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Abstract: Both unconstrained and constrained minimax single facility location problems are considered in
multidimensional space with Chebyshev distance. A new solution approach is proposed within the framework
of idempotent algebra to reduce the problems to solving linear vector equations and minimizing functionals
defined on some idempotent semimodule. The approach offers a solution in a closed form that actually involves
performing matrix-vector multiplications in terms of idempotent algebra for appropriate matrices and vectors. To
illustrate the solution procedures, numerical and graphical examples of two-dimensional problems are given.
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1 Introduction

In the area of optimization, location problems [1]
constitute a research domain of continuing interest
that goes back to the seventeenth century and classi-
cal works of P. Fermat, E. Torricelli, J. J. Sylvester,
J. Steiner, and A. Weber. Many results in the domain
are recognized as important contributions to various
research fields including integer programming, com-
binatorial and graph optimization [1–6].

Models and methods of idempotent algebra, i.e.,
the linear algebra over semirings with idempotent ad-
dition, are among the approaches developed to attack
location problems. Besides that, new applications of
idempotent algebra to real-life problems in engineer-
ing, manufacturing, information technology, and oth-
er fields are arising and expanding [7–13]. In terms
of idempotent algebra, a range of problems that are
nonlinear in the ordinary sense, become linear, and so
more tractable for analysis and solution.

Idempotent algebra based approaches prove to be
useful for solving certain optimization problems, in-
cluding idempotent analogues of linear programming
problems and their extensions [13, 14], as well as
some location problems [8, 15, 16]. A single facil-
ity location problem on a graph is examined in [8],
where it is represented as a problem of minimizing a

rational function of one variable in the idempotent al-
gebra sense. However, the proposed solution of one-
dimensional problems does not seem to be applicable
in the multidimensional case.

In [15, 16], a multidimensional constrained loca-
tion problem on a graph is considered which has an
objective function that takes the form of a maximum
of functions each depending only on one variable, and
so is called max-separable. Though an efficient tech-
nique to solve the problem is developed, this tech-
nique seems to be not suitable for problems with ob-
jective functions other than max-separable ones.

An algebraic approach to multidimensional mini-
max single facility location problems with Chebyshev
and rectilinear distances is proposed in [17–20]. The
approach is based on new results in the spectral theo-
ry in idempotent algebra, including extremal proper-
ties of eigenvalues for irreducible matrices. The so-
lution reduces to minimization of functionals defined
on idempotent semimodules and involves evaluation
of the eigenvalue and eigenvectors of a matrix.

In this paper, we present a new algebraic solu-
tion to both unconstrained and constrained minimax
location problems with Chebyshev distance. The pro-
posed approach mainly exploits methods and tech-
niques of solving linear vector equations developed in
[21–23] rather than results from spectral theory. The
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approach offers a closed-form solution that involves
performing a few usual matrix-vector operations.

The rest of the paper is organized as follows. We
begin with a brief overview of some concepts, defini-
tions and notations of idempotent algebra, including
idempotent semifields and semimodules, algebra of
matrices, and linear vector equations. As another pre-
requisite, general solutions of linear vector equations
are also outlined. Furthermore, solutions to some op-
timization problems are obtained to provide the basis
for the analysis of location problems below.

We consider an unconstrained location problem
and present a new solution, which appear to be more
direct and somewhat simpler than that in [17–20].
New constrained location problems are then exam-
ined and explicit solutions to the problems are given.
Finally, numerical examples of solving both uncon-
strained and constrained problem in two-dimensional
space are shown to illustrate the results.

2 Definitions and Notations
We start with a brief introduction to idempotent alge-
bra so as to outline basic concepts, definitions and no-
tations that together underlie results presented in the
paper. Further related details can be found in [7–13].

2.1 Idempotent Semifield
Consider a set X that is closed under addition ⊕ and
multiplication ⊗ and has zero 0 and identity 1 . We
assume (X, 0,1,⊕,⊗) to be a commutative semir-
ing, where addition is idempotent and multiplication
is invertible. Since the nonzero elements in X form
a group under multiplication, the semiring is usually
referred to as the idempotent semifield.

The power notation is introduced in the ordinary
way. We define X+ = X \ {0} . For any x ∈ X+ and
any integer p > 0 , we have x0 = 1 , 0p = 0 , and

xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p.

It is assumed that in the semifield, the integer
power can be extended to the case of rational expo-
nents, and so the semifield is taken to be radicable.

From here on, as it is customary in ordinary al-
gebra, we drop the multiplication sign ⊗ . The power
notation is meant in the sense of idempotent algebra.

The idempotent addition induces a partial order
≤ such that x ≤ y if and only if x ⊕ y = y . From
this definition it follows that

x ≤ x⊕ y, y ≤ x⊕ y,

and that both addition and multiplication are isotonic.
Furthermore, we suppose that it is possible to

complete the partial order into a linear order and con-
sider the semifield as totally ordered. In what follows,
the relation signs and the symbols min and max are
thought of as referring to this linear order.

As an example, consider the idempotent semifield
of real numbers

Rmax,+ = (R ∪ {−∞},−∞, 0,max,+).

In the semifield Rmax,+ , its null and identity ele-
ments are defined as 0 = −∞ and 1 = 0 . For each
x ∈ R , there exists its inverse x−1 equal to −x in
conventional arithmetic. For any x, y ∈ R , the pow-
er xy corresponds to the arithmetic product xy . The
partial order induced by the idempotent addition coin-
cides with the natural linear order on R .

2.2 Idempotent Semimodule
Vector operations are routinely introduced based on
the scalar addition and multiplication defined on X .
Consider the Cartesian power Xn with its elements
represented as column vectors. For any two vectors
x = (xi) and y = (yi) , and a scalar c ∈ X , vector
addition and multiplication by scalars follow the rules

{x⊕ y}i = xi ⊕ yi, {cx}i = cxi.

Fig. 1 illustrates the operations in R2
max,+ . Addi-

tion of two vectors on the plane is subject to a “rectan-
gle rule” that defines the sum as a diagonal of a rect-
angle formed by coordinate axes together with hori-
zontal and vertical lines drawn through the end points
of the vectors. Scalar multiplication is equivalent to a
shift along a line directed at 45◦ angle to the axes.
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Figure 1: Vector addition (left) and scalar multiplica-
tion (right) in R2

max,+ .

The set Xn with these operations is a semimodule
over the idempotent semifield X .
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Both vector addition and scalar multiplication are
isotone operations in every arguments.

A vector with all zero entries is referred to as the
zero or null vector and denoted by 0 .

A vector is called regular if it has no zero entries.
The set of all regular vectors of order n over X is Xn

+ .
A vector y ∈ Xn is linearly dependent on vectors

x1, . . . ,xm ∈ Xn , if there are scalars c1, . . . , cm ∈ X
such that

y = c1x1 ⊕ · · · ⊕ cmxm.

A vector y is collinear with x , if y = cx .
For any vectors x1, . . . ,xm ∈ Xn , their linear

span is defined as the set

span(x1, . . . ,xm) =

{
m⊕
i=1

cixi

∣∣∣∣∣ c1, . . . , cm ∈ X

}
.

An example of the linear span of two vectors
x1 and x2 in R2

max,+ is given in Fig. 2, where
span(x1,x2) is a region between two thick lines go-
ing through the end points of the vectors at 45◦ angle
to the axes of Cartesian coordinates.
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Figure 2: A linear span of two vectors in R2
max,+ .

For any nonzero column vector x = (xi) ∈ Xn ,
its pseudo-inverse is a row vector x− = (x−i ) , where
x−i = x−1

i if xi ̸= 0 , and x−i = 0 otherwise.
If x is any nonzero vector, then x−x = 1 .
For all regular vectors x,y ∈ Xn

+ , the componen-
twise inequality x ≤ y implies x− ≥ y− .

The distance between any two regular vectors
x = (xi) and y = (yi) is given by

ρ(x,y) = y−x⊕ x−y.

In the semimodule Rn
max,+ , this distance becomes

ρ(x,y) = max
1≤i≤n

|xi − yi|,

and so coincides with the classical Chebyshev metric.

2.3 Algebra of Matrices
For conforming matrices A = (aij) , B = (bij) , and
C = (cij) , matrix addition and multiplication togeth-
er with multiplication by a scalar c ∈ X are performed
according to the formulas

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{cA}ij = caij .

A matrix with all zero entries is a zero matrix
which is denoted by 0 .

A matrix is called regular if it has no zero rows.
Consider the set of square matrices Xn×n . Any

matrix that has all off-diagonal entries equal to 0 is
called diagonal. If a matrix has all entries above (be-
low) the diagonal equal to 0 , then it is triangular.

The diagonal matrix with all diagonal entries e-
qual to 1 is the identity matrix denoted by I .

For any matrix A ̸= 0 and an integer p > 0 , the
power notation is routinely defined as

A0 = I, Ap = Ap−1A = AAp−1.

With respect to matrix addition and multiplica-
tion, Xn×n is an idempotent semiring with identity.

A matrix is reducible if it can be put in a block-
triangular form by simultaneous permutations of rows
and columns. Otherwise the matrix is irreducible.

For every matrix A = (aij) , its trace is given by

trA =

n⊕
i=1

aii.

2.4 Linear Operators and Linear Equations
Every matrix A ∈ Xm×n defines a mapping from the
semimodule Xn to the semimodule Xm . Since for any
vectors x,y ∈ Xn and scalar c ∈ X , it holds that

A(x⊕ y) = Ax⊕Ay, A(cx) = cAx,

the mapping can be considered as a linear operator.
For given matrices A,C ∈ Xm×n and vectors

b,d ∈ Xm , a general linear equation in the unknown
vector x ∈ Xn is written in the form

Ax⊕ b = Cx⊕ d.

Since there is no additive inverse, one cannot re-
arrange the equation in such a way that all terms in-
volving the unknown x are brought to one side of the
equation while those without x go to another side.
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Many practical problems reduce to solution of the
following particular cases of the general equation

Ax = d, Ax = x.

By analogy with linear integral equations, the
above two equations are respectively referred to as
that of the first kind and that of the second kind. The
last equation is also known in the literature as the ho-
mogeneous Bellman equation.

Along with the equations, one can consider first-
and second-kind inequalities that have the form

Ax ≤ d, Ax ≤ x.

3 Preliminary Results
In this section, we present results from [21–23] to be
used below in the idempotent algebra based analysis
of location problems. These results seem to have a
less complicated form and provide better geometrical
interpretation than similar algebraic solutions offered
in the literature including [7–13, 24, 25].

3.1 The Equation of the First Kind
Given a matrix A ∈ Xm×n and a vector d ∈ Xm , the
problem is to find all solutions x ∈ Xn of the equation

Ax = d. (1)

A solution x1 to equation (1) is called the maxi-
mum solution if x1 ≥ x for all solutions x of (1).

We present a solution to equation (1) based on the
analysis of the distance between vectors in Xm .

Let ai represent column i in the matrix A for
each i = 1, . . . ,m . Consider a problem of evaluat-
ing the minimum distance in the sense of the metric ρ
from the vector d to the linear span of these columns.

Since we can write

span(a1, . . . ,am) = {Ax|x ∈ Xn},

the problem is to find vectors x ∈ Xn that minimize

ρ(Ax,d) = (Ax)−d⊕ d−Ax.

The next result gives the solution to the problem
when both the matrix A and the vector d are regular.

Lemma 1. Suppose A ∈ Xm×n is a regular matrix,
d ∈ Xm is a regular vector, and define

∆ =
√

(A(d−A)−)−d.

Then it holds that

min
x∈Xn

+

ρ(Ax,d) = ∆

with the minimum attained at x0 = ∆(d−A)− .

Fig. 3 presents examples of the mutual arrange-
ment of the linear span of the columns in a matrix A
and a vector d in R2

max,+ . In the case when ∆ > 1 ,
the minimum distance to the nearest vector of the lin-
ear span is attained at the vector y = ∆A(d−A)− .
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Figure 3: The set span(a1,a2) and the vector d in
R2
max,+ when ∆ = 1 (left) and ∆ > 1 (right).

As a consequence, we get the following result.

Theorem 1. A solution of equation (1) exists if and
only if ∆ = 1 . If solvable, the equation has the max-
imum solution given by

x = (d−A)−.

The general solution to equation (1) with arbitrary
matrix A and vector d is considered in [21, 23].

3.2 Second-Kind Equations and Inequalities
Suppose A ∈ Xn×n is a given matrix, and x ∈ Xn is
an unknown vector. We examine the equation

Ax = x, (2)

and the inequality

Ax ≤ x, (3)

To solve both equation (2) and inequality (3) we
propose an approach based on the use of a function
Tr(A) that takes each square matrix A to a scalar ac-
cording to the definition

Tr(A) =

n⊕
m=1

trAm.
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The function is exploited to examine whether the
equation has a unique solution, many solutions, or no
solution, and so may play the role of the determinant
in conventional linear algebra.

The solution involves evaluating matrices A∗ ,
A× , and A+ . The first two are given by

A∗ = I ⊕A⊕ · · · ⊕An−1, A× = AA∗.

The matrix A+ is constructed as follows. Let a×
i

be column i in A× , and a×ii be its diagonal element.
First we replace each column a×

i with that defined as

a+
i =

{
a×
i , if a×ii = 1,

0, otherwise.

Furthermore, the set of columns a+
i is reduced

by removing those columns, if any, that are linearly
dependent on others. Finally, the rest columns are put
together to form the matrix A+ .

The general solutions to both equation and in-
equality of the second kind in the case of irreducible
matrices are given by the following results.

Theorem 2. Let A be an irreducible matrix, and x
be the solution of equation (2) with the matrix A .

Then the following statements hold:

1) if Tr(A) = 1 , then x = A+v for any vector v
of appropriate size;

2) if Tr(A) ̸= 1 , then there is only the trivial solu-
tion x = 0 .

Fig. 4 gives examples of solutions to equations (2)
in R2

max,+ for some particular matrices A = (a1,a2) .
In the left example, the solution set is depicted by a
thick line drawn through the end point of the vector
a2 . The solution on the right takes the form of a strip
between thick lines going through a1 and a2 .

Lemma 2. Let A be an irreducible matrix, and x be
the solution of inequality (3) with the matrix A .

Then the following statements hold:

1) if Tr(A) ≤ 1 , then x = A∗v for any vector v
of appropriate size;

2) if Tr(A) > 1 , then there is only the trivial solu-
tion x = 0 .

Fig. 5 shows the solution of the inequality with
the same matrix as in the left example in Fig. 4. The
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Figure 5: Solution set for a second-kind inequality in
R2
max,+ .

solution set forms a region that is bounded by the s-
lanted thick lines. Note that in the case of the matrix
in the right example of Fig. 4, the solution sets of both
equation and inequality coincide.

Related results for the case of arbitrary matrices
can be found in [22, 23].

4 Optimization Problems
Given a matrix A ∈ Xm×n and vectors b, c ∈ Xm ,
consider a problem that is to find

min
x∈Xn

+

((Ax)−b⊕ c−Ax). (4)

Note that a particular case of the problem when
c = b arises in the previous section in the context of
the solution of first-kind equations.

The next result offers a solution to problem (4).

Theorem 3. Suppose that A is a regular matrix, b
and c are regular vectors, and assume that

∆ =
√

(A(c−A)−)−b.
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Then it holds that

min
x∈Xn

+

((Ax)−b⊕ c−Ax) = ∆, (5)

where the minimum is attained at the vector

x = ∆(c−A)−.

Proof. We first verify that ∆ is a lower bound for the
objective function in (4), and then show that the func-
tion reaches the bound when x = ∆(c−A)− .

Take any vector x ∈ Xn
+ and consider

r = (Ax)−b⊕ c−Ax.

From the last equality we have two inequalities

r ≥ c−Ax, r ≥ (Ax)−b.

Right multiplication of the first inequality by x−

together with the obvious inequality xx− ≥ I give

rx− ≥ c−Axx− ≥ c−A.

Furthermore, by pseudo-inverting both sides, we
get the inequality x ≤ r(c−A)− . Left multiplica-
tion by A followed by another application of pseudo-
inversion leads to

(Ax)− ≥ r−1(A(c−A)−)−.

Substitution into the second inequality results in

r ≥ r−1(A(c−A)−)−b = r−1∆2

and consequently, in the inequality r ≥ ∆ .
It remains to verify that we have r = ∆ when

putting x = ∆(c−A)− . Indeed, in this case we have

r = (Ax)−b⊕ c−Ax

= ∆−1(A(c−A)−)−b⊕∆c−A(c−A)−

= ∆⊕∆ = ∆,

that concludes the proof.

Now we present a useful property of the solution
and consider particular cases when an extended solu-
tion set appears to exist.

Corollary 1. Under the assumptions of Theorem 3 the
following statements hold:

(i) any vector x that gives the minimum in problem
(4) satisfies the inequality

∆−1b ≤ Ax ≤ ∆c; (6)

(ii) if u is a solution of the equation Au = b , then
the minimum in (4) is attained at x = ∆−1u;

(iii) if v is a solution of the equation Av = c , then
the minimum in (4) is attained at x = ∆v .

Proof. To verify statement (i) suppose x is a vector
that solves problem (4). From the equality

(Ax)−b⊕ c−Ax = ∆

we get two inequalities

(Ax)−b ≤ ∆, c−Ax ≤ ∆,

and note that both vectors b and c are regular.
With the same technique as above, from the first

inequality we have

(Ax)− ≤ (Ax)−bb− ≤ ∆b−,

and then arrive at the inequality Ax ≥ ∆−1b , which
is the left part of (6). To get the right part, we take the
second inequality and write

Ax ≤ cc−Ax ≤ ∆c.

To prove statements (ii) and (iii), we first show
that ∆2 ≥ c−b . We have

A(c−A)− ≤ cc−A(c−A)− = c

and thus

∆2 = (A(c−A)−)−b ≥ c−b.

Now suppose Au = b and take x = ∆−1u .
With the above inequality, we get

(Ax)−b⊕ c−Ax = ∆b−b⊕∆−1c−b = ∆.

In the same way we assume that Av = c and put
x = ∆v . Substitution of x gives

(Ax)−b⊕ c−Ax = ∆−1c−b⊕∆c−c = ∆.

Now we give the solution to problem (4) in a par-
ticular case when A = I .

Theorem 4. Suppose that b and c are regular vec-
tors, and assume that

∆ = (c−b)1/2.

Then it holds that

min
x∈Xn

+

(x−b⊕ c−x) = ∆

with the minimum attained at any vector x such that

∆−1b ≤ x ≤ ∆c.

Proof. The statements of the Theorem directly follow
from (5) and (6) provided that A = I .
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5 Unconstrained Location Problem
In this section we examine a minimax single facility
location problem with Chebyshev distance when no
constraints are imposed on the feasible location area.

Given m vectors ri = (r1i, . . . , rni)
T ∈ Rn and

constants wi ∈ R , i = 1, . . . ,m , the problem is to
determine the vectors x ∈ Rn that provide

min
x∈Rn

max
1≤i≤m

(ρ(ri,x) + wi). (7)

The problem is known as the unweighted Rawl-
s problem with addends [5]. In accordance with the
nomenclature of [4], it can be referred to as the multi-
dimensional Chebyshev Messenger Boy Problem.

It is not difficult to solve the problem on the plane
by using geometric arguments [3, 6]. Below we give a
new algebraic solution that is based on representation
of the problem in terms of the semifield Rmax,+ , and
application of the results from the previous section.

First we denote the objective function in problem
(7) by φ(x) and write

φ(x) =
m⊕
i=1

wiρ(ri,x).

Furthermore, we introduce the vectors

p = w1r1 ⊕ · · · ⊕ wmrm,

q− = w1r
−
1 ⊕ · · · ⊕ wmr−m.

Writing the metric in terms of Rmax,+ , we have

φ(x) =
m⊕
i=1

wi(x
−ri ⊕ r−i x) = x−p⊕ q−x,

and then represent problem (7) as

min
x∈Rn

(x−p⊕ q−x). (8)

Application of Theorem 4 leads us to the follow-
ing results which conform with that in [17, 18].

Theorem 5. The minimum in problem (8) is given by

∆ = (q−p)1/2,

with the minimum attained at any vector x such that

∆−1p ≤ x ≤ ∆q.

With the usual notation, we can reformulate the
statement of Theorem 5 as follows.

Corollary 2. Suppose that for each i = 1, . . . , n

pi = max(ri1 + w1, . . . , rim + wm),

qi = min(ri1 − w1, . . . , rim − wm).

Then the minimum in (7) is given by

∆ = max(p1 − q1, . . . , pn − qn)/2,

and attained at any vector x = (xi) with elements

pi −∆ ≤ xi ≤ qi +∆, i = 1, . . . , n.

An illustration of the solution in R2 for two prob-
lems with all wi = 0 is provided in Fig. 6, where the
given points are represented by thick dots. The so-
lution involves drawing a minimal upright rectangle
enclosing all points. The solution set is represented
by thick line segments that go through the centers of
the long sides in the rectangle between two slanting
lines drawn through the vertices of the rectangle.
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Figure 6: Solutions in R2 when all wi = 0 .

Fig. 7 offers an illustration to a problem with ar-
bitrary constants wi . Together with the solution of
this problem (right picture), we also give the solution
to a corresponding problem that has all wi set to zero
(left picture). To get the solution, we first replace each
given point with two new points shown with empty
circles, and then draw their related minimal rectangle.

6 Constrained Location Problems
Given a feasible set S ∈ Rn , we now consider a con-
strained location problem

min
x∈S

max
1≤i≤m

(ρ(ri,x) + wi).
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We suppose that the feasible location area S is
defined either by equality constraints as

S0 =

{
x

∣∣∣∣ max
1≤j≤n

(aij + xj) = xi, i = 1, . . . , n

}
,

or by inequality constraints as

S1 =

{
x

∣∣∣∣ max
1≤j≤n

(aij + xj) ≤ xi, i = 1, . . . , n

}
.

In the two-dimensional case, the constraints de-
termine regions that are given by the intersection of
half-planes with their border lines drawn at 45◦ angle
to the coordinate axes on the plane. Specifically, the
intersection can take the form of a strip that can be
considered as a quite natural restriction for the feasi-
ble area in the Chebyshev Messenger Boy Problem.

6.1 Algebraic Representation and Solution
First we represent the objective function in terms of
the idempotent semifield Rmax,+ to get

min
x∈S

φ(x), (9)

where
φ(x) = x−p⊕ q−x.

The feasible sets can be written as

S0 = {x|Ax = x}, S1 = {x|Ax ≤ x},

Theorem 6. Suppose that A is an irreducible matrix
with Tr(A) = 1 , and assume that

∆ =
√

(A+(q−A+)−)−p.

Then it holds that

min
x∈S0

φ(x) = ∆,

where the minimum is attained at the vector

x = ∆A+(q−A+)−.

Proof. Since Tr(A) = 1 all solutions of the equation
Ax = x take the form

x = A+y

for any vector y ∈ Rm , where m is the number of
columns in the matrix A+ , m ≤ n .

Substitution x = A+y into the objective func-
tion φ(x) turns the problem (9) into an unconstrained
problem of finding

min
y∈Rm

+

((A+y)−p⊕ q−A+y).

To solve this new problem we apply Theorem 3.
First we evaluate

∆ =
√

(A+(q−A+)−)−p,

and then conclude that the minimum in the problem is
equal to ∆ and attained at y = ∆(q−A+)− .

Going back to the constrained problem, we finally
get x = ∆A+(q−A+)− .

Theorem 7. Suppose that A is an irreducible matrix
with Tr(A) ≤ 1 , and assume that

∆ =
√
(A∗(q−A∗)−)−p.

Then it holds that

min
x∈S1

φ(x) = ∆,

where the minimum is attained at the vector

x = ∆A∗(q−A∗)−.

Proof. It is sufficient to note that the solution of the
inequality Ax ≤ x is written in the form

x = A∗y

for any vector y of appropriate size. All further argu-
ments are the same as in the previous lemma.
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6.2 An Example
Consider a minimax single facility location problem
with m = 2 , w1 = w2 = 0 , and

r1 =

(
−2
5

)
, r2 =

(
6
13

)
.

Note that for this problem we have

p = r2, q = r1.

First assume that there are no constraints for the
feasible location area. Following Theorem 5, we get

∆ = (q−p)1/2 = 4.

Furthermore, we obtain

x = ∆−1p = ∆q =

(
2
9

)
.

Now consider the same problem under equality
constraints

max(x1, x2 − 3) = x1,

max(x1 − 5, x2 − 2) = x2.

Representation of these constraints in terms of
Rmax,+ gives the vector equation

Ax = x,

where

A =

(
0 −3
−5 −2

)
.

It is easy to see that the matrix A is irreducible
and Tr(A) = 1 = 0 . To apply Theorem 6 we first
calculate the matrices

A∗ = I ⊕A =

(
0 −3
−5 0

)
,

A× = AA∗ =

(
0 −3
−5 −2

)
.

Since only the first column in A× has 1 = 0 on
the diagonal, we take

A+ =

(
0
−5

)
.

Now we successively get

q−A+ = 2, A+(q−A+)− =

(
−2
−7

)
.

Finally, we evaluate

∆ =
√
(A+(q−A+)−)−p = 10,

and then find the solution

x = ∆A+(q−A+)− =

(
8
3

)
.

Suppose that the constraints take the form of the
inequality

Ax ≤ x.

According to Theorem 7, we calculate

q−A∗ =
(
2 −1

)
, A∗(q−A∗)− =

(
−2
1

)
.

Then we have

∆ =
√
(A∗(q−A∗)−)−p = 6,

and eventually get the solution

x = ∆A∗(q−A∗)− =

(
4
7

)
.

We illustrate the above solutions in Fig. 8, where
the given points are indicated with empty circles,
whereas the location points are shown with thick dots.
The solution for the unconstrained problem is locat-
ed in the center of the squares, which represent iso-
lines of the objective function. The thick dotes in bot-
tom right vertices of squares correspond to the solu-
tion under the constraints Ax = x (left picture) and
Ax ≤ x (right picture) with the matrix A = (a1,a2) .
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Figure 8: Solutions to a location problem under equal-
ity constraints (left) and inequality constraints (right).
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