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Abstract: - In this work, the numerical schemes of Yee, Warming and Harten, of Yee and Kutler and of 

Jameson and Mavriplis are implemented, according to a finite volume formulation and structured spatial 

discretization, to solve the Euler equations in the supersonic and hypersonic flow regimes in three-dimensions. 

The Yee, Warming and Harten and the Yee and Kutler schemes are of TVD flux difference splitting type, 

whereas the Jameson and Mavriplis scheme is a symmetrical one. All three algorithms present second order 

spatial accuracy. The formers are first order accurate in time, according to a time splitting method, whereas the 

latter is second order accurate in time, according to a Runge-Kutta method. The Jameson and Mavriplis 

algorithm requires still artificial dissipation to guarantee numerical stability in the presence of shock waves and 

backgrounds instabilities. Two models are presented: Mavriplis and Azevedo. The algorithms are applied to the 

steady state simulations of the supersonic flow around a simplified VLS configuration (Brazilian Satellite 

Launcher) and the hypersonic flows along a diffuser and an air inlet. A spatially variable time step procedure is 

employed to convergence accelerating. This procedure has demonstrated effective gains in convergence as 

reported by Maciel. The results have demonstrated the Jameson and Mavriplis algorithm, using the Mavriplis 

dissipation operator, as presenting the best characteristics of robustness and accuracy. 

 

Key-Words: - Yee, Warming and Harten algorithm, Yee and Kutler algorithm, Jameson and Mavriplis 

algorithm, Artificial dissipation models, TVD schemes, Euler equations, Three-dimensions. 

 

1 Introduction 
The development of aerospace and aeronautical 

projects require hours of wind tunnel essays. It is 

necessary to minimize such procedures with wind 

tunnels due to the increasing electrical energy cost.  

In Brazil, there is still the problem that it has not 

wind tunnels of great capacity, able to generated 

supersonic flows or even high subsonic flows. In 

this way, Computational Fluid Dynamics (CFD) 

techniques have now great highlighted in the 

aerospace industry scenario. Analogue to the wind 

tunnels essays, the numerical methods determine the 

physical flow properties in discrete points of the 

spatial domain. Hence, the aerodynamic coefficients 

of lift, of drag and of momentum can be calculated. 

 Initially, symmetrical schemes were developed to 

simulate flows over simple and complex geometries 

due to their numerical implementation simplicity. 

Algorithms like predictor/corrector and symmetrical 

ones were the most employed during the 60’s until 

the 80’s years. Some of them are described as 

follows: 

 [1] has developed a numerical method second 

order accurate in space and time to solve the Navier-

Stokes in two-dimensions. The algorithm was 

initially developed to a finite difference technique. 

The method was divided in two steps: one predictor 

and the other corrector. In the predictor step, the 

spatial derivatives of the flux terms were calculated 

with forward discretization operators and in the 

corrector step such derivatives were calculated with 

backward discretization operators. 

 [2] have emphasized the substantial cost 

reduction in the calculation of the Euler equation 

solutions. The method proposed by [3] had proved 

robustness, accuracy and sufficient sophistication to 

more complex applications. The objective was apply 

such scheme to geometries like wing-fuselage, 

involving rocket engines, missiles and other typical 

components, to represent an entire aircraft. The 

work emphasized the use of triangular cells, which 

allow a bigger flexibility in the description of 

complex geometries and became the mesh 

generation process cheaper. The fluid governing 

equations were discretized specially under an 

unstructured context. The algorithm employed a 

finite volume formulation with properties 

determined at the cell centroid. Artificial dissipation 

operator were constructed to guarantee second order 

spatial accuracy, except at the proximities of shock 

waves, which the accuracy was reduced to first 

order ([3]). A Runge-Kutta method of five stages 

was employed to time integration. 
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 The need to construct more elaborate and robust 

algorithms, which allows the capture of strong and 

clear shock waves, represented an important goal to 

be reached by non-symmetrical schemes of first 

order and of high resolution. Since 1959, non-

symmetrical or upwind algorithms of first and of 

high resolution, which combined the robustness 

characteristics, good shock capturing properties and 

good shock quality, have been developed aiming to 

provide efficient tools to predict the main features of 

the flowfield with accuracy. First order and high 

resolution schemes can be of flux vector splitting 

type or flux difference splitting type. In the former, 

more robust algorithms are produced, whereas in the 

latter bigger precision is obtained. Several studies 

were reported involving first order and high 

resolution algorithms in the international literature, 

as for example: 

 [4] have implemented an explicit method of high 

resolution second order accuracy, based on the [5] 

ideas. The method had the following properties: (a) 

the scheme was developed in the conservative form 

to assure that the limit was a weak solution; (b) the 

scheme satisfied an own entropy inequality to assure 

that the limit solution would only have physically 

relevant discontinuities; and (c) the scheme was 

designed such that a numerical dissipation yielded 

weak solutions highly accurate. The method was 

applied to the solution of a quasi one-dimensional 

flow along a nozzle and to the two-dimensional 

physical problem of a shock reflection, yielding 

good results. An implicit formulation was also 

investigated to the one- and two-dimensional cases. 

 [6] have presented a work that extended the [5] 

scheme to a generalized coordinate system, in two-

dimensions. The method called “TVD scheme” by 

the authors was tested to the physical problem of a 

moving shock wave impinging a cylinder. The 

numerical results were compared with those of the 

[1] scheme, presenting good behavior. 

 With this scenario, an interesting and important 

study can be done comparing the symmetrical and 

upwind high resolution algorithms described herein. 

 The present work compares the numerical 

methods of [2], [4] and [6], using a finite volume 

formulation and a structured spatial discretization, 

applied to the solution of the Euler equations in 

three-dimensions. The aforementioned algorithms 

are second order accurate in space. The [2] scheme 

is also of second order accuracy in time and uses an 

artificial dissipation operator to assure convergence 

to the steady state solution. The [4] and [6] 

algorithms are first order accurate in time. The 

steady state physical problems of the supersonic 

flow around a VLS (Brazilian Satellite Launcher) 

simplified configuration and the hypersonic flows 

along a diffuser and along an air inlet are studied. A 

spatially variable time step procedure is 

implemented aiming to accelerate the convergence 

process. This technique has presented excellent 

gains in terms of convergence ratio, as reported in 

[7-8]. 

 The results have demonstrated that the [2] 

scheme, using the [9] artificial dissipation operator, 

is the best algorithm in terms of robustness and 

accuracy characteristics. 

 It is important to emphasize that all algorithms 

presented in this work were implemented by the 

author, without requiring the use of commercial 

codes. Only the Tecplot software, version 9.0, was 

employed to generated the figures. 

 

 

2 Euler Equations 
The fluid movement is described by the Euler 

equations, which express the mass, the linear 

momentum and the energy conservations to an 

inviscid medium, heat non-conductor and 

compressible, in the absence of external forces. In 

the integral and conservative forms, employing a 

finite volume formulation and using a structured 

spatial discretization, to three-dimension 

simulations, these equations can be represented by: 

         0  S
zeyexe

V
dSnGnFnEQdVt ,    (1) 

where Q is written to a Cartesian system; V is the 

cell volume, which corresponds to a hexahedron in 

the three-dimensional space; nx, ny and nz are the 

components of the unity vector normal to the flux 

face, pointing outward from the cell edge; S is the 

surface flux area; and Ee, Fe and Ge represent 

components of the convective flux vector. The 

determination of the hexahedral cell volume, as well 

its nodes and neighbors, of the components of the 

unity normal vector to the flux face and of the flux 

area are presented in [10-11]. Q, Ee, Fe and Ge are 

defined by: 
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The quantities that appear above are described as 

follows:  is the fluid density; u, v and w are the 

Cartesian components of the flow velocity vector in 

the x, y and z directions, respectively; e is the total 

energy of the fluid per unit volume; and p is the 

static pressure of the fluid. 

 The Euler equations were dimensionless in 

relation to the freestream density, ∞, and to the 

freestream speed of sound, a∞, to all studied 

problems. To allow the solution of the matrix 

system of five equations to five unknowns described 

by Eq. (1), the state equation to a perfect gas 

presented below is employed. 

                 )(5.0)1( 222 wvuep  ,            (4) 

where  is the ratio between the specific heats at 

constant pressure and constant volume, respectively, 

which assumed the value 1.4 to the atmospheric air. 

The total enthalpy is determined by: 

                                   peH .                         (5) 

 

3 [4] Algorithm 
The [4] algorithm, second order accurate in space, is 

specified by the determination of the numerical flux 

vector at the (i+1/2,j,k) interface. Its extension to the 

interfaces (i,j+1/2,k) and (i,j,k+1/2) is 

straightforward, without additional complications. 

According to a finite volume formulation, which is 

equivalent to a generalized coordinate system, the 

volumes at the right and left flux interfaces, as also 

the interface volume, necessary to coordinates 

changes, are defined as: 

   kjiR VV ,,1 , kjiL VV ,,  and  LR VVV  5.0int ,  (6) 

with “R” and “L” representing right and left states of 

the flux interface. The flux area components at each 

interface are called Sx_int, Sy_int and Sz_int and the flux 

area at the interface is defined by S. All surface 

areas, as well the volumes aforementioned, are 

defined in [10-11]. The metric terms to this 

generalized coordinate system are defined by: 

intint_ VSh xx  , intint_ VSh yy  , intint_ VSh zz  ;  (7) 

                                intVShn  .                (8) 

 The properties calculated at the flux interface are 

obtained by arithmetical average or by Roe average 

([12]). In this work, the Roe average was employed: 

  RLint ,    LRLRRL uuu  1int ;  (9) 

                LRLRRL vvv  1int ;           (10) 

               LRLRRL www  1int ;         (11) 

           LRLRRL HHH  1int ;      (12) 

             2
int

2
int

2
intintint 5.01 wvuHa  .      (13) 

 The eigenvalues of the Euler equations, in the  

direction, to the convective flux are defined by: 

        yxcont hvhuU intint  , ncont haU int1  ;    (14) 

        contU 32    and   ncont haU int4  .   (15) 

 The jumps of the conserved variables, necessary 

to the construction of the dissipation function of [4], 

are determined by: 

       LRV  int ,        LR uuVu  int ;      (16) 

      LR vvVv  int ,       LR wwVw  int ; (17) 

                               LR eeVe  int .                      (18) 

The  vector at the (i+1/2,j,k) interface is calculated 

by the following expressions: 

                QR kjikjikji ,,2/1,,2/1
1

,,2/1 


  ,        (19) 

with  1R  defined in [10-11; 13]. The [4] dissipation 

function uses the right-eigenvector matrix of the 

normal to the flux face Jacobian matrix in 

generalized coordinates. This matrix is also defined 

in [10-11; 13]. 

 To inviscid studies, the following entropy 

function is employed: 

         lll Zt     and   25,02  ll Z .         (20) 
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Case the viscous study be accomplished, [4] 

suggests the following entropy function: 

         










flffl

fll
l

ZifZ

ZifZ

,5.0

,
22 ,       (21) 

where “l” varies from 1 to 5 (three-dimensional 

space) and f assumes values between 0.1 and 0.5, 

being 0.2 the recommended value by [4]. 

 The g~  function at the (i+1/2,j,k) interface is 

defined by: 

                              l
ll

l Zg  25.0~ .                 (22) 

The g function, responsible by the artificial 

compressibility, is determined by: 

  l
l

kji
l

kjil
l

kji signalggMINMAXsignalg   ,,2/1,,2/1,,
~,~;0.0 , 

(23) 

where signall is equal to 1.0 if l
kjig ,,2/1

~
  0.0 and the 

negative of 1.0 otherwise. The  term, also 

responsible by the artificial compressibility, is 

defined as follows: 
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





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kji

l
kji

l
kji

l
kji

l
kji

l
kjil

kji
if

if
. 

(24) 

The β vector at the (i+1/2,j,k) interface is 

determined by the following expression: 

                 ),(0.1 ,,1,,
l

kji
l

kjill MAX  ,         (25) 

in which l assumes the following values: 1 = 0.25 

(non-linear field), 2 = 3 = 4 =1.0 (linear field) 

and 5 = 0.25 (non-linear field). The function l , 

velocity of numerical information transport,  is 

defined at the interface (i+1/2,j,k) by: 

        
 









 

0.0,0.0

0.0,,,,,1

l

lll
kji

l
kji

l
if

ifgg
.    (26) 

The entropy function is redefined considering l  

and βl: llllZ  , e l  is recalculated 

according to Eq. (20) or Eq. (21). 

Finally, the [4] dissipation function, to second order 

accuracy in space, is constructed by the following 

matrix-vector product: 

       
kjikjikjikjikjikjiYWH tggRD

,,2/1,,,,1,,,,2/1,,2/1 
 . 

(27) 

The convective numerical flux vector to the 

interface (i+1/2,j,k) is described by: 

  )(
int

)(
int

)(
int

)(
int

)(
,,2/1 5.0

l
YWHz

l
y

l
x

ll
kji DVhGhFhEF  ,  (28) 

with: 

      )()()(
int 5.0

l
L

l
R

l
EEE  ,  )()()(

int 5.0
l

L
l

R
l

FFF  ;  (29) 

                         )()()(
int 5.0

l
L

l
R

l
GGG  .                   (30) 

The time integration follows the method of time 

splitting, first order accurate, which divides the 

integration in three steps, each one associated with a 

specific spatial direction. In the initial step, it is 

possible to write: 

        n
kji

n
kjikjikjikji FFVtQ ,,2/1,,2/1,,,,

*
,,   ; 

                        *
,,,,

*
,, kji

n
kjikji QQQ  ;                 (31) 

At the intermediary step: 

         *
,2/1,

*
,2/1,,,,,

**
,, kjikjikjikjikji FFVtQ   ; 

                         **
,,

*
,,

**
,, kjikjikji QQQ  ;                (32) 

And at the final step: 

         **
2/1,,

**
2/1,,,,,,

1
,, 
  kjikjikjikji

n
kji FFVtQ ; 

                          1
,,

**
,,

1
,,

  n
kjikji

n
kji QQQ .               (33) 

 

 

4 [6] Algorithm 
The [6] algorithm, second order accurate in space, 

follows Eqs. (6-19). The next step consists in 

determine the  function, which corresponds to the 

artificial compression term and is responsible by the 

improvement of the scheme to capture more 

accurately discontinuities, like shock waves. One 

has: 
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   
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(34) 

The  function at the (i+1/2,j,k) interface is defined 

as follows: 

               l
kji

l
kjill MAX ,,1,, ,181  ,           (35) 

in which l assumes the following values: 1 = 5 = 

0.25 (non-linear fields) and 2 = 3 = 4 = 1.0 

(linear fields). The numerical flux function g is 

determined by: 

  l
l

kji
l

kjil
l

kji signalMINMAXsignalg   ,,2/1,,2/1,, ,;0.0 , 

(36) 

where signall assumes value 1.0 if l
kji ,,2/1   0.0 

and -1.0 otherwise. The l function at the (i+1/2,j,k) 

interface is calculated by the following expression: 

     
 










 

0.0,0.0

0.0,,,,,1

l

lll
kji

l
kjil

l
if

ifgg
.  (37) 

The entropy function at the (i+1/2,j,k) is defined by: 

                          25.0
2
 lll ,             (38) 

with l defined according to Eq. (20). Finally, the 

[6] dissipation function, to second order accuracy in 

space, is constructed by the following matrix-vector 

product: 

       
kjikjikjikjikjikjiKutlerYee tggRD

,,2/1,,,,1,,,,2/1,,2/1/ 
 .                    

(39) 

The Equations (28)-(30) are used to conclude the 

numerical flux vector of the [6] scheme and the time 

integration is accomplished by the time splitting 

method, conform described by Eqs. (31)-(33). 

 

 

5 [2] Algorithm 
The Equation (1) can be rewritten according to a 

structured spatial discretization context ([2-3]) as: 

 

                 0)( ,,,,,,  kjikjikji QCdtQVd ,             (40) 

 

where: 

                       

 
  kjikjikji zkjieykjiexkjiekji SQGSQFSQEQC

,2/1,,2/1,,2/1,
)()()()( ,2/1,,2/1,,2/1,,,

          
  

  kjikjikji zkjieykjiexkjie SQGSQFSQE
,,2/1,,2/1,,2/1

)()()( ,,2/1,,2/1,,2/1
 

            
  kjikjikji zkjieykjiexkjie SQGSQFSQE

,2/1,,2/1,,2/1,
)()()( ,2/1,,2/1,,2/1,  

            
  kjikjikji zkjieykjiexkjie SQGSQFSQE

,,2/1,,2/1,,2/1
)()()( ,,2/1,,2/1,,2/1  

           
  2/1,,2/1,,2/1,,

)()()( 2/1,,2/1,,2/1,, kjikjikji zkjieykjiexkjie SQGSQFSQE  

           
2/1,,2/1,,2/1,,

)()()( 2/1,,2/1,,2/1,,   
kjikjikji ykjieykjiexkjie SQGSQFSQE  

              (41) 

is the discrete approximation of the flux integral of 

Eq. (1). In this work, it was adopted that, for 

example, the values of the primitive variables at the 

flux interface (i+1/2,j,k) would be obtained by 

arithmetical average between the values of the 

primitive variables at cell (i,j,k) and at cell (i+1,j,k). 

 The spatial discretization proposed by the 

authors is equivalent to a symmetrical scheme 

second order accurate in space, on a finite difference 

context. The introduction of an artificial dissipation 

operator is needed to guarantee the numerical 

stability of the algorithm in presence of, for 

example, uncoupled odd-even solutions and non-

linear stabilities, as shock waves. Hence, Equation 

(40) is rewritten as: 

            0)()( ,,,,,,,,  kjikjikjikji QDQCdtQVd .  (42) 

The time integration is performed by an explicit 

hybrid Runge-Kutta method of five stages, second 

order accurate, and can be represented in general 

form by: 
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(43) 

with m = 1,…,5; l = 0 until 4; 1 = 1/4, 2 = 1/6, 3 

= 3/8, 4 = 1/2 and 5 = 1. [2] suggest that the 

artificial dissipation operator should be only 

evaluated at the two first stages as the Euler 

equations were solved (l = 0, m = 1 and l = 1, m = 
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2). This procedure aims economy of the CPU time 

and also better smoothing of the numerical 

instabilities originated from the discretization, based 

on the hyperbolic characteristics of the Euler 

equations. 

 

5.1 Artificial Dissipation Operator 
The artificial dissipation operator implemented in 

[2] scheme can employs two models of weighting 

the different dissipation. The first one is based on 

the [9] work and the second one is based on the [14] 

study. In the present work, the two models are 

evaluated. The dissipation operator has the 

following structure: 

 

                  kjikjikji QdQdQD ,,
)4(

,,
)2(

,,  ,         (44) 

where: 
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(45) 

recognized as the undivided Laplacian operator and 

is responsible by the numerical stability in presence 

of shock waves; and 
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named bi-harmonic operator, responsible by the 

background stability (for example, instabilities 

originated by the uncoupled odd-even solutions). In 

this last term, 

         kjikjikjikjikjikjikjikjikji QQQQQQQQQ ,,,,1,,,1,,,,,1,,,1,,,
2

 

           
   kjikjikjikji QQQQ ,,1,,,,1,,   .             (47) 

In the d
(4)

 operator, kjiQ ,,
2  is extrapolated from its 

neighbour every time that it represent a special 

boundary cell, recognised in the CFD literature as 

“ghost cell”. The terms  are defined, for instance, 

as: 

             kjikjikji MAXK ,,1,,
)2()2(

,,2/1 ,   ;        (48) 

              )2(
,,2/1

)4()4(
,,2/1 ,0 kjikji KMAX   ,       (49) 

with: 

   kjikjikjikjikjikjikjikjikji pppppppp ,,,,1,,,1,,,,,1,,,1,,,  

           kjikjikjikjikjikjikji ppppppp ,1,,,1,1,,,1,,,,1,,  

         kjikjikjikji pppp ,,1,,1,,,,1 6                 (50) 

representing a pressure sensor employed to identify 

regions of high gradients. The constants K
(2)

 and K
(4)

 

have typical values of ¼ and 3/256, respectively. 

Every time that a neighbor represent a ghost cell, it 

is assumed that, for instance, kjighost ,, . The Ai,j,k 

terms define the weighting coefficients of the 

dissipation. Two models are studied: [9] and [14]. 

 

5.1.1 Dissipation Coefficient – [9] Model 

The Ai,j,k terms represent contributions from the 

maximum normal eigenvalue of the Euler equations 

integrated around each cell face. This term is 

defined by: 
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with “a” representing the speed of sound. 

 

5.1.2 Dissipation Coefficient – [14] Model 

The Ai,j,k terms represent dissipation coefficients 

with the required properties to weighting: 

                               kjikjikji tVA ,,,,,,  .                      (52) 

(i) Smaller time steps, bigger dissipation; 

(ii) Bigger cells, bigger dissipation. 

 

 

6 Spatially Variable Time Step 
To steady state problems, the spatially variable time 

step procedure is employed to each hexahedron 

(i,j,k) aiming to accelerate the convergence process. 

The idea of the spatially variable time step 

procedure is keeping a constant CFL number in the 

whole calculation domain and, with it, guarantees 

time steps appropriated for each mesh region during 

the convergence process. The spatially variable time 

step can be defined as: 

                   
kjikjikji aqsCFLt

,,,,,,  ,         (53) 

where CFL is the Courant-Friedrichs-Lewis number 

that provides stability to the method;   kjis ,,  is a 

characteristic length of information transport; and  

 
kji

aq
,,

  is the maximum characteristic velocity of 

information transport, which “a” is the speed of 

sound. The characteristic length of information 

transport,   kjis ,, , can be determined by: 

                   
kjiMINMINkji ClMINs

,,,, , ,            (54) 

with lMIN being the minimum side length that 

composes a computational cell and CMIN is the 

minimum baricenter distance between the 

computational cell and its neighbors. The maximum 

characteristic velocity of information transport is 

defined by  
kji

aq
,,

 , with 222 wvuq  . 

 

7 Initial and Boundary Conditions 
 

7.1 Initial Conditions 
The initial condition adopted for all problems is the 

freestream flow in the whole calculation domain 

([2] and [15]). The vector of conserved variables is 

expressed as follows: 
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(55) 

where M represents the freestream Mach number, 

 is the upstream incidence angle of the flow in 

relation to the configuration under analysis and  is 

the angle at the longitudinal configuration plane. 

 

7.2 Boundary Conditions 
The different types of boundary conditions 

implemented in this work are described below. 

(a) Wall – The Euler case requires the flux 

tangency condition. Under the finite volume 

context, this imposition is done considering that 

the velocity component tangent to the wall ghost 

cell be equal to the corresponding velocity 

component tangent to the wall neighbor real 

cell. At the same time, the velocity component 

normal to the wall ghost cell should be equal to 

the negative of the velocity component normal 

to the wall of its neighbor real cell. The pressure 

gradient in which the fluid is submitted in the 

normal direction to the wall is equal to zero. 

The temperature gradient is also equal to zero 

along the entire wall. With these assumptions, 

the pressure, temperature and density are 

obtained from zero order extrapolation. The 

total energy is obtained by the perfect gas state 

equation. 

(b) Far field – In the implementation of the 

boundary conditions at the external region of the 
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mesh domain to physical problems of external 

flow, it is important to differentiate four 

possible physical situations: entrance with 

subsonic flow, entrance with supersonic flow, 

exit with subsonic flow and exit with supersonic 

flow. In the present study, considering that the 

unique problem of external flow is supersonic, 

only will exist the supersonic entrance and exit 

conditions. 

(b.1) Entrance with supersonic flow – All 

variables are specified at the entrance boundary 

of the calculation domain in terms of the 

freestream flow values; 

(b.2)  Exit with supersonic flow – The five 

characteristics which command the Euler 

equations goes from the internal region of the 

calculation domain, not being possible to 

specify values of the exit variables. Zero order 

extrapolation is applied to density, velocity 

components and pressure. 

(c) Entrance and Exit – The entrance and exit 

boundaries are applied to the internal flow 

problems. Boundary conditions which involve 

flow entrance at the computational domain had 

the flow properties fixed as values of freestream 

flow. Boundary conditions which involve exit of 

the computational domain used simply the zero 

order extrapolation. These conditions are valid 

because the studied flows are no minimal 

supersonic in the entrance and exit boundaries. 

(d) Continuity Condition – In the VLS problem, 

there is the continuity of the flow in the 

longitudinal section that passing by the 

configuration center. This requires that the 

vector of conserved variables be the same at the 

upper and lower regions of the symmetry plane. 

 

 

8 Results 
Tests were performed on a notebook with processor 

INTEL PENTIUM DUAL CORE with 2.3GHz of 

“clock” and 3.0GBytes of RAM. The convergence 

criterion adopted for obtaining the steady state 

solutions was the reduction of four (4) orders of 

magnitude in the value of maximum residual in the 

field, a typical criterion in the CFD community. The 

maximum residual in the field was defined as the 

biggest value obtained from the five (5) discretized 

equations. 

 Three physical problems were studied: the 

supersonic flow around a simplified version of the 

VLS, the hypersonic flow along a diffuser and the 

hypersonic flow along an air inlet. 

 The flow attack angle and the longitudinal plane 

angle were considered equals to zero in the present 

study. The wall pressure distributions were obtained 

in the configuration longitudinal plane to the VLS 

case and in the planes k = KMAX/2, in which 

KMAX is the maximum number of points in the z 

direction, to the diffuser and air inlet cases. To the 

calculation of the shock angle in the diffuser and air 

inlet problems, it was considered pressure contours 

at the xy plane of these geometries. 

 

8.1 VLS Problem 
The first problem under study consists in the 

simulation of the supersonic flow around a 

simplified configuration of the VLS. Such 

configuration is described in Fig. 1. Figure 2 

exhibits the three-dimensional mesh generated to 

this configuration. It is composed of 65x50x40 

points, which is equivalent in finite volumes to be 

formed by 147,264 hexahedral cells and 156,000 

nodes. 

 
Figure 1. Geometry of the VLS configuration. 

 

 

Figure 2. Mesh to the VLS configuration. 

 

 The initial condition adopted a freestream Mach 

number of 4.0, which represents one of VLS flight 

phases. Figures 3 to 6 exhibit the pressure contours 

obtained by the [4], [6] and [2] schemes, 

respectively. The [2] scheme presents two solutions 

due to the two dissipation models studied in this 

work ([9] and [14]). As can be observed, the [4] and 
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[6] solutions do not present good symmetry 

properties and homogeneity of the pressure 

contours. It is also possible to observe that the [4] 

solution presents a small pressure oscillation at the 

boosters region. In the region of the satellite 

transport compartment is also possible observe 

oscillations in the maximum pressure, 

proportionating a non-homogenous region in the [6] 

solution. 

 

 
 

Figure 3. Pressure contours ([4]). 

 

 
 

Figure 4. Pressure contours ([6]). 

 

In [4], the solution presents the same problem of 

non-homogeneity in the pressure field at the satellite 

region. With relation to the [2] solutions, it is 

possible to observe homogeneity in the pressure 

distribution along the configuration. The most 

critical region, the charge compartment, is free of 

oscillations. Both solutions of [2] only present 

meaningful differences in the central region of the 

VLS, at the end of the charge compartment. There is 

a pressure reduction bigger in the region detected by 

the [2] scheme with the [14] dissipation operator 

than with the [9] dissipation operator. This more 

severe pressure reduction is noted mainly in the [4] 

and [6] solutions. The [2] behavior with the [9] 

dissipation operator is smoother, only having a more 

severe pressure loss at the end of the boosters 

region. It is also possible to note that the pressure 

peak at the satellite compartment is bigger in the [2] 

solutions than in the [4] and [6] solutions. 

 

 
 

Figure 5. Pressure contours ([2] and [9]). 

 

 
 

Figure 6. Pressure contours ([2] and [14]). 

 

 Figures 7 to 10 exhibit the Mach number 

contours obtained by [4], [6] and [2]. As can be 

observed, there is a bigger reduction in the value of 

the Mach number at the charge region in the 

solutions generated by [4] and [6] than in the [2] 

solutions. However, the recovery of the Mach 

number is more intense in the [4] and [6] solutions, 
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as observed at the cylindrical region in the charge 

compartment. 

 

 
 

Figure 7. Mach number contours ([4]). 

 

 
 

Figure 8. Mach number contours ([6]). 

 

 
 

Figure 9. Mach number contours ([2] and [9]). 

 
 

Figure 10. Mach number contours ([2] and [14]). 

 

 Figures 11 to 14 present the temperature 

contours due to translation and rotation obtained by 

[4], [6] and [2]. It is possible to note that there are 

temperature oscillations at the charge compartment 

in the solutions obtained by [4] and [6]. The [2] 

solutions are more homogeneous. An interesting 

feature is that the [4] and [6] solutions present 

temperature increase at the boosters region, due to 

the geometry and to the second shock, what should 

also be captured by the [2] algorithms. 

 

 
 

Figure 11. Temperature contours ([4]). 

 

 Figure 15 exhibits the –Cp distributions obtained 

by the [4], [6] and [2] schemes, along the VLS wall, 

in the z direction. It is possible to observe that all 

schemes capture the two shock at the ramp of the 

charge compartment and at the ramp representative 

of the boosters region. At the VLS body, the 

pressure is maintained constant and this behavior is 

mainly observed in the [4] and [6] solutions. At the 
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second shock, the maximum pressure is obtained by 

the [6] and [2] schemes using the [14] dissipation 

operator. The pressure is smoothed by the expansion 

fan at the boosters region. As can be observed, the 

best qualitative behavior, in relation to the pressure 

distribution, is obtained by [4] and [6]. 

 

 
 

Figure 12. Temperature contours ([6]). 

 

 
 

Figure 13. Temperature contours ([2] and [9]). 

 

 A possibility of quantitative comparison of all 

schemes is the determination of the stagnation 

pressure ahead of the configuration. [16] presents a 

table with normal shock wave properties in its B 

Appendix. This table allows the determination of 

some shock wave properties as function of the 

freestream Mach number. Ahead of the VLS 

configuration studied in this work, the shock wave 

presents a normal shock wave behavior, which 

allows the determination of the stagnation pressure, 

behind the shock wave, from the tables encountered 

in [16]. Hence, it is possible to determine the ratio 

pr0/pr∞ from [16], where pr0 is the stagnation 

pressure ahead of the configuration and pr∞ is the 

freestream flow pressure (equal to 1/ to the present 

dimensionless of the problem). 

 

 
 

Figure 14. Temperature contours ([2] and [14]). 

 
 

Figure 15. –Cp distributions. 

 

 Hence, to this problem, M∞ = 4.0 corresponds to 

pr0/pr∞ = 21.07 and remembering that pr∞ = 0.714, is 

possible to conclude that pr0 = 15.05. Values of the 

stagnation pressure and percentage errors, 

respectively, are described in Tab. 1. 

 
Table 1. Values of stagnation pressure to the VLS problem. 
  

Algorithm pr0 Error (%) 

[4] 6.35 57.81 

[6] 7.82 48.04 

[2] and [9] 20.79 38.14 

[2] and [14] 21.99 46.11 

 

The results indicate that the symmetrical scheme 

[2], using the dissipation operator [9], is the one that 
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present the closest value to the theoretical prediction 

of the stagnation pressure, with a percentage error of 

38.14%, considered as a reasonable solution. 

 

8.2 Diffuser Problem 
The diffuser configuration is presented in Fig. 16. 

Its width is of 0.10m. Its mesh is composed of 

61x61x10 points, or, equivalently, to 32,400 

hexahedral cells and 37,210 nodes. The freestream 

Mach number to this simulation was adopted equal 

to 10.0, characterizing a hypersonic flow regime. 

The main characteristic of this problem is the 

formation of two shock waves at the upper and 

lower walls of the diffuser and the interception of 

them at the throat. 

 Figure 17 exhibit the mesh to this diffuser 

configuration. It is equally spaced in x and y 

directions because the Euler equations are solved. 

 
Figure 16. Diffuser configuration geometry. 

 

 
Figure 17. Mesh to the diffuser configuration. 

 

 Figures 18 to 21 show the pressure contours 

obtained by [4], [6] and [2] to the diffuser problem. 

The two shock waves are well captured by the four 

(4) numerical algorithms. The pressure peak, at the 

intersection region, has a value of approximately 

50.13 in the most severe case obtained by the [2] 

algorithm with the [14] dissipation operator. The [2] 

scheme presents more homogeneous solutions in its 

two variants. 

 

 
Figure 18. Pressure contours ([4]). 

 

 
Figure 19. Pressure contours ([6]). 

 

 
Figure 20. Pressure contours ([2] and [9]). 
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Figure 21. Pressure contours ([2] and [14]). 

 

 Figures 22 to 25 present the Mach number 

contours along the diffuser obtained by the four (4) 

numerical schemes. The Mach number peak is 

obtained by [2] employing the [14] dissipation 

operator. The shock wave intersection is well 

captured by all schemes and the solution tri-

dimensionality is verified. 

 

 
Figure 22. Mach number contours ([4]). 

 

 Figures 26 to 29 show the temperature contours 

obtained from the solutions of the [4], [6] and [2] 

schemes. All solutions capture the main features of 

the flow and the shock intersection. The temperature 

peak at the intersection is obtained by [2] using the 

dissipation operator [14]. All schemes detect a small 

increase in the temperature at the diffuser-ramp end, 

which can be due to the rarefied flow (expansion 

fan) that happens at this region. The shock waves 

are well captured conform aforementioned. 

 

 

 
Figure 23. Mach number contours ([6]). 

 

 
Figure 24. Mach number contours ([2] and [9]). 

 

 
Figure 25. Mach number contours ([2] and [14]). 
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Figure 26. Temperature contours ([4]). 

 

 
Figure 27. Temperature contours ([6]). 

 

 
Figure 28. Temperature contours ([2] and [9]). 

 

 Figure 30 presents the pressure distributions at 

the diffuser inferior wall obtained by the numerical 

schemes of [4], [6] and [2]. They are compared with 

the theoretical results of the oblique shock wave and 

the Prandtl-Meyer expansion fan. 

 

 
Figure 29. Temperature contours ([2] and [14]). 

 

As can be seen, all solutions present oscillations at 

the shock plateau, being the smoothest that obtained 

by [2], employing the [9] dissipation operator. All 

solutions capture well the pressure value after the 

expansion fan (flow recovery pressure). The plateau 

width is best estimated by the [2] scheme using the 

[14] dissipation operator. 

 
Figure 30. Pressure distributions at the inferior wall. 

 

A way to verify quantitatively if the solutions 

generated by the [4], [6] and [2] are satisfactory 

consists in determine the shock angle of the oblique 

shock wave, β, measured in relation to the initial 

direction of the flowfield. [16] (pages 352 and 353) 

presents a diagram with values of the shock angle, 

β, to oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and the flow deflection angle behind the 

shock wave, .To  = 20º (diffuser inclination angle) 
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and to a freestream Mach number equal to 10.0, it is 

possible to obtain from this diagram a value to β 

equal to 26.0
o
. Employing a transfer in Figs. 18 to 

21, at the xy plane, it is possible to obtain the values 

of β to each scheme, as also the respective 

percentage errors, exhibited in Tab. 2. The [2] 

scheme with the [9] dissipation operator was the 

best algorithm, yielding the best results to the shock 

angles of the lower and upper walls. 

 
Table 2. Values of the shock angles and percentage 

errors to the diffuser problem. 

 

Scheme β 
(lower)

 Error 

(%) 

β
(Upper)

 Error 

(%) 

[4] 23.9 8.08 25.6 1.54 

[6] 25.4 2.31 25.0 3.85 

[2]-[9] 26.0 0.00 25.9 0.38 

[2]-[14] 25.9 0.38 25.9 0.38 

 

8.3 Air Inlet Problem 
Figure 31 exhibits the air inlet configuration 

employed in these studies. Its lengths are given in 

millimeters. The dashed region ahead of the 

entrance boundary is to allow that the flow enters 

the device parallel to the x direction and suffers less 

impact due to the ramps. Ghost volumes are 

employed in this region to assure the properties of 

flow entrance and the tangency in relation to the 

horizontal. 

 

 

Figure 31. Air inlet configuration geometry. 

 

 Figure 32 presents the computational mesh 

employed in the simulations. The mesh has 

60x40x15 points in a finite difference context or is 

composed of 32,214 hexahedral cells and 36,000 

nodes. This mesh does not have any stretching, 

being equally spaced in all three dimensions. This 

mesh was algebraically generated, with the 

configuration constructed in the xy plane and after 

that repeated in the parallel z planes. 

 In the simulations, only the [2] scheme generated 

converged results with the dissipation operators [9] 

and [14]. The other schemes [4] and [6] were not 

sufficiently robust to support the problem initial 

condition. 

 
Figure 32. Air inlet configuration mesh. 

 

 The initial condition adopted a freestream Mach 

number equal to 15.0, which represents a high 

hypersonic flow and more severe than the others, 

being the most representative of the possibilities of a 

scheme demonstrate its robustness and accuracy. 

 
Figure 33. Pressure contours ([2] and [9]). 

 

 Figures 33 and 34 show the pressure contours 

obtained by [2] using the [9] and [14] dissipation 

operators, respectively. As can be seen, the most 

severe pressure field is due to [2] using the artificial 

dissipation operator of [9]. Both solutions present 

qualitative differences in relation to the shock wave 

thickness at the lower and upper air inlet walls. The 

oblique shock waves are less thicken in the solution 

generated by [2] with the [9] dissipation operator. 

The [14] dissipation operator presents a thicker 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-2880 499 Issue 6, Volume 11, June 2012



shock wave along all upper surface. The intersection 

of the shock waves from the upper and lower 

surfaces at the inlet throat is well captured by both 

schemes. 

 
Figure 34. Pressure contours ([2] and [14]). 

 

 Figures 35 and 36 present the Mach number 

contours distributions along the air inlet. In these 

figures, it is possible to note more pronounced the 

increase of the thickness of the oblique shock wave 

along the upper wall captured by the [14] dissipation 

operator. Moreover, this behavior is also observed at 

the lower wall. A reason to it can be: due to this 

operator uses an approximation less correct of the 

maximum eigenvalue of the Euler equations, the 

[14] operator distributes more dissipation in the 

field than it is necessary, whereas the [9] operator, 

due to a better estimative of the maximum normal 

eigenvalue of the Euler equations, has a more 

selective dissipation distribution. In quantitative 

terms, the Mach number field generated by the [2] 

scheme and the [9] operator is more intense than 

that generated by the [14] operator. 

 
Figure 35. Mach number contours ([2] and [9]). 

 
Figure 36. Mach number contours ([2] and [14]). 

 

 The robustness of the [2] scheme with [9] and 

[14] operators is well characterized by the curves of 

Mach number contours, where the maximum value 

of this parameter is evidenced. The [2] scheme with 

[9] operator reached a maximum Mach number of 

14.44, whereas the same scheme with operator [14] 

reached a maximum Mach number of 14.37, a 

significant difference in CFD. 

 Figures 37 and 38 exhibit the translational / 

rotational temperature contours along the air inlet 

generated by the [2] algorithm using the [9] and [14] 

artificial dissipation operators, respectively. In this 

“cold gas” hypersonic flow under study, it is correct 

to accept the equilibrium between the translational 

and rotational modes. Even in thermochemical non-

equilibrium flows, the hypothesis of equilibrium 

between these two modes is acceptable; so, there 

isn’t any error in considerate such designation to 

“cold gas” hypersonic flows. Again, it is possible to 

verify a thicker oblique shock wave at the air inlet 

upper surface to the [14] dissipation operator. 

 
Figure 37. Temperature contours ([2] and [9]). 
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Figure 38. Temperature contours ([2] and [14]). 

 

The [9] dissipation operator allows to the [2] 

scheme detect a slight variation in the temperature 

field at the lower surface upstream the throat, as also 

a bigger heating of the lower surface at the air inlet 

end region. This ratify the idea of the minor 

dissipation to the [9] operator than to the [14] 

operator that, due to the bigger dissipation, 

eliminate such regions from the solution. 

 Figure 39 presents the pressure distributions 

obtained by the [2] scheme using the operators [9] 

and [14]. As can be seen, there is a meaningful 

attenuation of the shock plateau at the intermediary 

region in z (k = KMAX/2). The [2] scheme with the 

[9] operator still maintain a little of this plateau, but 

the same scheme using the [14] operator practically 

eliminates this plateau. The pressure peak, due to 

the intersection between the lower and upper shock 

waves, is more intense in the solution obtained with 

the [9] dissipation operator, as well the pressure 

recovery at the air inlet end. 

 
Figure 39. Lower wall pressure distributions. 

 

 A parameter which can be analyzed to evaluate 

the accuracy of the [2] scheme with the two 

operators is the shock angle of the oblique shock 

wave that appear at the lower and upper air inlet 

walls. With a transfer were measured the inclination 

angles of the lower and upper ramp of the entrance 

device. To the lower wall this angle was of 6.5
o
 in 

relation to the horizontal and to the upper wall was 

of 13.5
o
 in relation to the horizontal. With these 

angles and with the freestream Mach number was 

possible to determine the theoretical shock angles of 

the oblique shock waves. These angles are disposed 

in Tab. 3, joined with the measured values of them 

to each operator and the respective percentage error. 

Figures 33 and 34, at the xy plane, were used to 

evaluate the measured angles. 

 

Table 3. Measured values of the shock angles of 

the oblique shock waves. 

 

Surface Scheme β
(Theory)

 β
(Measured)

 Error 

(%) 

Lower [2]-[9] 10.0 9.0 10.0 

 [2]-[14] 10.0 9.6 4.0 

Upper [2]-[9] 17.5 17.5 0.0 

 [2]-[14] 17.5 17.2 1.7 

 

As can be seen, the [2] scheme with [14] operator 

gave the best results considering a global analyses; 

in other words, the results of the two walls. 

Although the [9] operator had determined with exact 

accuracy the value of the shock angle of the oblique 

shock wave at the air inlet upper wall, its behavior 

at the lower wall was reasonable, with an error of 

10.0%. The [14] operator had errors inferiors to 

5.0% in both walls and, therefore, presented the best 

solution. 

 

8.4 Computational Data 
 

Table 4. Numerical data of the simulations. 

 

Problem Scheme CFL Iterations Cost
(1)

 

 [4] 0.02 7,512 0.0000529 

VLS [6] 0.06 3,473 0.000449 

 [2]-[9] 0.30 1,474 0.0001364 

 [2]-[14] 0.30 1,735 0.0001227 

 [4] 0.30 1,212 0.0000529 

Diffuser [6] 0.70 529 0.000449 

 [2]-[9] 1.90 231 0.0001364 

 [2]-[14] 2.80 157 0.0001227 

Air Inlet [2]-[9] 0.2 3,735 0.0001364 

 [2]-[14] 0.4 2,098 0.0001227 
(1) Measured in seconds/per iteration/per cell. 
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Table 4 presents the numerical data of the VLS, 

diffuser and air inlet simulations. The computational 

cost is determined as the simulation time divided by 

the number of hexahedral cells and by the number 

of iterations to convergence. As can be seen from 

this table, the [2] scheme with the [9] dissipation 

operator is the most expensive, being 203.79% more 

expensive than the [6] scheme, the cheapest. The 

solution quality obtained by the [2] scheme using 

the [9] dissipation operator is what justify its 

implementation and use. 

As final conclusion of this work, the [2] scheme 

with [9] operator was the best because was more 

robust, joint with the [14] operator, and generated 

more accurate solutions. In the VLS problem, this 

scheme detected with more accuracy the stagnation 

pressure ahead of the configuration; in the diffuser 

problem captured with more accuracy the two shock 

angles of the oblique shock waves; and in the air 

inlet problem captured with reasonable accuracy the 

shock angles of the oblique shock waves. In 

qualitative terms, it was one of the minus 

dissipative, as exhibited in the air inlet problem. 

Hence, the [2] scheme with the artificial dissipation 

operator of [9] is the most recommended to studies 

of supersonic and “cold gas” hypersonic flows in 

three-dimensions as employed the algorithms herein 

analyzed. This scheme provides confinable results 

and is more robust than the TVD schemes herein 

studied. Spite of the computational cost, as seen in 

[9], this scheme justify its use by the solution 

quality and robustness. 

 

 

9 Conclusions 
The present work compares the numerical methods 

of [2], [4] and [6], using a finite volume formulation 

and a structured spatial discretization, applied to the 

solution of the Euler equations in three-dimensions. 

All schemes are second order accurate in space. The 

[2] scheme is also second order accurate in time and 

uses an artificial dissipation operator to guarantee 

convergence to the steady state solution. The [4] and 

[6] schemes are first order accurate in time. The 

steady state physical problems of the supersonic 

flow around a simplified configuration of the VLS 

(Brazilian Satellite Launcher) and the hypersonic 

flows along a diffuser and along an air inlet are 

studied. A spatially variable time step procedure is 

implemented aiming to accelerate the convergence 

process. This technique has presented excellent 

gains in terms of convergence ratio, as reported in 

[7-8]. 

 The results have demonstrated that the [2] 

scheme, using the [9] dissipation operator, presents 

the best characteristics of robustness and accuracy. 

 As final conclusion of this work, the [2] scheme 

with [9] operator was the best because was more 

robust, joint with the [14] operator, and generated 

more accurate solutions. In the VLS problem, this 

scheme detected with more accuracy the stagnation 

pressure ahead of the configuration; in the diffuser 

problem captured with more accuracy the two shock 

angles of the oblique shock waves; and in the air 

inlet problem captured with reasonable accuracy the 

shock angles of the oblique shock waves. In 

qualitative terms, it was one of the minus 

dissipative, as exhibited in the air inlet problem. 

Hence, the [2] scheme with the artificial dissipation 

operator of [9] is the most recommended to studies 

of supersonic and “cold gas” hypersonic flows in 

three-dimensions as employed the algorithms herein 

analyzed. This scheme provides confinable results 

and is more robust than the TVD schemes herein 

studied. Spite of the computational cost, as seen in 

[9], this scheme justify its use by the solution 

quality and robustness. 
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