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1 Introduction

Singular integral equations (SIE) and
singular integro- differential equations
with Cauchy kernels (SIDE) and their
systems arise in different problems of
elasticity theory, aerodynamics, mechan-
ics, thermo elasticity, queuing analysis,
mathematical biology. (see [1]-[5] and
the literature cited therein). The general
theory of SIE and SIDE has been widely
investigated in the last decades [6]-[10].

It is well known that problem (4)-
(5) admits a closed-form solution only in
rare special cases. Even in these cases,
evaluating the solution numerically can
be very complicated and laborious. In
this connection, it is of interest to elab-
orate the approximate methods for prob-
lem (4)-(5) with the corresponding theo-

retical background.

In this article we study the reduc-
tion method for approximative solution
of systems of SIDE. We prove the con-
vergence in Generalized Holder spaces.
Note that, for the case of the unit circle,
this problem was studied in a number of
papers (see [11]-[14] and the bibliogra-
phy therein), and, in the case arbitrary
smooth closed contours, problem (4)-
(5) was solved approximately for one-
dimensional SIDE and one dimensional
SIE by collocation method in Lebesgue,
Holder spaces [16]-[20].

Transition to another contour, dif-
ferent from the standard one, implies
many difficulties. It should be noted
that conformal mapping from the arbi-
trary smooth closed contour to the unit
circle does not solve the problem. More-
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over, it makes more difficult.

- The coefficients, kernel and right
part of transformed equation lose
their smoothness;

- The power of smoothness appears
in convergence speed of collocation
method. So that the evaluations of
convergence speed will depend from
particular contour;

- The numerical schemes of re-
searched methods become more
difficult. The singularity appears in
new kernel.

In Section 2 we introduce the main def-
initions and notations. We present the
numerical scheme of reduction method
in Section 3. In Section 4 we formulate
auxiliary results. We use these results to
prove the convergence theorems in Sec-
tion 5. We prove the convergence theo-
rem of reduction method in Section 5.

2 Main definitions

Let Γ be a smooth closed contour
bounding a simply connected domain
D+ that contains thepointz = 0, and let
D− = C \ {D+ ⋃Γ} . The class of such
contours will be denoted byΛ. Let w =

Φ(z) be a conformal function mapping
D− onto the domain|w| > 1 such that
Φ(∞) = ∞, and lim

z→∞
z−1Φ(z) = α > 0,

and letz = φ(w) be the inverse function
of Φ(z). Further, let a functionw = F (z)

be a conformal mapping ofD+ onto the
domain|w| > 1 such thatF (0) = ∞ and

lim
z→0

zF (z) = β > 0, and letz = ϕ(w)

be the inverse function. In a neighbor-
hood of the point at infinity, the function
Φ(z) can be expanded in a seriesΦ(z) =

α/z+α0+α1/z+α2/z
2+. . . , and the in-

verse function has the formz = φ(w) =
γw+ γ0+ γ1/w+ γ2/w

2+ . . . , |w| > 1,

where γ = 1/α > 0. In a neighbor-
hood of zero, the functionF (z) admits
the expansionF (z) = βz−1+β0+β1z+
β2z

2 + . . . . Throughout the following,
one can assume without loss of general-
ity thatα = 1 andβ = 1 [21]. By Φk(z)

(k = 0, 1, 2, . . .) we denote the polyno-
mial comprising the terms with nonnega-
tive powers ofz in the Laurent expansion
of the function[Φ(z)]k, and byFk(1/z)
(k = 1, 2, . . .) we denote the polynomial
comprising the terms with negative pow-
ers ofz in the expansion of[F (z)]k. Let
Sn be the operator that takes each contin-
uous functiong(t) onΓ to thenth partial
sum of its Faber-Laurent series:

(Sng)(t) =
n
∑

k=0

akΦk(t)

+
n
∑

k=1

bkFk

(1

t

)

, t ∈ Γ,

ak =
1

2πi

∫

Γ0

g(φ(τ))

τ k+1
dτ, k = 0, 1, 2, . . . ,

bk =
1

2πi

∫

Γ0

g(ϕ(τ))

τ k+1
dτ, k = 1, 2, . . .

By ω(δ) (δ ∈ (0, h]) h = diam(Γ) we de-
note the arbitrary module of continuity.
By [H(ω)]m we denote Banach space m-
dimensional vector functions(v.f) satisfy-
ing onΓ the Holder condition[22]. The
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norm is defined as

∀g(t) = {g1(t), . . . , gm(t)},

||g||ω,m =
m
∑

k=1

(||gk||C +H(gk, ω)) (1)

||g||C = max
t∈Γ

|g(t)|,

H(g;ω) = sup
σ∈(0;l]

ω(g; σ)

ω(σ)
,

ω(g; σ) is the module of continuity of
functiong(t) onΓ. We consider only the
spaces[H(ω)]m with modules of conti-
nuity satisfying the Barry-Stechkin con-
ditions [22]:

h
∫

0

ω(ξ)

ξ
< ∞, (2)

δ
∫

0

ω(ξ)

ξ
dξ+δ

h
∫

δ

ω(ξ)

ξ2
dξ = O(ω(δ)), δ → +0.

(3)
In this case the singular integral op-
erator with Cauchy kernel is bounded
in Generalized Holder spaces[22]. By
[H(r)(ω)]m, r ≥ 0 ([H0(ω)]m =

[H(ω))]m we denote the spaces of
r− times continuous-differentiable m-
dimensional vector functions. Ther−
order derivatives of these v.f. are ele-
ments of space[H(ω)]m. Recall that if
ω(δ) = δα, α ∈ (0; h], thenH(ω) =

Hα is a classical Ḧolder space with ex-
ponentα. The space[H(ω)]m is a Ba-
nach nonseparable space. So the ap-
proximation of whole class of functions
[H(ω)]m by norm (1) with the help of
finite-dimensional approximation is im-
possible. But the problem can be solved

in some subset of[H(ω)]m. Letω1 andω2

be two modulus of continuity satisfying
the conditions (2) and (3). We suppose
that the function

Φ(δ) =
ω1(δ)

ω2(δ)

δ ∈ (0; h] is nondecreasing on(0; h] and
lim
δ→0

Φ(δ) = 0.

3 Numerical schemes

We consider the system of the SIDE in
[H(ω)]m

(Mx ≡)
q
∑

r=0

[

Ãr(t)x
(r)(t) +

B̃r(t)
1

πi

∫

Γ

x(r)(τ)

τ − t
dτ

+
1

2πi

∫

Γ
Kr(t, τ) · x

(r)(τ)dτ

]

=

f(t), t ∈ Γ, (4)

where Ãr(t), B̃r(t), Kr(t, τ) (r =
0, . . . , q) are known m × m matrix
functions(m.f.), the elements of the
m.f. belong to [H(ω)]m, f(t) is a
knownm−dimensional v.f. in[H(ω)]m,
x(0)(t) = x(t) is an unknown v.f.

in [H(ω)]m, x(r)(t) =
drx(t)

dtr
(r =

1, . . . , q), andq is a positive integer. We
suppose that the v.f.x(q)(t) belongs to
[H(ω)]m, that is,

x(k)(t) ∈ [H(ω)]m, k = 0, . . . , q−1.

We search for a solution of (4) in the
class of v.f. satisfying the condition

1

2πi

∫

Γ

x(τ)τ−k−1dτ = 0,
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k = 0, . . . , q − 1. (5)

We note that the solutions of SIDE (4)
can differ by a constant [7, 15]. In this
case we cannot investigate the solution
of SIDE (4) directly. That is why we in-
troduce additional conditions (5) for v.f.
x(t).

We denote the system (4) with con-
ditions (5) as problem ”(4)-(5)”. Us-

ing the Riesz operatorsP =
1

2
(I +

S), whereI is the identity operator and

(Sx)(t) =
1

πi

∫

Γ

x(τ)

τ − t
dτ is the singu-

lar operator (with Cauchy kernel), we
rewrite the system (4) in the following
form:

(Mx) ≡
q
∑

r=0

[

Ar(t)(Px(r)(t)

+Br(t)(Qx(r)(t)

+
1

2πi

∫

Γ
Kr(t, τ) · x

(r)(τ)dτ

]

(6)

= f(t), t ∈ Γ,

whereAr(t) = Ãr(t) + B̃r(t), Br(t) =
Ãr(t) − B̃r(t), r = 0, . . . , q arem × m

m.f. The elements belong to[H(ω)]m.
We seek an approximate solution of
problem (4)-(5) in the form of a polyno-
mial

xn(t) = tq
n
∑

k=0

α
(n)
k Φk(t)+

n
∑

k=1

α
(n)
−kFk

(1

t

)

,

t ∈ Γ, (7)

with unknown m-dimensional numerical
vectorsαk = α

(n)
k , k = −n, . . . , n.

The m-dimensional numerical vectors

αk, k = −n, n, are found from the con-
dition:

Sn[Mxn − f ] = 0,

SnMSnxn = Snf, (8)

for the unknown v.fxn(t) of the form
(7). Note that Eq. (8) is a system
of (2n + 1) ∗ m linear algebraic equa-
tions(SLAE) with (2n + 1) ∗ m un-
knownsαk, k = −n, . . . , n. Note that
the matrix of this system is determined
by the Faber-Laurent coefficients of the
m.f. Ar(t) andBr(t) :

1

2πi

∫

Γ

hr(t, τ)Φk(τ) dτ, k = 0, n,

1

2πi

∫

Γ

hr(t, τ)Fk

(1

τ

)

dτ, k = 1, n, r = 0, q.

In what follows, we give a theoretical
justification of the reduction method, i.e.,
derive conditions providing the solvabil-
ity (starting from some indicesn) of Eq.
(8) and the convergence of the approxi-
mate solutions (7) to the exact solution
x(t) of problem (4)-(5).

Let [
o

H
(q)

(ω2)]m be a subspace of
[H(q)(ω2)]m space. The elements from

[
o

H
(q)

(ω2)]m satisfy the condition (5)
with the norm as in[H(q)(ω2)]m.

Theorem 1 Let the following conditions
be satisfied:

1) M.F. Ar(t), Br(t) and Kr(t, τ),
r = 0, . . . , q, belong to the space
[H(ω1)]m;

2) Det(Aq(t)) 6= 0Det(Bq(t));
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3) the left partial indexes of M.F.Aq(t)
are equal to zero and right partial in-
dexes of M.F.Bq are equal toq;

4) the operatorM : [
o

H
(q)

(ω2)]m →

[H(ω2)]m.

5) Φ(δ) =
ω1(δ)

ω2(δ)
is nondecreasing on

(0; h].

If
lim
δ→+0

Φ(δ) ln2(δ) = 0

then starting from indicesn ≥ n1 the
SLAE (8) of reduction method is uniquely
solvable. The approximate solutions
xn(t) given by formula (7) converge in
the norm of space[H(q)(ω2)]m to the ex-
act solution of problem (4)-(5). The fol-
lowing estimation is true:

||x− xn||
m
ω2,q

= O

(

Φ

(

1

n

)

ln2 n

)

. (9)

4 Auxiliary Results

The vector functions
dq(Px)(t)

dtq
and

dq(Qx)(t)

dtq
can be represented by inte-

grals of Cauchy type with the same den-
sity v(t) :

dq(Px)(t)

dtq
=

1

2πi

∫

Γ

v(τ)

τ − t
dτ, t ∈ F+,

dq(Qx)(t)

dtq
=

t−q

2πi

∫

Γ

v(τ)

τ − t
dτ, t ∈ F−.































(10)
Using the integral representation (10) we
reduce the problem (4)-(5) to an equiva-

lent system of SIE (in terms of solvabil-
ity):

(Υv ≡)C(t)v(t) +
D(t)

πi

∫

Γ

v(τ)

τ − t
dτ+

1

2πi

∫

Γ

h(t, τ)v(τ)dτ = f(t), t ∈ Γ,

(11)
for unknownsv(t) where

C(t) =
1

2
[Aq(t) + t−qBq(t)],

D(t) =
1

2
[Aq(t)− t−qBq(t)], (12)

h(t, τ) =
1

2

[

Kq(t, τ) +Kq(t, τ)τ
−n
]

−

1

2πi

∫

Γ

[

Kq(t, t̄)−Kq(t, t̄)t̄
−n
] dt̄

t̄− τ

+
q−1
∑

j=0





Aj(t)M̃j(t, τ) +
∫

Γ

Kj(t, t̄)M̃j(t̄, τ)dt̄







−
q−1
∑

j=0





Bj(t)Ñj(t, τ) +
∫

Γ

Kj(t, t̄)Ñj(t̄, τ)dt̄





 ,

(13)
whereM̃j(t, τ), Ñj(t, τ) j = 0, . . . , q are
known Hölder continuous M.F. An ex-
plicit form for these functions is given
in [15]. By virtue of the proper-
ties of the m.f. M̃j(t, τ), Ñj(t, τ),
Kj(t, τ), Aj(t), Bj(t), j = 0, . . . , q, we
obtain that the m.f.h(t, τ) is a Hölder
continuous M.F. Note that the right hand
sides in (11) and (4) coincide by condi-
tions (5).

Lemma 2 The system of SIE (11) and
problem (4)-(5) are equivalent in terms
of solvability. That is, for each solution
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v(t) of system of SIE (11), there is a so-
lution of problem (4)-(5), determined by
the formulae

(Px)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)[(τ−t)q−1

log

(

1−
t

τ

)

+
q−1
∑

k=1

αkτ
q−k−1tk]dτ,

(Qx)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)τ−q[(τ−t)q−1

log

(

1−
τ

t

)

+
q−2
∑

k=1

βkτ
q−k−1tk]dτ, (14)

whereαk, k = 1, . . . , q − 1, andβk, k =
1, . . . , q − 2 are vector numbers. On the
other hand, for each solutionx(t) of the
problem (4)-(5) there is a solutionv(t)

v(t) =
dq(Px)(t)

dtq
+ tq

dq(Qx)(t)

dtq
,

of system of SIE (11). Furthermore, for
linearly independent solutions of (11),
there are corresponding linearly inde-
pendent solutions of problem (4)-(5) from
(14) and vice versa.

In formula (14), bothlog(1 − t/τ) and
log(1 − τ/t), for given τ , there are
branches that vanish att = 0 andt = ∞,
respectively. We formulate the theorems
about the theoretical background of nu-
merical schemes of the reduction for sys-
tem of SIE

Theorem 3 Let the following conditions
be satisfied:

a) M.F. C(t), D(t) and h(t, τ) ∈
[H(ω1)]m;

b) det(C(t)) 6= 0, det(D(t)) 6= 0, t ∈
Γ;

c) the left partial indexes of m.f.C(t)

right partial indexes of m.f.D(t) are
equal to zero;

d) operatorΥ = aP+bQ+H be invert-
ible in [H(ω2)]m, H is integral op-
erator with kernelh(t, τ), P andQ

are Riesz projectorsP = 1
2(I + S),

Q = 1
2(I − S), S is a singular oper-

ator with Cauchy kernel.

e) Φ(δ) =
ω1(δ)

ω2(δ)
is nondecreasing on

(0; h].

If
lim
δ→+0

Φ(δ) ln2(δ) = 0

then the operator of the reduction method

Υn = Sn[aP + bQ+H]Sn,

of operatorΥv = f for large enough
numbers(n ≥ n0) is invertible in the
space[H(ω2)]m and the approximate so-
lutionsvn(t) = Υ−1

n Snf converges to the
functionv = Υ−1f. The following esti-
mation is true:

||v − vn||
m
ω2,q

= O

(

Φ

(

1

n

)

ln2
)

. (15)

5 Proof of convergence theo-
rem

In this section we prove the Theorem 1.
Proof We should show that for numbers
n ≥ n0 large enough the operator is in-
vertible. The operatorM acts from the
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subspace[
o

Xn]m = tqP [Xn]m + Q[Xn]m
(the norm defined as in[H(ω2)

(q)]m)
to the space[Xn]m = Sn[Hω2

]m of
m dimensional polynomials of the form

n
∑

k=−n
rkt

k (the norm as in[H(ω2)]m).

In a similar way, by using formulas
(10), we represent the v.f.

dq(P (xn)(t))/dt
q, dq(Q(xn)(t))/dt

q

by Cauchy type integrals with the same
density vn(t) :

dq(P (xn)(t))

dtq
=

1

2πi

∫

Γ

vn(τ)

τ − t
dτ, t ∈ F+,

dq(Q(xn)(t))

dtq
=

t−q

2πi

∫

Γ

vn(τ)

τ − t
dτ, t ∈ F−. (16)

By taking account of the for-
mulas (Px)(r)(t) = P (x(r))(t) and
(Qx)(r)(t) = Q(x(r))(t), r = 1, 2, . . . ,
and the relations

(tk+q)(r) =

(k + q)!

(k + q − r)!
tk+q−r, k = 0, . . . , n,

(t−k)(r) =

(−1)r
(k + r − 1)!

(k − 1)!
t−k−r, k = 1, . . . , n,

from (16), we obtain

vn(t) =
n
∑

k=0

(k + q)!

k!
tkξk+

(−1)q
n
∑

k=1

(k + q − 1)!

(k − 1)!
t−kξ−k

Consequentlyvn(t) ∈ [Xn]m; here we
have used the fact that the polynomials
xn(t), given by (7) can be represented
uniquely in the form

tq
n
∑

k=0

ξkt
k +

−1
∑

k=−n

ξkt
k.

Using of the representations (16), Eq.
(8), as well as the problem (4)-(5) can be
reduced to an equivalent equation (in the
sense solvability)

SnRSnvn = Snf, (17)

Treated as an equation in the subspace
[Xn]m. Obviously, Eq. (17) is the equa-
tion of the method of reduction over
Faber-Laurent polynomials for the singu-
lar integral equation (11), and for singu-
lar integral equations, the method of re-
duction over Faber-Laurent polynomials
was considered in [17], where sufficient
conditions for the solvability and conver-
gence of this method were obtained. As-
sumptions in Theorem 3 provide the va-
lidity of all assumptions in Theorem 1.
We have that the Eq. (17) withn ≥ n1

is uniquely solvable; moreover, the ap-
proximate solutionsvn(t) of this equa-
tion converge to the exact solutionv(t) of
the system of singular integral equation
(11) in the norm of the space[H(ω2)]m
asn → ∞:

‖vn−v‖mω2,q
= O

(

Φ

(

1

n

)

ln2(δ)

)

. (18)

v.f. xn(t) can be expressed via the v.f.
vn(t) by formulas (14). From definition
of the norm in the space[H(q)

ω2
]m together
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with (18) implies estimate (9).
The proof of Theorem 1 is complete.
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