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1 Introduction
LetX be a Banach space and let T : D(T ) ⊂ X → X
be the generator of a C0-semigroup (U(t))t≥0 on X .
Consider the abstract Cauchy problem{

dφ
dt (t) = (T +K)φ(t), t > 0,
φ(0) = φ0.

(1)

Here φ0 ∈ X and K is a T -bounded operator on X
(i.e. D(T ) ⊂ D(K), K is bounded on D(T ), where
D(T ) is equipped with the graph norm) such that∫ h

0
||KU(s)x||ds ≤ q(h)||x||, x ∈ X,h ≥ 0

where q : R+ → R+ (R+ = (0,∞)) satisfies
lim
t↓0

q(t) = 0. By Miyadera-Voigt perturbation the-

orem, A := T +K with domain D(A) = D(T ) gen-
erates a C0-semigroup (V (t))t≥0 given by the Dyson-
Phillips expansion

V (t) =

∞∑
j=0

Uj(t) (2)

where U0(t) = U(t),

Uj(t) =

∫ t

0
Uj−1(t− s)KU(s)ds, (j ≥ 1).

Thus the Cauchy problem (1) has a unique classical
solution given by φ(t) = V (t)φ0 if φ0 ∈ D(A).
In order to get more information on the solution, in
particular, its asymptotic behavior of large time, we
first recall some results and progress of the concern-
ing spectrum theory of T +K or (V (t))t≥0, since the
spectrum of A or the semigroup V (t) plays a central
role.

Let Rk(t) be the k-th order remainder term of the
Dyson-Phillips expansion series

Rk(t) :=
∞∑
j=k

Uj(t). (3)

It is known (e.g., see [1, 2, 3]) that the compactness
of Rk(t) for all t ≥ 0 implies the stability of the es-
sential spectrum of the semigroups, i.e. σess(V (t)) =
σess(U(t)) if k = 1 and the stability of the essen-
tial growth type, i.e. ωess(V (t)) = ωess(U(t)) if for
some k > 1. On the other hand, the norm continu-
ity of 0 ≤ t 7→ Rk(t) ensures the stability of the
critical spectrum, i.e. σcrit(V (t)) = σcrit(U(t)), if
k = 1 and the stability of the critical growth type, i.e.
ωcrit(V (t)) = ωcrit(U(t)), if for some k > 1. The
concepts of essential and critical spectra will be given
in section 2.

In the last decade, many authors researched the
compactness and the norm continuity of the remainder
term (3) and applied these results to models in trans-
port theory.
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Consider the transport equation (also called the
linear Boltzmann equation)

∂φ
∂t (x, v, t) = −v · ▽xφ(x, v, t)− σ(x, v)φ(x, v, t)

+
∫
V k(x, v, v

′)φ(x, v′, t)dµ(v′)
(4)

with no-reentry boundary condition

φ|Γ−(x, v, t) = 0, t > 0 (5)

where (x, v) ∈ Ω × V , Ω is a convex open subset
of RN (N ≥ 1) with smooth boundary ∂Ω and V
(the velocity space) is a support of a positive Radon
measure µ on RN . The function φ(x, v) represents the
number (or probability) density of gas particles having
the position x and the velocity v. The subset Γ− of the
boundary set is defined by

Γ− = {(x, v) ∈ ∂Ω× V ; v · η(x) < 0}

where η(x) is the unit outward normal at x ∈ ∂Ω. The
collision frequency σ(·, ·) ∈ L∞(Ω × V ) is a non-
negative function while k(·, ·, ·) is the scattering ker-
nel. The unbounded linear operator, called the stream-
ing operator defined by

T : φ ∈ D(T ) → −v · ∂φ
∂x

− σφ

with domain for 1 ≤ p <∞

D(T ) =

{
φ ∈ Lp(Ω× V )

∣∣ v · ∂φ
∂x ∈ Lp(Ω× V )

φ|Γ− = 0,

}
,

generates the so-called streaming C0-semigroup

U(t)φ =

{
e−

∫ t
0 σ(x−sv,v)dsφ(x− tv, v), t ≤ t−(x, v)

0, t > t−(x, v)

(6)
where

t−(x, v) = sup{t > 0;x− sv ∈ Ω, ∀0 < s < t}
= inf{s > 0;x− sv /∈ Ω},

(7)
Figure (a) shows that for each fixed x ∈ Ω and vectors
v1, v2 ∈ V , the minimum values of the set

{s > 0;x− svj /∈ Ω}

are s1 and s2 respectively, i.e.

t−(x, v1) = s1, t−(x, v2) = s2.

Moreover, if the collision operator K : Lp(Ω×V ) →
Lp(Ω× V )

K : φ 7→
∫
V
k(x, v, v′)φ(x, v′)dµ(v′) (8)

is bounded on Lp(Ω × V ), then T + K generates
a transport C0-semigroup (V (t))t≥0 given by the
Dyson-Phillips expansion (2).

For transport equation with no-reentry boundary
conditions, many authors had studied the compact-
ness of the remainder term when Ω is bounded, for in-
stance, see the works [4]–[7] and the references there-
in. However, when Ω is unbounded region of RN , due
to the lack of compactness, it turned out in [8, 9] that
the critical spectrum and the norm continuity of the
remainder term are the important tools to the spectral
analysis of (V (t))t≥0.
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Now let Ω is a convex open subset of RN (N ≥
1) with smooth boundary ∂Ω. In the region Ω × RN ,
let us consider the transport equation
∂φ
∂t (x, v, t) = −v · ▽xφ(x, v, t)− σ(x, v)φ(x, v, t)

+
∫
RN k(x, v, v

′)φ(x, v′, t)dv′

(9)
with reentry boundary conditions (including the pe-

riodic boundary conditions, reflections boundary con-
ditions and so on)

φ|Γ−(x, v, t) = H(φ|Γ+(x, v, t)), (x, v) ∈ Γ−,
(10)
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where Γ− (resp. Γ+) denotes the incoming (resp. out-
going) part of the boundary of the phase space Ω×V ,
i.e.,

Γ± = {(x, v) ∈ ∂Ω× RN ; ± v · η(x) > 0}.

From Figure (b) we can see clearly that

(x1, v1) ∈ Γ−, (x2, v2) ∈ Γ+.

The boundary conditions (10) shows that the incom-
ing flux φ|Γ− is related to the outgoing one φ|Γ+

through a linear bounded operator H ̸= 0 that we
shall assume to be bounded on some suitable trace s-
paces.

There were a great progress having been made
in the last decade in the understanding of the spec-
tral features of one-dimensional models, for exam-
ples, see [10]–[21]. In this aspect, the Chinese schol-
ars had done some important works, here we infer to
[15, 16] and [17]–[19] and reference therein. In [10]–
[13], the compactness of the remainder term has been
studied, and the stability of the essential growth type
or essential spectrum obtained. While in [14]-[20],
some spectral problems of the transport operators and
the streaming operator as well as streaming semigroup
had been investigated. However, for higher dimension
equation, only a few results are available, see [22], the
main difficult come from computation of the expres-
sion of C0-semigroup (U(t))t≥0. Therefore, in the
present paper, we summarize the stable results of es-
sential and critical spectra in the perturbed semigroup
and discuss them application to some models in trans-
port theory.

The rest is organized as follows: In section 2, we
recall the concepts of essential and critical spectra of
the semigroup theory and some results of related sta-
bility. In section 3 we give some applications of the
stability results in the transport theory. In section 4,
we provide some unsolved problems for further study.

2 Notations and Preliminaries
Throughout this paper, for Banach spaces X and Y ,
B(X,Y ) denotes the space of bounded linear opera-
tors from X to Y . When X = Y , we simply write
B(X). For any linear operator A, σ(A), ρ(A) and
r(A) denote the spectrum set, the resolvent set and
the spectral radius respectively, and the spectral bound
s(A) of A is defined by

s(A) = sup{Reλ;λ ∈ ρ(A)}.

For C0-semigroup (U(t))t≥0, ω(U) denotes the
growth type (bound) of (U(t))t≥0, i.e. ω(U) =
lim
t→∞

t−1 log ||U(t)||.

Let (U(t))t≥0 be a strongly continuous semi-
group with generator T on a Banach space X . The
essential spectral of T is defined by

σess(T )=
{
λ ∈ σ(T );λ is not an isolate

eigenvalue of finite algebraic multiplicity
}
.

(11)
For a bounded linear operatorB, the essential spectral
radius of B is defined by

ress(B) = sup{|λ|;λ ∈ σess(B)}.

There is connection between the essential spectral ra-
dius and the measure of non-compactness of B de-
fined by

||B||m = inf
C∈C(X)

||T − C||

where C(X) is the subspace of B(X) consisted of all
compact linear operators. Clearly, ||·||m is a semi-norm
on B(X) with property

||B||m = 0 if and only if B is compact

and ress(B) = lim
n→∞

||Bn||
1
n
m. Then

ωess(U)) = lim
t→∞

t−1 log ||U(t)||m
= inf{λ ∈ R;∃M, ||U(t)||m ≤Meλt}

(12)
exists and ress(U) = etωess(U) (t ≥ 0). The number
ωess(U) ∈ [−∞, ω(U)] is called the essential growth
type of (U(t))t≥0.

ForK ∈ B(X), T+K generates aC0-semigroup
(V (t))t≥0 given by (2). If Rk(t) is compact, then
the operators U(t) and V (t) have the same essential
growth type. Therefore there are only isolated points
in the spectrum of the perturbed semigroup (V (t))t≥0

outside the circle |µ| = etωess(U), all these points
being eigenvalues with finite algebraic multiplicity.
Therefore, for any v > ωess(U), σ(T + K) ∪ {λ ∈
C; Reλ ≥ v} consists of finitely many isolated eigen-
values {λ1, · · · , λq}. Let

β1 = sup{Reλ;λ ∈ σ(T +K)}

and
β2 = min{Reλj , 1 ≤ j ≤ q}.

The solution of the problem (1) satisfies

lim
t→∞

e−βt
∣∣∣∣φ(t)− q∑

j=1
eλjteDjtPjφ0

∣∣∣∣ = 0,

β2 < β < β1,

where Pj and Dj denote the Riesz spectral projec-
tion and the nilpotent operator associated with λj ,
j = 1, 2, · · · q, respectively.
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Consider the linear space X̃ := ℓ∞(X) of al-
l bounded sequences in X , endowed with the norm
||(xn)n∈N|| = supn∈N ||xn||. Clearly, X̃ also is a Ba-
nach space. We extend the C0-semigroup (U(t))t≥0

on X to X̃ defined by for each t ≥ 0,

Ũ(t)x̃ := (U(t)xn)n∈N for x̃ = (xn)n∈N (13)

and obtain a new semigroup (Ũ(t))t≥0. Note that the
semigroup (Ũ(t))t≥0 is strongly continuous only if
and only if (U(t))t≥0 is uniformly continuous, hence
T is bounded.

Let X̃T be the subspace of ℓ∞(X) defined by

X̃T := {x̃ ∈ ℓ∞(X); lim
t→0

||Ũ(t)x̃− x̃|| = 0}

which is the subspace conserving strong continuity of
(Ũ(t))t≥0.

It is not difficult to prove that the subspace X̃T is
closed and (Ũ(t))t≥0-invariant and therefore allows
the following quotient construction.

Definition 1 On the quotient space X̂ := X̃/X̃T we
define the semigroup (Û(t))t≥0 by

Û(t)x̂ := U(t)xn+X̃T for x̂ := (xn)n∈N+X̃T ∈ X̂.
(14)

This is a semigroup of bounded linear operators on
X̂ . The critical spectrum of (U(t))t≥0 is then defined
as

σcrit(U(t)) = σ(Û(t)) (15)

while its critical spectral radius and critical growth
type are defined as

rcrit(U(t)) = r(Û(t)), ωcrit(U) = ω(Û), (16)

respectively.

The mapping 0 ≤ t 7→ Û(t)x̂ is continuous if
and only if x̂ = 0. Moreover, the following theorem
holds.

Theorem 2 [23] For a strongly continuous semigroup
(U(t))t≥0 with generator T , the following statements
hold.

(1) σcrit(U(t)) ⊂ σess(U(t)) ⊂ σ(U(t)).

(2) rcrit(U(t)) = etωcrit(U).

(3) σ(U(t)) \ {0} = etσ(T ) ∪ σcrit(U(t)) \ {0}.
(4) ω(U) = max{s(T ), ωcrit(U)}.

In general, the spectra between a C0-semigroup
(U(t))t≥0 and its generator T have the following re-
lationship σ(U(t)) \ {0} ⊃ etσ(T ), we can write

σ(U(t)) \ {0} = etσ(T ) ∪ σ?(U(t)) \ {0} (17)

for some complex number set σ?(U(t)). Since the e-
quation σ(U(t)) \ {0} = etσ(T ) always is true for the
point spectrum, we may takes σ?(U(t)) as the essen-
tial spectrum σess(U(t)). However the essential spec-
trum is not related to the semigroup structure, and
even for bounded T it is unnecessarily big in order
to yield the above identity (17). Therefore we pro-
posed critical spectrum σcrit(U(t)) which yields in an
optimal way a spectral mapping theorem, see Theo-
rem 2 (3). In addition, it is known [24] that the spec-
trum determined growth condition ω(U) = s(T ) is
an important criterion for exponential stability of the
C0-semigroup (U(t))t≥0. A sufficient condition of
the spectrum determined growth assumption can be
obtained from Theorem 2, that is, if ωcrit(U(t)) <
ω(U), then ω(U) = s(T ).

Remark 3 Recall that the approximate spectrum
σap(T ) of a closed densely linear operator T in a Ba-
nach space X is defined as

σap(T ) =
{
λ ∈ C;∃(xn)n ⊂ D(T ), ||xn|| = 1,

||Txn − λxn|| → 0 as n→ ∞
}
.

Let {λn}n ⊂ σap(T ) be a sequence satisfying
lim
n→∞

|Imλn| = ∞ and lim
n→∞

etλn = µ. Then µ ∈
σcrit(U(t)).

The critical spectrum plays a crucial role in spec-
tral mapping theorem and has nice perturbation prop-
erties.

Theorem 4 [1] Let (U(t))t≥0 be a C0-semigroup
with generator T and (V (t))t≥0 be the C0-semigroup
with generator T +K. If the mapping 0 ≤ t 7→ R1(t)
is norm continuous for t ≥ 0, then one has

ω(V ) = max{s(T +K), ωcrit(U(t))}

and

σ(V (t))\{0} = etσ(T+K) ∪ σcrit(U(t))\{0}.

The compactness and norm continuity of the re-
mainder term (3) are linked in [25].

Theorem 5 [25] Let v > ω(U) and k ∈ N. Then the
following statements are equivalent.

(1) Rk(t) is compact for all t ≥ 0.
(2) 0 ≤ t 7→ Rk(t) is norm continuous and

R(v + iγ, T )(KR(v + iγ, T ))k

is compact for all γ ∈ R.

Naturally, a question is: what conditions imply
the compactness and norm continuity of the remainder
term (3)? The following Theorem gives an answer to
this question.
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Theorem 6 [4] Let X be a Hilbert space. Assume
there exist v > ω(U) and m ∈ N such that

||R(v + iγ, T )iKR(v + iγ, T )m−i|| → 0,
|γ| → ∞ (i = 0, 1, · · · ,m).

Then 0 ≤ t 7→ R1(T ) is norm continuous and conse-
quently σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0.

Theorem 7 [4] Assume that T is dissipative and that
for some v > 0,

||K∗R(v + iγ, T )K|| → 0

and
||KR(v + iγ, T )K∗|| → 0

as |γ| → ∞, where K∗ denotes the adjoint operator
of K. Then 0 ≤ t 7→ R1(t) is norm continuous.

Above theorems give the conditions for the norm con-
tinuous ofR1(t). The following Theorem gives a con-
dition of compactness about R1(t).

Theorem 8 [4] Let X be a Hilbert space. Assume
there exist v > ω(U) and m ∈ N such that

||R(v + iγ, T )iKR(v + iγ, T )m−i|| → 0,
|γ| → ∞ (i = 0, 1, · · · ,m).

and R(v + iγ, T )KR(v + iγ, T ) is compact for al-
l γ ∈ R. Then R1(t) is compact and consequently
σess(V (t)) = σess(U(t)) for all t ≥ 0.

The compactness result in Banach space has been
obtained in [6].

Theorem 9 [6] Assume that there exist m ∈ N and
v > ω(U) satisfying

(1) R(v + iγ, T )(KR(v + iγ, T ))m is compact
for all γ ∈ R;

(2) |γ|||R(v + iγ, T )(KR(v + iγ, T ))m|| → 0 as
γ → ∞.
Then R2m+1(t) is compact on X for each t > 0
and therefore V (t) and U(t) have the same essential
growth type.

We observe that the resolvent norm decay implies
the norm continuity in the Hilbert space (see [26]), but
it is not true in Banach spaces (see, [27])

3 Applications to Transport Models
In this section we discuss the stability of the essential
or the critical spectrum of the streaming semigroup
when its generator is perturbed by a collision operator.

In transport theory, a collision operator is in gen-
eral an integral operator of the form

φ ∈ Xp 7→ Kφ =

∫
V
k(x, v, v′)φ(x, v′)dµ(v′) ∈ Xp

where Xp = Lp(Ω× V ). Thus, naturally regard K as
an operator valued mapping

x ∈ Ω 7→ K(x) ∈ B(Lp(V )),

where

K(x) : φ ∈ Lp(V ) 7→∫
V k(x, v, v

′)φ(v′)dµ(v′) ∈ Lp(V ).

Assume that K is strongly measurable, i.e. for every
ψ ∈ Lp(V ),

x ∈ Ω 7→ K(x)ψ ∈ Lp(V )

is measurable, and x ∈ Ω 7→ ||K(x)||B(Lp(V )) is es-
sentially bounded on Ω. Now the collision operator
K can be redefined as

K : φ ∈ Xp 7→ K(x)φ(x),

where make the identification

Xp = Lp(Ω× V ) = Lp(Ω;Lp(V )).

It follows easily that K ∈ B(Xp) and

||K||B(Xp) = ess sup
x∈Ω

||K(x)||B(Lp(V )).

In what follows, we need the concept of regular oper-
ator.

Definition 10 Let 1 ≤ p < ∞. A collision operator
K is said to be regular if the following conditions are
satisfied

(1) {K(x);x ∈ Ω} is a set of collectively compact
operators on Lp(V ), i.e.

{K(x)ψ;x ∈ Ω, ||ψ||Lp(V ) ≤ 1}

is relatively compact in Lp(V );
(2) For every ψ′ ∈ Lq(V ), {K ′(x)ψ′;x ∈ Ω} is

relatively compact in Lq(V ).
where q denotes the conjugate number of p defined by
1/p+ 1/q = 1, and K ′(x) denotes the dual operator
of K(x).

The following Lemma gives the description for
the regular collision operators.
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Lemma 11 The class of regular collision operators is
the closure in the operator norm of the class of colli-
sion operators with separable kernels

k(x, v, v′) =
∑
i∈I

αi(x)fi(v)gi(v
′), (18)

with fi ∈ Lp(V ), gi ∈ Lq(V ) (1/p + 1/q = 1) and
αi ∈ L∞(Ω) ( I is a finite set ).

Remark 12 Since 1 < p < ∞, we note that the set
Cc(V ) of continuous functions with compact support
in V is dense in Lq(V ) as well as in Lp(V )(1/p +
1/q = 1). Consequently, we may assume in the above
definition that fi(·) and gi(·) are continuous functions
with compact supports in V .

Firstly, we recall some applications of the result-
s in section 2 in transport equations with no-reentry
boundary conditions (4)-(5).

Lemma 13 [5] Let 1 ≤ p < ∞. For bounded Ω, the
essential spectrum of (U(t))t≥0 is given by

σess(U(t)) = {µ ∈ C; |µ| ≤ e−λ∗t} (19)

where

λ∗ = lim
t→∞

inf
{(x,v);t<t−(x,v)}

1

t

∫ t

0
σ(x− sv, v)ds,

(20)
where t−(x, v) is defined by (7).

Lemma 14 [8, 28] Let 1 ≤ p < ∞, and Ω be a
convex domain in RN .

(1) If Ω $ RN and if the hyperplanes have zero
µ-measure ( i.e. for each e ∈ SN−1, dµ{v ∈ RN ; v ·
e = 0} = 0, where SN−1 denotes the unit sphere of
RN ), then

σcrit(U(t)) = σ(U(t)) = {µ ∈ C; |µ| ≤ e−λ∗t}
(21)

where λ∗ is given by (20).
(2) If Ω = RN and the collision frequency σ

is space homogeneous (i.e. σ(x, v) = σ(v)), then
σcrit(U(t)) consists of a set of disjoint slabs

σcrit(U(t)) = σ(U(t)) = ∪i∈IΛi (22)

of the form Λi = {λ; ai ≤ Reλ ≤ bi} (ai ≤ bi),
where

inf
i∈I

ai = −θ∗∗ =: −ess supσ(v),

sup
i∈I

bi = −θ∗ =: −ess inf σ(v).

Theorem 15 [5] Let 1 < p < ∞ and let Ω be of
finite Lebesgue measure. Assume that the affine hy-
perplanes have zero µ-measure and that the collision
operator is regular. ThenR1(t) is compact onXp and
consequently σess(V (t)) = σess(U(t)) for all t ≥ 0.

Theorem 16 [8] Let 1 < p < ∞. Assume that the
affine hyperplanes have zero µ-measure, the collision
operator is regular and the collision frequency σ is
space homogeneous.

(1) If Ω = RN and if

x ∈ Ω 7→ ⟨K(x)φ,ψ⟩ (23)

is uniformly continuous with respect to x for every
(φ,ψ) ∈ Lp(V ) × Lq(V ). Then the mapping 0 ≤
t 7→ R1(t) is norm continuous.

(2) If Ω $ RN and if x ∈ Ω 7→ ⟨K(x)φ,ψ⟩
is uniformly continuous for every (φ,ψ) ∈ Lp(V ) ×
Lq(V ) and its extension (by continuous) to Ω vanish-
es on ∂Ω. Then the mapping 0 ≤ t 7→ R1(t) is norm
continuous.

Combining Theorem 2, Lemma 14 with Theorem
16 yields the following partial spectral mapping theo-
rem

Theorem 17 [8] Under the assumptions of Theorem
16 we have:

(1) If Ω = RN , then σcrit(V (t)) = σcrit(U(t))
and

σ(V (t)) ∩ {µ; |µ| < e−θ∗∗t or |µ| > e−θ∗t}
= et(σ(T+K)∩{λ;Reλ<−θ∗∗ or Reλ>−θ∗}).

(2) If Ω $ RN , then σcrit(V (t)) = σcrit(U(t))
and

σ(V (t)) ∩ {µ; |µ| > e−λ∗t}
= et(σ(T+K)∩{λ;Reλ>−λ∗}).

We introduce a stronger assumption on the mea-
sure of velocity, µ, by∫

D
eiz·vdµ(v) → 0 as |z| → ∞ (24)

for all Borel set D ⊂ RN with µ(D) < ∞. This
assumption allows us to improve the restrictive condi-
tion (23) and to obtain full spectral mapping theorems.

Theorem 18 [8] Let 1 < p < ∞ and Ω be convex.
Assume that the collision operator K is regular and
that (24) is satisfied. Then 0 ≤ t 7→ R2(t) is norm
continuous and we have the following assertions

(1) If Ω = RN and if the essential range of σ(v)
is connected, then

σ(V (t)) = etσ(T+K)
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where the essential range of σ(v), Ress(σ(v)), is the
set{
u ∈ C;

∣∣{v ∈ V ; |σ(v)− u| < ε}
∣∣ ̸= 0, ∀ε > 0

}
where |A| denotes the Lebesgue measure of the set A.

(2) If Ω $ RN , then

σ(V (t)) = etσ(T+K) ∪ {0}.

Theorems 15–18 were proved in [5, 8] by the so-
called semigroup approach, that is, by analyzing the
streaming C0-semigroups (U(t))t≥0 to investigate the
properties of the remained term (3). The following
theorem in [4] was proved by the so-called resolven-
t approach, that is, by analysis the resolvent of the
streaming operator T to investigate the properties of
the remained term. It is showed in [4] that The re-
solvent approach is powerful in transport theory, be-
cause it does not need to calculate the expression of
(U(t))t≥0.

Theorem 19 [4] (1) Let p = 2 and let Ω be bounded
(not necessarily convex). Assume that the affine hy-
perplanes have zero µ-measure and that the collision
operator is regular. Then R1(t) is compact and con-
sequently σess(V (t)) = σess(U(t)) for all t ≥ 0.

(2) Let p = 2 and let Ω be convex (not necessari-
ly bounded ). Assume that the affine hyperplanes have
zero µ-measure, the collision operator is regular and
the collision frequency σ is space homogeneous. Then
the mapping 0 ≤ t 7→ R1(t) is norm continuous and
consequently σcrit(V (t)) = σcrit(U(t)) for all t ≥ 0.

Note that the Theorem 19 is proved in Hilbert s-
pace L2. In fact, it also is valid in Lp-spaces for any
1 < p < ∞, this was proved in [10] for transport
problems.

Now let us consider one-dimensional transport e-
quation

∂φ
∂t (x, v, t) = −v ∂φ

∂x (x, v, t)− σ(x, v)φ(x, v, t)

+
∫ 1
−1 k(x, v, v

′)φ(x, v′, t)dv′

(25)
with specular reflection boundary conditions

φ(±a, µ) = φ(±a,−µ) (26)

where (x, v) ∈ [−a, a] × [−1, 1] (a > 0). We make
the following assumption on the collision frequency
σ(x, v):

(A1) σ is not bounded and space homogeneous,
there exists a closed subset O ⊂ (−1, 1) with zero
Lebesgue measure and a constant σ0 such that σ(·) ∈
L∞
loc((−1, 1) \ O), σ(v) > σ0 a.e. on (−1, 1) and

σ(v) = σ(−v), ∀µ ∈ (−1, 1).

Theorem 20 [11, 12, 13] Let (A1) be satisfied and K
be a regular operator. Then for all t ≥ 0, the first
and second order remainder terms, R1(t), R2(t), are
weakly compact onL1([−a, a]×[−1, 1]) and compact
on Lp([−a, a]× [−1, 1]) (1 < p <∞).

Remark 21 If a remainder term Rn(t) (n ≥ 1) is
compact (resp. weakly compact) for all t ≥ 0, then
Rn+1(t) is compact (resp. weakly compact) for all
t ≥ 0. Similarly, if a mapping 0 ≤ t 7→ Rn(t) (n ≥
1) is norm continuous, then 0 ≤ t 7→ Rn+1(t) is norm
continuous.

The works in [11, 12, 13] and [17, 18, 19] had
shown that Theorem 20 remains true even if consid-
er the transport equation (25) with periodic boundary
conditions

φ(a, µ) = φ(−a, µ). (27)

As we pointed out in the introduction, there were
only a few results to be available for higher dimen-
sions transport equation with reentry boundary condi-
tions. Let us consider the transport equation (9) with
bounce-back boundary conditions

φ|Γ−(x, v, t) = γφ|Γ+(x,−v, t), (x, v) ∈ Γ−.
(28)

In [22], the spectrum of the streaming operator T and
the explicit expression of the streaming semigroup
(U(t))t≥0 have been obtained. Moreover, the com-
pactness of R1(t) also was proved when Ω is bound-
ed.

For any (x, v) ∈ Ω× RN , define

t±(x, v) = sup{t > 0;x± sv ∈ Ω, 0 < s < t}
= inf{s > 0;x± sv /∈ Ω}.

For the sake of convenience, we set

τ(x, v) := t−(x, v) + t+(x, v), (x, v) ∈ Ω× RN .

Hence, for (x, v) ∈ Γ±, one has t±(x, v) = 0,
t∓(x, v) > 0. In all cases it always holds that
x∓t∓(x, v)v ∈ Γ∓, ∀(x, v) ∈ Ω × V . So we can
define a function by

κ(x, v) =

∫ t−(x,v)

−t+(x,v)
σ(x−sv, v)ds, (x, v) ∈ Ω×RN .

For p ∈ [1,∞), we introduce the following
Sobolev space

Wp = {φ ∈ Xp; v · ▽xφ ∈ Xp}

here we also denote Lp(Ω × RN ) by Xp. A suitable
Lp-space for the traces is defined by

Lp
± := Lp(Γ±;

∣∣ v · η(x)|dγ(x)⊗ dv)
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dγ(·) being the Lebesgue measure on ∂Ω.
For any φ ∈ Wp, we can define the traces φ|Γ±

on Γ±, however, the traces do not belong to Lp
± but to

a certain weighted Lp space. Define

W̃p = {φ ∈Wp;φ|Γ− ∈ Lp
±}.

We assume that the collision frequency σ ∈ L∞(Ω×
RN ) is a non-negative measurable function on Ω×RN

and an even function in the velocity, i.e. σ(x, v) =
σ(x,−v), for any (x, v) ∈ Ω×RN . Define the stream-
ing operator with the bounce-back boundary condition
by

Tφ(x, v) = −v · ▽xφ(x, v)− σ(x, v)φ(x, v)

with domain

D(T ) := {φ ∈ W̃p;φ|Γ−(x, v) = γφ|Γ+(x,−v)}

where 0 < γ < 1. It is known from [29] that, T is a
generator of a non-negative C0-semigroup of contrac-
tions (U(t))t≥0 in Xp.

In order to get the resolvent of T , we define the
following operators depending on the parameter λ.
Let Mλ ∈ B(Lp

−, L
p
+) be defined by

Mλu(x, v) = u(x− τ(x, v)v, v)·
e−

∫ τ(x,v)
0 (λ+σ(x−sv,v))ds, (x, v) ∈ Γ+,

and let Bλ ∈ B(Lp
−, Xp) be defined by

Bλu(x, v) = u(x− t−(x, v)v, v)·
e−

∫ t−(x,v)

0 (λ+σ(x−sv,v))ds, (x, v) ∈ Ω× RN .

In the same way, let Gλ ∈ B(Xp, L
p
+) be given as

Gλφ(x, v) =
∫ τ(x,v)
0 φ(x− sv, v)·

e−
∫ s
0 (λ+σ(x−tv,v))dtds, (x, v) ∈ Γ+,

and let Cλ ∈ B(Xp) be given as

Cλφ(x, v) =
∫ t−(x,v)
0 φ(x− tv, v)·

e
∫ t
0 (λ+σ(x−sv,v))dsdt, (x, v) ∈ Ω× RN .

Theorem 22 [30] Let 0 < γ < 1 be fixed and let
H ∈ B(Lp

+, L
p
−) be defined by

H(φ|Γ+)(x, v) = γφ|Γ+(x,−v), (x, v) ∈ Γ−.
(29)

If λ ∈ C is such that 1 ∈ ρ(MλH), then λ ∈ ρ(T )
and

(λI − T )−1 = BλH(I −MλH)−1Gλ + Cλ. (30)

In particular, if there is λ0 ∈ R such that

r(MλH) < 1, ∀Reλ > λ0,

then {λ ∈ C; Reλ > λ0} ⊂ ρ(T ) and the resolvent of
T is given by (30).

Remark 23 For transport equations with reentry
boundary conditions, the resolvent of T has the for-
m (30), in which Cλ is the resolvent of the transport
operator with no-reentry boundary conditions.

Theorem 24 [22] For any k ∈ Z, define function

Fk(x, v) =
log γ−κ(x,v)

τ(x,v) − i 2kπ
τ(x,v) ,

∀(x, v) ∈ Ω× RN .
(31)

Then,

σ(T ) =
∪
k∈Z

Ress(Fk) (32)

where Ress(Fk) stands for the essential range of Fk,
i.e.,

Ress(Fk)=

{
u ∈ C;

∣∣{(x, v) ∈ Γ+;

|Fk(x, v)− u| < ε}
∣∣ ̸= 0, ∀ε > 0

}
.

Theorem 25 [22] Let the collision frequency σ
be space homogeneous. Then the C0-semigroup
(U(t))t≥0 generated by T in Xp is given by

U(t) =

∞∑
n=0

Un(t), ∀t ≥ 0, (33)

where, for any fixed t ≥ 0,

[U0(t)φ](x, v) = φ(x− tv, v)e−σ(v)tχ{t<t−(x,v)},

and for any n ≥ 0,

[U2n+2(t)φ](x, v) = γ2n+2e−σ(v)tχI2n+1(x,v)(t)·
φ(x− tv + (2n+ 2)τ(x, v)v, v)

and

[U2n+1(t)φ](x, v) = γ2n+1e−σ(v)tχI2n(x,v)(t)·
φ(x+ tv − 2t−(x, v)v − 2nτ(x, v)v,−v)

for any φ ∈ Xp, and any (x, v) ∈ Ω× RN , with

Ik (x, v) =
[
kτ(x, v) + t−(x, v);

(k + 1)τ(x, v) + t−(x, v)
]
, for any k ∈ N.

Theorem 26 [22] Let 1 < p < ∞ and let Ω be a
bounded convex set in RN . If K is a regular operator
and the collision frequency σ is space homogeneous,
thenR1(t) is compact and consequently σess(V (t)) =
σess(U(t)) for all t ≥ 0.
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4 Some open problems
In this section we provide some concerning problems
for further discussion.

The researches in L1 space are less than in
Lp (1 < p < ∞) spaces for transport theory. As we
know, the most results of the stability of the essential
and critical spectra were obtained in Hilbert spaces, so
the applications to transport theory also were limited
in L2 space. Thanks to B. Lods and M. Sbihi in [10]
we can extend the applications to Lp (1 < p < ∞)
spaces by an interpolation argument. Unfortunate-
ly, it is invalid in L1 space. For example, in the
Lp (1 < p <∞) theory, 0 ≤ t 7→ R1(t) is norm con-
tinuous [8], but this is never true in L1, see [9]. So we
need to establish more L1 theory with different tech-
nicalities. For instance, in [11, 12, 13], do the weak
compactness of the remainder terms R1(t), R2(t) in
L1 (Theorem 22) remain true or not for other cases?

From the applications in section 3 we have seen
that the space homogeneous of the collision frequency
σ(v) are required. We wish to extend these results to
general collision frequencies σ(x, v). Inspired by [4],
we assume that the collision frequency can be approx-
imated in L∞ by degenerate collision frequencies of
the form ∑

i∈I
σi1(x)σ

i
2(v) ( I is a finite set ).

Note that before researching the compactness
or norm continuity of the remainder term, one has
to prove that the streaming operator T generates a
C0-semigroup (U(t))t≥0. For no-reentry boundary
condition, the expression of (U(t))t≥0 is given by
(6). However, for higher dimensional transport e-
quations with reentry boundary conditions, we only
know that the streaming operator can generate a C0-
semigroup. For most situations, the explicit expres-
sions of the streaming semigroups for transport equa-
tion with reentry boundary conditions have not been
obtained yet. Maybe we can imitate the paper [22] in
calculation method to study this problem.

Most of the papers concerning with the reentry
boundary conditions mainly investigate the spectrum
of the streaming operator T . But the explicit spectrum
structure of the streaming semigroup (U(t))t≥0 have
not been derived yet, even for the one-dimensional sit-
uation.

It has known from the Theorem 2 that, if
ωcrit(U(t)) < ω(U), then the spectrum determined
growth assumption holds, i.e., ω(U) = s(T ), which
is a useful tool to prove the exponential stability of the
distributed parameter system, see [24]. However, the
condition ωcrit(U(t)) < ω(U) is not easy to check in
practice. Clearly, further study of the property of the

critical spectrum about the C0-semigroup is necessary
from the application point of view. An important thing
is that we should obtain an easy test condition.

If Ω is unbounded, due to the losing the compact-
ness, K is not longer to be regular operator [22]. In
order to study the spectrum of transportC0-semigroup
(V (t))t≥0, we should establish a spectral mapping of
critical spectrum. So the norm continuity of the map-
ping 0 ≤ t 7→ R1(t) is necessary. Even in this case,
computation of the spectrum and critical spectrum of
the streaming semigroup is also a hard work. There-
fore, some new tricks need to develop.
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