ2, a = a,

c0 = c0, c1 = −dµλa, c2 = dµ2a,

g2 = ab0 − dc0, g1 = da0 − ac0, d = d,

c =
−6a3c0 − 6d3c0 + a4dλ2 − 6d2b0a− 6a2a0d+ d4λ2a

ad
,

g3 = −c0
−6a3c0 − 6d3c0 + a4dλ2 + d4λ2a

ad
,

(58)

where a0, b0, c0, a, d are arbitrary constants.

Assume µ ̸= 0, then substituting the results
above into (55)-(57), combining with (2) we can
obtain the traveling wave solution of (2+1) di-
mensional BKP equation as follows:

u1(ξ) = a2µ2(
1

µ
λ + deλξ

)2 − µλa2(
1

µ
λ + deλξ

) + a0,

(59)

v1(ξ) = d2µ2(
1

µ
λ + deλξ

)2 − d2µλ(
1

µ
λ + deλξ

) + b0,

(60)

q1(ξ) = dµ2a(
1

µ
λ + deλξ

)2 − dµλa(
1

µ
λ + deλξ

) + c0,

(61)
where

ξ = ax+ dy − −6a
3c0 − 6d3c0 + a4dλ2

ad
t

−−6d
2b0a− 6a2a0d+ d4λ2a

ad
t. (62)

Case 2:

a0 = a0, a1 = a1, a2 = d2µ2,
b0 = b0, b1 = a1, b2 = d2µ2,
d = d, c = 6d(−b0 + a0),
c0 = c0, c1 = −a1, c2 = −d2µ2,
g2 = −db0 − dc0, g1 = da0 + dc0,
a = −d, g3 = 0,

(63)

where a0, b0, c0, a1, d are arbitrary constants.

Similarly, under the condition µ ̸= 0, we can
obtain traveling wave solutions of (2+1) dimen-
sional Boussinesq and Kadomtsev-Petviashvili e-
quations as follows:

u2(ξ) = d2µ2(
1

µ
λ + deλξ

)2 + a1(
1

µ
λ + deλξ

) + a0,

(64)

v2(ξ) = d2µ2(
1

µ
λ + deλξ

)2 + a1(
1

µ
λ + deλξ

) + b0,

(65)

q2(ξ) = −d2µ2(
1

µ
λ + deλξ

)2 − a1(
1

µ
λ + deλξ

) + c0,

(66)
where

ξ = −dx+ dy − 6d(−b0 + a0)t. (67)

Case 3:

a0 = a0, a1 =
1
2d

2µλ(−1
2 ±

1
2

√
3i),

a2 = d2µ2(−1
2 ±

1
2

√
3i),

b0 = b0, b1 =
1
2µλd

2, b2 = d2µ2,

c0 = c0, c1 =
1
2d

2µλ(12 ±
1
2

√
3i),

c2 = d2µ2(12 ±
1
2

√
3i),

d = d, a = (12 ±
1
2

√
3i)d,

c = −6da0(12 ±
1
2

√
3i)− 6db0,

g1 = da0 − dc0(
1
2 ±

1
2

√
3i),

g2 = db0(
1
2 ±

1
2

√
3i)− dc0,

g3 = 0,

(68)

where a0, b0, c0, d are arbitrary constants.

Thus

u3(ξ) = d2µ2(−1
2 ±

1
2

√
3i)( 1

µ
λ
+deλξ

)2

+1
2d

2µλ(−1
2 ±

1
2

√
3i)( 1

µ
λ
+deλξ

) + a0,
(69)

v3(ξ) = d2µ2( 1
µ
λ
+deλξ

)2 + 1
2µλd

2( 1
µ
λ
+deλξ

) + b0,

(70)

q3(ξ) = d2µ2(12 ±
1
2

√
3i)( 1

µ
λ
+deλξ

)2

+1
2d

2µλ(12 ±
1
2

√
3i)( 1

µ
λ
+deλξ

) + c0,
(71)

ξ = (
1

2
± 1

2

√
3i)dx+dy+[6da0(

1

2
± 1

2

√
3i)+6db0]t,

(72)
where µ ̸= 0.
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Case 4:

a0 = a0, a1 =
1
2d

2µλ(−1
2 ±

1
2

√
3i),

a2 = d2µ2(−1
2 ±

1
2

√
3i)

b0 = b0, b1 = −a1(12 ±
1
2

√
3i),

b2 = d2µ2

c0 = c0, c1 = −a1(−1
2 ±

1
2

√
3i),

c2 = d2µ2(12 ±
1
2

√
3i)

d = d, a = (12 ±
1
2

√
3i)d,

c = −6da0(12 ±
1
2

√
3i)− 6db0

g1 = da0 − dc0(
1
2 ±

1
2

√
3i),

g2 = db0(
1
2 ±

1
2

√
3i)− dc0,

g3 = 0,

(73)

where a0, b0, c0, d are arbitrary constants.

Then

u4(ξ) = d2µ2(−1
2 ±

1
2

√
3i)( 1

µ
λ
+deλξ

)2

+1
2d

2µλ(−1
2 ±

1
2

√
3i)( 1

µ
λ
+deλξ

) + a0,
(74)

v4(ξ) = d2µ2( 1
µ
λ
+deλξ

)2

−a1(12 ±
1
2

√
3i)( 1

µ
λ
+deλξ

) + b0,
(75)

q4(ξ) = d2µ2(12 ±
1
2

√
3i)(12 ±

1
2

√
3i)( 1

µ
λ
+deλξ

)2

−a1(−1
2 ±

1
2

√
3i)( 1

µ
λ
+deλξ

) + c0,

(76)

ξ = (
1

2
± 1

2

√
3i)dx+dy+[6da0(

1

2
± 1

2

√
3i)+6db0]t,

(77)
where µ ̸= 0.

Remark 5 When µ = 0, we obtain the triv-
ial solutions. The traveling wave solution-
s established for (2+1)-dimensional Boussinesq
and Kadomtsev-Petviashvili equations (59)-(61),
(64)-(66), (69)-(73), (74)-(76) have not been re-
ported by other authors to our best knowledge.

6 Comparison with Zayed’ re-
sults

In [46,43], Zayed solved the (2+1)-dimensional N-
NV equations and the variant Boussinseq equa-
tions by using the (G′/G) expansion method re-
spectively. In this section, we will present some
comparisons between the established results in
Section 3-4 and Zayed’ results.

Let µ1, λ1 represent µ, λ in [46] re-
spectively. Then in (39)-(41), considering

d, µ, λ, a0, b0, l, k, ω are arbitrary constants,
if we take

d =
A+B√
λ2
1 − 4µ1

, µ = B −A, λ =
√

λ2
1 − 4µ1,

a0 = α0 − 2µ1, l = 1, k = 1, b0 = −2µ1,

ω = 3(a+b)(α0−2µ1)−
A+B√
λ2
1 − 4µ1

−(a+b)(λ2
1−4µ1)

−c− 6aµ1 − 3b(γ0 −
1

2
λ2
1),

where A, B, α0, γ0 are defined in [46], our solu-
tions (39)-(41) reduce to the solutions derived in
[46, (3.32 )-(3.34)]. Furthermore, under the con-
dition A = 0, B ̸= 0, λ1 > 0, µ1 = 0, (39)-(41)
reduce the solitary solutions in [46, (3.41)-(3.43)].
If we take

d =
iA+B

i
√

4µ1 − λ2
1

, µ = iA−B, λ = i
√

4µ1 − λ2
1,

a0 = α0 − 2µ1, l = 1, k = 1, b0 = −2µ1,

ω = 3(a+b)(α0−2µ1)−
iA+B

i
√

λ2
1 − 4µ1

−(a+b)(λ2
1−4µ1)

−c− 6aµ1 − 3b(γ0 −
1

2
λ2
1),

then our solutions (39)-(41) reduce to the solu-
tions derived in [46, (3.35)-(3.37)]. So in this way,
our results (39)-(41) extend Zayed’ results for the
(2+1)-dimensional NNV equations in [46] .

For the variant Boussinseq equations, we note
that our solutions (20)-(21) are different solutions
from the results in [43, (33)-(38)].

7 Conclusions

In this paper we have seen that some new trav-
eling wave solutions of the variant Boussinseq e-
quations, (2+1)-dimensional NNV equations and
(2+1)-dimensional Boussinesq and Kadomtsev-
Petviashvili equations are successfully found by
using the Bernoulli sub-ODE method. The main
points of the method are that assuming the solu-
tion of the ODE reduced by using the traveling
wave variable as well as integrating can be ex-
pressed by anm-th degree polynomial in G, where
G = G(ξ) is the general solutions of a Bernoulli
sub-ODE equation. The positive integerm can be
determined by the general homogeneous balance
method, and the coefficients of the polynomial can
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be obtained by solving a set of simultaneous alge-
braic equations.

Compared to the methods used before, one
can see that this method is concise and effective.
Also this method can be applied to other nonlin-
ear problems.
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