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Abstract: - In the present work, the Yee, Warming and Harten and the Yang schemes are implemented, on a 

finite volume context and using a structured spatial discretization, to solve the Euler and the Navier-Stokes 

equations in two-dimensions. The former is a TVD high resolution scheme, whereas the latter is an ENO/TVD 

high resolution algorithm. Both schemes are flux difference splitting ones. An implicit formulation is employed 

to solve the Euler equations, whereas the Navier-Stokes equations are solved by an explicit formulation. 

Turbulence is taken into account considering the models of Cebeci and Smith, of Baldwin and Lomax and of 

Sparlat and Allmaras. The physical problems of the transonic flow along a convergent-divergent nozzle and the 

supersonic flow along a compression corner are studied in the inviscid case. In the viscous case, the supersonic 

flow along a ramp is solved. The results have demonstrated that all three algorithms present accurate results. 

 

Key-Words: - Yee, Warming and Harten algorithm, TVD high resolution scheme, Yang algorithms, ENO/TVD 
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1 Introduction 
Conventional shock capturing schemes for the 

solution of nonlinear hyperbolic conservation laws 

are linear and L2-stable (stable in the L2-norm) when 

considered in the constant coefficient case ([1]). 

There are three major difficulties in using such 

schemes to compute discontinuous solutions of a 

nonlinear system, such as the compressible Euler 

equations: 

(i) Schemes that are second (or higher) order 

accurate may produce oscillations wherever the 

solution is not smooth; 

(ii) Nonlinear instabilities may develop in spite of 

the L2-stability in the constant coefficient case; 

(iii)The scheme may select a nonphysical solution. 

 It is well known that monotone conservative 

difference schemes always converge and that their 

limit is the physical weak solution satisfying an 

entropy inequality. Thus monotone schemes are 

guaranteed not to have difficulties (ii) and (iii). 

However, monotone schemes are only first order 

accurate. Consequently, they produce rather crude 

approximations whenever the solution varies 

strongly in space or time. 

 When using a second (or higher) order accurate 

scheme, some of these difficulties can be overcome 

by adding a hefty amount of numerical dissipation 

to the scheme. Unfortunately, this process brings 

about an irretrievable loss of information that 

exhibits itself in degraded accuracy and smeared 

discontinuities. Thus, a typical complaint about 

conventional schemes which are developed under 

the guidelines of linear theory is that they are not 

robust and/or not accurate enough. 

 To overcome the difficulties, a new class of 

schemes was considered that is more appropriate for 

the computation of weak solutions (i.e., solutions 

with shocks and contact discontinuities) of nonlinear 

hyperbolic conservation laws. These schemes are 

required (a) to be total variation diminishing in the 

nonlinear scalar case and the constant coefficient 

system case ([2-3]) and (b) to be consistent with the 

conservation law and an entropy inequality ([4-5]). 

The first property guarantees that the scheme does 

not generate spurious oscillations. Schemes with 

this property are referred in the literature as total 

variation diminishing (TVD) schemes (or total 

variation non-increasing, TVNI, [3]). The latter 

property guarantees that the weak solutions are 

physical ones. Schemes in this class are guaranteed 

to avoid difficulties (i)-(iii) mentioned above. 

 [6] applied a new implicit unconditionally stable 

high resolution TVD scheme to steady state 

calculations. It was a member of a one-parameter 

family of explicit and implicit second order accurate 

schemes developed by [3] for the computation of 

weak solutions of one-dimensional hyperbolic 

conservation laws. The scheme was guaranteed not 

to generate spurious oscillations for a nonlinear 

scalar equation and a constant coefficient system. 
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Numerical experiments have shown that the scheme 

not only had a fairly rapid convergence rate, but also 

generated a highly resolved approximation to the 

steady state solution.  A detailed implementation of 

the implicit scheme for the one- and two-

dimensional compressible inviscid equations of gas 

dynamics was presented. Some numerical 

experiments of one- and two-dimensional fluid 

flows containing shocks demonstrated the efficiency 

and accuracy of the new scheme. 

Recently, a new class of uniformly high order 

accurate essentially nonoscillatory (ENO) schemes 

have been developed by [7-10]. They presented a 

hierarchy of uniformly high order accurate schemes 

that generalize [11]’s scheme, its second order 

accurate MUSCL extension ([12-13]), and the total 

variation diminishing (TVD) scheme ([3]) to 

arbitrary order of accuracy. In contrast to the earlier 

second order TVD schemes which drop to first order 

accuracy at local extrema and maintain second order 

accuracy in smooth regions, the new ENO schemes 

are uniformly high order accurate throughout, even 

at critical points. The ENO schemes use a 

reconstruction algorithm that is derived from a new 

interpolation technique that when applied to 

piecewise smooth data gives high order accuracy 

whenever the function is smooth but avoids a Gibbs 

phenomenon at discontinuities. An adaptive stencil 

of grid points is used; therefore, the resulting 

schemes are highly nonlinear even in the scalar 

case. 

[14] has presented a two time level explicit and 

implicit finite difference shock capturing schemes 

based on the characteristic flux difference splitting 

method and the modified flux approach with the 

essentially nonoscillatory (ENO) property that [7] 

have been developed for the two-dimensional Euler 

equations. The methods were conservative, 

uniformly second order accurate in time and space, 

even at local extrema. General coordinate systems 

were used to treat complex geometries. Standard 

alternating direction implicit approximate 

factorization was used for constructing implicit 

schemes. Numerical results have been obtained for 

unsteady shock wave reflection around general two-

dimensional blunt body and for steady transonic 

flows over a circular arc bump in a channel. 

Properties of ENO schemes as applied to two-

dimensional flows with multiple embedded 

discontinuities were discussed. Comparisons of the 

performance between the presented ENO schemes 

and author’s previous total variation diminishing 

schemes were also included. The [14] scheme could 

be ENO or TVD ones depending of the choice of a 

free parameter. 

There is a practical necessity in the aeronautical 

industry and in other fields of the capability of 

calculating separated turbulent compressible flows. 

With the available numerical methods, researches 

seem able to analyze several separated flows, three-

dimensional in general, if an appropriated 

turbulence model is employed. Simple methods as 

the algebraic turbulence models of [15-16] supply 

satisfactory results with low computational cost and 

allow that the main features of the turbulent flow be 

detected. 

More elaborate treatments of turbulent flow, 

especially involving separation, are obtained with 

one-equation turbulence models. Such models are 

cheaper than their counterpart two-equation models 

and a bit more expensive than the algebraic models. 

One such a model is the [17] one. In this model, a 

transport equation for the turbulent viscosity is 

assembled, using empiricism and arguments of 

dimensional analysis, Galilean invariance and 

selective dependence on the molecular viscosity. 

The equation includes a destruction term that 

depends on the distance to the wall, related to the 

one in [18] model and to one due to [19]. Unlike 

early one-equation models, the resulting turbulence 

model is local (i.e., the equation at one point does 

not depend on the solution at others points) and 

therefore compatible with grids of any structure and 

Navier-Stokes solvers in two- and three-dimensions. 

It is numerically forgiving, in terms of near-wall 

resolution and stiffness, and yields rapid 

convergence to steady state. 

 In the present work, the [6] and the [14] schemes 

are implemented, on a finite volume context and 

using a structured spatial discretization, to solve the 

Euler and the laminar/turbulent Navier-Stokes 

equations in the two-dimensional space. The [6] 

scheme and the [14] schemes are TVD or ENO high 

resolution flux difference splitting ones, based on 

the concept of Harten’s modified flux function. The 

[6] TVD scheme is second order accurate in space, 

except at extrema, where the accuracy is reduced to 

first order. The [14] scheme, in its ENO version, is 

uniformly second order accurate in space, inclusive 

at extrema. Its TVD version is also second order 

accurate in space, except at extrema. An implicit 

formulation is employed to solve the Euler 

equations in the inviscid problems. An approximate 

factorization ADI method is employed by both 

schemes to perform time integration. To solve the 

laminar/turbulent Navier-Stokes equations, an 

explicit formulation based on a dimensional splitting 

procedure is employed. All schemes are first order 

accurate in time in their implicit and explicit 

versions. Turbulence is taken into account 
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considering two algebraic models, namely: the [15-

16] ones, and the one-equation model of [17]. The 

algorithms are accelerated to the steady state 

solution using a spatially variable time step, which 

has demonstrated effective gains in terms of 

convergence rate ([20-21]). Two versions of time 

step definition, which consider inviscid and viscous 

cases separately, are employed. All schemes are 

applied to the solution of the physical problems of 

the transonic flow along a convergent-divergent 

nozzle and the supersonic flow along a compression 

corner in the inviscid case (Euler equations). To the 

laminar/turbulent viscous case, the supersonic flow 

along a ramp is solved. The results have 

demonstrated that the most severe results are 

obtained with the [6] TVD high resolution scheme 

in the inviscid problems, whereas the [14]/ENO 

high resolution algorithm present the most severe 

results in the viscous problem, in both laminar and 

turbulent cases. The most accurate results are 

obtained by the [6] TVD scheme in the nozzle 

problem, by the [14]/ENO scheme in the 

compression corner problem, both inviscid cases, 

and by the [14]/TVD  scheme in the ramp problem, 

viscous case. 

 

2 Navier-Stokes Equations 
As the Euler equations can be obtained from the 

Navier-Stokes ones by disregarding the viscous 

vectors, only the formulation to the latter will be 

presented. The Navier-Stokes equations in integral 

conservative form, employing a finite volume 

formulation and using a structured spatial 

discretization, to two-dimensional simulations, are 

written as: 

                      01  V dVPVtQ


,                 (1) 

where V is the cell volume, which corresponds to an 

rectangular cell in the two-dimensional space; Q is 

the vector of conserved variables; and 

    jFFiEEP veve


  represents the complete 

flux vector in Cartesian coordinates, with the 

subscript “e” related to the inviscid contributions or 

the Euler contributions and “v” is related to the 

viscous contributions. These components of the 

complete flux vector, as well the vector of 

conserved variables, are defined as: 
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In these equations, the components of the viscous 

stress tensor are defined as: 

          yvxuxu TMTMxx  322 ;   (4) 

                        xvyuTMxy  ;                  (5) 

     yvxuyv TMTMyy  322 .   (6) 

The components of the conductive heat flux vector 

are defined as follows: 

              xeddq iTTMx  PrPr ;          (7) 

              yeddq iTTMy  PrPr .          (8) 

The quantities that appear above are described as 

follows:  is the fluid density, u and v are the 

Cartesian components of the flow velocity vector in 

the x and y directions, respectively; e is the total 

energy per unity volume of the fluid; p is the fluid 

static pressure; ei is the fluid internal energy, 

defined as: 

                         225.0 vueei  ;                     (9) 

the ’s represent the components of the viscous 

stress tensor; Prd is the laminar Prandtl number, 

which assumed a value of 0.72 in the present 

simulations; PrdT is the turbulent Prandtl number, 

which assumed a value of 0.9; the q’s represent the 

components of the conductive heat flux; M is the 

fluid molecular viscosity; T is the fluid turbulent 

viscosity;  is the ratio of specific heats at constant 

pressure and volume, respectively, which assumed a 

value 1.4 to the atmospheric air; and Re is the 

Reynolds number of the viscous simulation, defined 

by: 

                              MREF lu Re ,                    (10) 

where uREF is a characteristic flow velocity and l is a 

configuration characteristic length. The molecular 

viscosity is estimated by the empiric Sutherland 

formula: 

                       TSbTM  121 ,                 (11) 
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where T is the absolute temperature (K), b = 

1,458x10
-6

 Kg/(m.s.K
1/2

) and S = 110,4 K, to the 

atmospheric air in the standard atmospheric 

conditions ([22]). The Navier-Stokes equations were 

nondimensionalized in relation to the stagnation 

density, , and the critical speed of sound, a, for 

the nozzle problem, whereas in relation to the 

freestream density, , and the freestream speed of 

sound, a, for the compression corner problem. For 

the ramp problem it is also considered the 

freestream molecular viscosity, . To allow the 

solution of the matrix system of four equations to 

four unknowns described by Eq. (1), it is employed 

the state equation of perfect gases presented below: 

                      )(5.0)1( 22 vuep  .             (12) 

The total enthalpy is determined by: 

                                 peH .                         (13) 

 

3 Numerical Scheme of [6] 
The [6] algorithm, second order accurate in space, is 

specified by the determination of the numerical flux 

vector at (i+½,j) interface. The implementation of 

the other numerical flux vectors at the other 

interfaces is straightforward. 
 Following a finite volume formalism, which is 

equivalent to a generalized system, the right and left 

cell volumes, as well the interface volume, 

necessaries to coordinate change, are defined by: 

  jiR VV ,1 , jiL VV ,   and   LR VVV  5.0int .   (14) 

where “R” and “L” represent right and left, 

respectively. The cell volume is defined by: 

        jijijijijijijijijiji yxxyxxyxxV ,1,1,1,1,1,11,1,1,, 5.0

                

      1,1,1,,1,1,11,1,1,5.0   jijijijijijijijiji yxxyxxyxx , (15) 

 

where a computational cell, with its nodes and flux 

surfaces are defined in [23] and in section 8 of the 

present work. The area components at interface are 

defined by: SsS xx
'

int_   and SsS yy
'

int_  , where '
xs  

and '
ys  are defined as: Sss xx 

'  and Sss yy 
' , 

being 22
yx ssS  . Expressions to sx and sy, which 

represent the Sx and Sy components always adopted 

in the positive orientation, are given in Tab. 1. 

These normalized area vectors are employed in the 

[6] TVD high resolution scheme. In the [14] 

schemes, the area vectors are defined as presented in 

Tab. 2. 

 

Table 1. Normalized values of sx and sy. 

 

Surface sx sy 

i,j-1/2  jiji yy ,,1     jiji xx ,,1   

i+1/2,j  jiji yy ,11,1     1,1,1   jiji xx  

i,j+1/2  1,11,   jiji yy   1,1,1   jiji xx  

i-1/2,j  jiji yy ,1,    jiji xx ,1,    

 

Table 2. Values of Sx_int and Sy_int. 

 

Surface Sx_int Sy_int 

i,j-1/2  jiji yy ,,1    jiji xx ,,1    

i+1/2,j  jiji yy ,11,1     jiji xx ,11,1    

i,j+1/2  1,11,   jiji yy   1,11,   jiji xx  

i-1/2,j  1,,  jiji yy   1,,  jiji xx  

 

The metric terms to this generalized coordinate 

system are defined as: 

intint_ VSh xx  , intint_ VSh yy   and intVShn  . (16) 

 The properties calculated at the flux interface are 

obtained either by arithmetical average or by [24] 

average. In this work, the [24] average was used: 

RLint ,    LRLRRL uuu  1int ; (17) 

                  LRLRRL vvv  1int ;           (18) 

           LRLRRL HHH  1int ;      (19) 

                 2
int

2
intintint 5.01 vuHa  ,          (20) 

where aint is the sound speed at the flux interface. 

The eigenvalues of the Euler equations, in  

direction, are given by: 

        yxcont hvhuU intint  , ncont haU int1  ;    (21) 

        contU 32   and  ncont haU int4  .     (22) 

The jumps of the conserved variables are given by: 

         LRV  int ,       LR uuVu  int ;      (23) 
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               LR vvVv  int ,  LR eeVe  int .     (24) 

The  vectors to the (i+½,j) interface are calculated 

by the following expressions: 

        bbaa  5.01 , aa2 , cc3 ;     (25) 

                          bbaa  5.04 ,                        (26) 

with: 

        vvuuvueaaa  intint
2
int

2
int

2
int 5.01 ; (27) 

      vhvhuhuhabb yyxx  '
int

'
int

''
int1 ; (28) 

      uhvhuhvhcc yxýx  '
int

'
int

'' ;     (29) 

              nxx hhh '    and   nyy hhh ' .              (30) 

 The [6] TVD dissipation function is constructed 

using the right eigenvector matrix of the Jacobian 

matrix in the normal direction to the flux face. This 

matrix is found in [25]. 

 The g numerical flux function, which is a limited 

function to avoid the formation of new extrema in 

the solution and is responsible to the second order 

accuracy of the scheme, is given by: 

         ,;0.0MAXsignalg l
j,2/1i

l
j,2/1il

l
j,i    

                 l
j,2/1i

l
j,2/1ilsignal   ,                    (31) 

where signall is equal to 1.0 if l
ji ,2/1   0.0 and -

1.0 otherwise;    lll
l Q  5.0 ; and Q is defined 

as: 
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22 ,    (32) 

where “l” varies from 1 to 4 (two-dimensional 

space) and f assumes values between 0.1 and 0.5, 

being 0.2 the value recommended by [6]. The  

term, responsible to the artificial compression, 

which enhances the resolution of the scheme at 

discontinuities like shock waves and contact 

discontinuities, is defined as: 
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                                            (33) 

The   parameter at the (i+½,j) interface, which 

introduces the artificial compression term, is given 

by: 

                        l
jill ,0.1  ,             (34) 

in which l assumes the following values: 1 = 0.25 

(non-linear field), 2 = 3 = 1.0 (linear field) and 4 

= 0.25 (non-linear field). The g~  function is defined 

by: 

                              l
jil

l
ji gg ,,

~  .              (35) 

The numerical characteristic speed, l , at the 

(i+½,j) interface, which is responsible to transport 

the numerical information associated to the g 

numerical flux function, or indirectly through g~ , is 

defined by: 
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Finally, the [6] dissipation function, to second order 

of spatial accuracy, is constructed by the following 

matrix-vector product: 

        
jijijijijiYWH QggRD

,2/1,1,,2/1,2/1 
 . 

                                                                            (37) 

 The convective numerical flux vector to the 

(i+½,j) interface is described by: 

          )(
int

)(
int

)(
int

)(
,2/1 5.0

l
YWHy

l
x

ll
ji DVhFhEF  ,      (38) 

with: 

 )()()(
int 5.0

l
L

l
R

l
EEE   and  )()()(

int 5.0
l

L
l

R
l

FFF  .  (39) 

The right-hand-side of the [6] TVD scheme, 

necessaries to the resolution of the implicit version 

of this algorithm, is determined by: 
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 n
2/1j,i

n
2/1j,i

n
j,2/1i

n
j,2/1ij,ij,i

n
j,i FFFFVt)YWH(RHS   . 

(40) 

 To the viscous simulations, it is necessary to 

implement the explicit version. In this case, the time 

integration is replaced by a dimensional splitting 

method, first order accurate, which divides the 

temporal integration in two steps, each one 

associated with a different spatial direction. 

Considering the initial step associated with the  

direction: 

              n
ji

n
jijijiji FFVtQ ,2/1,2/1,,

*
,   ;      (41) 

                         *
,,

*
, ji

n
jiji QQQ  ;                       (42) 

and, in the final step, considering the  direction: 

            *
2/1,

*
2/1,,,

1
, 
  jijijiji

n
ji FFVtQ ;       (43) 

                        1
,

*
,

1
,

  n
jiji

n
ji QQQ .                     (44) 

 The viscous vectors at the flux interface are 

obtained by arithmetical average between the 

primitive variables at the left and at the right states 

of the flux interface, as also arithmetical average of 

the primitive variable gradients. The gradients of the 

primitive variables present in the viscous flux 

vectors are calculated employing the Green 

Theorem which considers that the gradient of a 

primitive variable is constant in the volume and that 

the volume integral which defines this gradient is 

replaced by a surface integral ([26]); For instance, to 

xu  : 

    








 2/1j,i

x

x1j,ij,i

S

x

S

x

V

Suu5.0
V

1
udS

V

1
Sdnu

V

1
dV

x

u

V

1

x

u 
 

      
j,2/1i2/1j,ij,2/1i xj,1ij,ix1j,ij,ixj,1ij,i Suu5.0Suu5.0Suu5.0

   . 

                                                                                          

(45) 

 

4  Numerical Scheme of [14] 

 

4.1 Explicit Upwind Algorithm 
A typical conservative numerical scheme, using a 

finite volume formulation, for solving Eq. (1) can be 

expressed in terms of numerical fluxes as follows: 

   N
ji

N
jijiji

N
ji

N
jijiji

n
ji

n
ji FFVtEEVtQQ 2/1,2/1,,,,2/1,2/1,,,
1

, 
  , (46) 

where N
jiE ,2/1  and N

jiF 2/1,   are the numerical fluxes. 

For a first order upwind scheme, N
jiE ,2/1  is given 

by: 

           n
jijiji

n
ji

N
ji EAEE ,,2/1,2/1,2/1,2/1

ˆ



  ,       (47) 

with:     jijiji ,,1,2/1   , n
jiE ,2/1  and n

jiE , defined 

by: 

           

jicont

ycont

xcont

cont

n
ji

Upe

phvU

phuU

U

VE

,2/1

int,2/1

)(




































    and 

                    

jicont

ycont

xcont

cont

n
ji

Upe

phvU

phuU

U

VE

,

int,

)( 































 ;         (48) 

and 
 jiA ,2/1

ˆ  defined as follows: 

     
jiji RRA

,2/1

1
,2/1

ˆˆ









  ,  

  ldiag ˆˆ    and 

                            ll sign15.0ˆ ,                     (49) 

 

where: R  and 1
R  are defined in [25; 27];  diag  

represents a diagonal matrix, as for instance: 

                   










































4

3

2

1

ˆ

ˆ

ˆ

ˆ

ˆ ;                     (50) 

 l  are defined by Eqs. (21) and (22) to the  

direction; and   lsign  is equal to 1.0 if 
 l   0.0 

and -1.0 otherwise. For explicit methods in the two-

dimensional space, the Strang type directional 

splitting is employed: 

                  n
ji

n
ji QtLtLtLtLQ ,
2

,  
 .         (51) 

The L  operator is defined by: 

         N
ji

N
jiji

n
ji

n
ji EEtQQtL ,2/1,2/1,,,   .      (52) 
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Similar expressions can be given for N
jiF 2/1,   and the 

L operator. 

 

4.2 Uniformly Second Order Essentially 

Nonoscillatory Schemes 
[3] proposed to construct second order accurate 

TVD schemes by applying a first order approximate 

Riemann solver to a modified flux. Following [3], 

[14] proposed to define a modified numerical flux 

function with the definition of the modified fluxes: 

     nnMn EEEE  , nnMn FFFF  ,    (53) 

where E
M

 and F
M

 are the modified fluxes which 

have essentially nonoscillatory property yet to be 

defined. In the following, a numerical method of 

uniformly second order accuracy in time and space 

which combines both characteristic and conversion 

features of Eq. (1) is discussed. For the present ENO 

scheme, the numerical flux E
N
 is described by: 

M
jiji

M
ji

M
jiji

M
ji

N
ji EAEEAEE

jiji ,,2/1,,,2/1,1,2/1 ,2/1,2/1

ˆˆ






 


. 

(54) 

The components of the additional vector E  are 

given by: 

    jijijijijijiji eemeeememe ,2/1,2/1,2/1,2/1,2/1,2/1,
~,~~,~,~~
  , 

(55) 

where jiji ,1, )()(   ,  jiji ,,1 )()(   , and 

jie ,2/1
~
  are components of the following column 

vector: 

   2
~

,,2/1,2/1,,2/1,2/1 jijijijijiji EAtIAsignE   . 

(56) 

The  Asign  and A  in Eq. (56) are given by: 

     1



  RsigndiagRAsign l   and    1




  RdiagRA l . 

(57) 

Similar derivations can be given for the F  vector in 

the  direction. In Equation (55), m is the minmod 

function: 

 basbam ,min),(  ,   if sign(a) = sign(b) = s; (58) 

                       0.0),( bam , otherwise.                (59) 

and the m  function is defined by: 

                          am  ,    if ba  ;                     (60) 

                          bm  ,    if ba  .                     (61) 

 For  = 0.0, one has a second order TVD 

scheme. For  = 0.5, one has a uniformly second 

order nonoscillatory scheme. The numerical scheme 

is thus formed by Eq. (46) using the definition (54) 

to the numerical flux function and the explicit time 

integration is performed by the Strang method 

described by Eqs. (51) and (52). 

 The present author introduced some 

modifications in the [14] schemes. Equation (54) is 

redefined as: 

M
jiji

M
ji

M
jiji

M
ji

N
ji QAEQAEE

jiji ,,2/1,,,2/1,1,2/1 ,2/1,2/1 




 


, 

(62) 

with: n
ji

nn
ji

M
ji EAEE

ji ,1,1,1 ,      and   

  n
ji

T

ji
M

ji EevuVQ ,,int,  . The positive 

splitting matrix 
  ji

A
,2/1

 is defined as 

  1

,2/1








 


RdiagRA lji
, with    lll 5.0 , and 

the Jacobian matrix at the  direction is described by 

  1

,





  RdiagRA l

n

ji
. The vector jiE ,2/1

~
  is also 

redefined as: 

   2
~

,,2/1,2/1,,2/1,2/1 jijijijijiji QAtIAsignE   , 

(63) 

where  T

jiji evuVQ ,int,  , the vector of 

conserved variables. Observe that the resulting 

schemes are equivalent to the originals of [14], with 

the unique difference that the difference of fluxes in 

Eq. (56) is changed by the difference of conserved 

variables, Eq. (63). With this new definition, the 

solutions present better behavior, free of 

oscillations, undershoots and overshoots. The other 

expressions maintain the same structure. 

 The right-hand-side of the [14] schemes, 

necessaries to the resolution of the implicit version 

of this algorithm, is defined by: 
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 N
2/1j,i

N
2/1j,i

N
j,2/1i

N
j,2/1ij,ij,i

n
j,i FFEEVt)Y(RHS   . 

(64) 

 

 The explicit version of this algorithm to perform 

the viscous simulations is described by Eqs. (51) 

and (52). The implementation of the viscous terms 

follows the same procedure as described in section 

3. 

 

5 Implicit Formulation 
All implicit schemes implemented in this work used 

backward Euler in time and ADI approximate 

factorization to solve a three-diagonal system in 

each direction. 

 

5.1 Approximate Factorization ADI – [6] 

TVD Scheme 

The ADI approximate factorization form to the 

implicit scheme of [6] is presented in two stages, 

each one associated with a different coordinate 

direction: 

  jijijijijiji RHSQJtJtI ,
*
,,2/1,,2/1,  









 ;  (65) 

  *
,

1
,2/1,,2/1,, ji
n

jijijijiji QQKtKtI  









 , (66) 

where: RHSi,j is defined by Eq. (40); the difference 

operators are defined as: 

               jiji ,,1  

 ,       jiji ,1, 


  ,    (67) 

               jiji ,1,  

 ,       1,, 


  jiji ,     (68) 

and the update of the conserved variable vector is 

proceeded as follows: 

                          1
,,

1
,

  n
ji

n
ji

n
ji QQQ .                   (69) 

This system of 4x4 block three-diagonal linear 

equations is solved using LU decomposition and the 

Thomas algorithm applied to systems of block 

matrices. The splitting matrices J
+
, J

-
, K

+
 and K

-
 are 

defined as: 

1





  RRJ , 1





  RRJ , 1





  RRK ; (70) 

                           1





  RRK                           (71) 

The diagonal matrices of eigenvalues are 

determined, for instance, by: 










































,
4

,
3

,
2

,
1

   and   










































,
4

,
3

,
2

,
1

, 

(72) 

 

with:  
 lll 5.0

, ;  
 lll 5.0

, ; and R  

and 1
R  defined in [25;27]. Similar expressions are 

valid to the  direction. This implicit formulation to 

the LHS of the [6] scheme is first order accurate in 

time and space. The solution accuracy in space in 

the state steady condition is of second order due to 

the RHS. 

 

5.2 Approximate Factorization ADI – [14] 

TVD/ENO Schemes 

The implicit scheme in ADI approximate 

factorization form is given by: 

  jijijijijiji RHSQAAtAAtI
jiji ,

*
,,2/1,,2/1, ,,

ˆˆ  




 ; (73) 

  *
,

1
,2/1,,2/1,, ,,

ˆˆ
ji

n
jijijijiji QQBBtBBtI

jiji
 






 , (74) 

where RHSi,j is defined by Eq. (64) and the matrices 

above are defined as follows: 

             
jilji TdiagTA

,2/1

1,
,2/1

ˆˆ









     and 

                  
j,2/1i

1,
lj,2/1i TˆdiagTÂ










  ;          (75) 

             
2/1,

1,
2/1,

ˆˆ









 

jilji TdiagTB ,   and 

                   
2/1,

1,
2/1,

ˆˆ









 

jilji TdiagTB ;          (76) 

  
jil TdiagTA

ji ,

1

,





   and   

jil TdiagTB
ji ,

1

,





  , 

(77) 

with: 

       
 ll sign15.0ˆ , ,   

 ll sign15.0ˆ , ;  (78) 

        
 ll sign15.0ˆ , ,   

 ll sign15.0ˆ , ; (79) 

and the similar transformation matrix T and its 

inverse specified in [27]. 
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 This implicit formulation to the LHS of the [14] 

schemes is first order accurate in time and space. 

The solution accuracy in space in the state steady 

condition is of second order due to the RHS. 

 

6 Turbulence Models 
The turbulence models of [15] and of [16] are 

described in [28-29]. The [17] model is described as 

follows. 

 

6.1 Turbulence Model of [17] 
Aiming to overcome the limitations of algebraic 

models and to avoid the difficulties of the 

implementation of two-equation models or of 

Reynolds stress ones, the one-equation model of 

[17], involving the transport of eddy viscosity, is 

implemented. This model was chosen due to the 

reasonable results obtained in a large range of flows 

and due to its numerical properties. This model 

takes naturally into account the effects of the 

turbulence history and of diffusion. 

 The transport equation to the work turbulent 

kinematic viscosity is described by: 

     
2

1
2

21

~
)(~~~1~~~








 







N
rfccSc

Dt

D
wwbb . (80) 

In this equation, the first term of the right hand side 

is the production term of work kinematic viscosity, 

the second term is the diffusion term of viscosity 

and the last one is the destruction term, or 

dissipation term, of work kinematic viscosity. 

 The turbulent viscosity is defined by: 

                               1
~

vT f .                            (81) 

With the intention to assure that ~  matches 

wwxyNK  ,  at the logarithmic layer and at 

the viscous sub-layer, the damping function 1vf  is 

defined by: 

                           3
1

33
1 vv cf                         (82) 

as function of the variable  ~ . The function S
~

 

is determined by the expression: 

                          2
2~~

vfNyuS  ,             (83) 

where 2vf  has the following expression: 

                             12 11 vv ff  .                 (84) 

 The destruction term should disappear at the 

external region of the boundary layer. [17] suggest 

the following function to make possible such 

behavior: 

        616
3

66
31)( www cgcgrf  ,  rrcrg w  6

2 ;   (85) 

                                 SNr
~~ 2

 ,                      (86) 

with the argument r and the function wf  reaching 

the value 1.0 at the logarithmic layer and decreasing 

at the external region. The function g is merely a 

limiter to avoid high values of wf . The [17] 

constants have the following values: 

;0.2c,32,1.7c,3.0c,622.0c,1355.0c 3w1v2w2b1b   

 






 2b

2

1b
1w

c1c
c . 

 This model is marched in time employing the 

implicit method LU-SGS (Lower-Upper 

Factorization – Symmetrical Gauss-Seidel). Details 

of such implicit implementation in two-dimensions 

can be found in [17]. In the present work, the 

term relative to the diffusion of work kinematic 

viscosity was not implemented. The studied model 

considers only the production and dissipation terms 

of work kinematic viscosity. 

 Initial and boundary conditions to solve the 

differential equation are reported in [17]. 

 

7 Spatially Variable Time Step 
The basic idea of this procedure consists in keeping 

constant the CFL number in all calculation domain, 

allowing, hence, the use of appropriated time steps 

to each specific mesh region during the convergence 

process. Two models, each one associated to the 

respective type of flow, are described. 

 
7.1 Inviscid Model 
According to the definition of the CFL number, it is 

possible to write: 

                            jijiji csCFLt ,,,  ,                    (87) 

where CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme; jiji avuc ,
22

, 




   is the maximum 

characteristic speed of propagation of information in 

the calculation domain; and   jis ,  is a characteristic 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-2880 470 Issue 6, Volume 11, June 2012



length of transport of information. On a finite 

volume context,   jis ,  is chosen as the minor value 

found between the minor centroid distance, 

involving the (i,j) cell and a neighbor, and the minor 

cell side length. 

 

7.2 Viscous Model 
In this model, the time step is defined according to 

[30] work: 

                      
 

jivc

vc

ji
tt

ttCFL
t

,

, 











 ,           (88) 

with tc being the convective time step and tv 

being the viscous time step. These quantities are 

defined as: 

                               
 

;
V

t
j,ic

j,i

j,ic


                     (89) 

        max
,2/1

max
2/1,

max
,2/1

max
2/1,,

,,,max jijijijijic   ; (90) 

                 intintintintint
max Sanvnu yx  ;        (91) 

       
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ji
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V
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,

,
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,
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




 ; 

(93) 

                             jijiv pp ,,
21 ,                    (94) 

 

where interface properties are calculated by 

arithmetical average, M is the freestream Mach 

number and Kv is equal to 0.25, as recommended by 

[30]. 

 

8  Configurations of the Physical 

Problems, Employed Meshes and 

Initial and Boundary Conditions 

 

8.1 Computational Cell, Configurations and 

Meshes 
In this section, the computational cell employed in 

the numerical experiments and the physical 

configurations at the xy plane of the studied 

problems in this work are described altogether with 

the employed mesh in each case (inviscid and 

laminar and turbulent). 

 
Figure 1. Computational cell. 

 

 
Figure 2. Nozzle configuration in the xy plane. 

 
Figure 3. Nozzle mesh in two-dimensions. 

 Figure 1 describes the computational cell. The 

geometry of the convergent-divergent nozzle at the 

xy plane is described in Fig. 2. The total length of 

the nozzle is 0.38ft (0.116m) and the throat height is 

equal to 0.090ft (0.027m). The throat is located at 

0.19ft (0.058m) from the entrance boundary. The 

throat curvature ratio is equal to 0.090ft. The nozzle 

convergence angle is 22.33 and the nozzle 
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divergence angle is 1.21. An exponential stretching 

of 10% in both  and  directions was used. An 

algebraic mesh of 61 points in the  direction and 71 

points in the  direction was generated, which 

corresponds in finite volumes to 4,200 rectangular 

cells and 4,331 nodes. Figure 3 exhibits the mesh 

employed in the simulations. 

 The compression corner configuration at the xy 

plane is described in Fig. 4. The corner inclination 

angle is 10
o
. An algebraic mesh of 70 points in the  

direction and 50 points in the  direction was 

generated, which corresponds in finite volumes to 

3,381 rectangular cells and 3,500 nodes. Figure 5 

exhibits such mesh. 

 
Figure 4. Corner configuration in the xy plane. 

 
Figure 5. Corner mesh in two-dimensions. 

 

 Finally, the ramp configuration at the xy plane is 

described in Fig. 6. The compression corner has 20 

of inclination. The mesh used in the simulations has 

3,540 rectangular cells and 3,660 nodes to a 

structured discretization of the calculation domain. 

This mesh is equivalent, in finite differences, of 

being composed of 61 points in the  direction and 

60 points in the  direction. An exponential 

stretching of 10% in the  direction was employed. 

Figure 7 shows such mesh. 

 
Figure 6. Ramp configuration in the xy plane. 

 
Figure 7. Ramp mesh in two-dimensions. 

 

8.2  Initial Conditions 

Stagnation values are used as initial condition to the 

nozzle problem. Only at the exit boundary is 

imposed a reduction of 1/3 to the density and to the 

pressure to start the flow along the nozzle. The 

vector of conserved variables is defined as: 

a) Domain except the nozzle exit: 

                      t
Q )1(21001  ;        (95) 

 

b) Nozzle exit: 

                    t
Q )1(61003/1  .       (96) 

To the others problems, values of freestream flow 

are adopted for all properties as initial condition, in 

the whole calculation domain: 

   tMsenMMQ 25.0)1(1cos1   , (97) 
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where M represents the freestream Mach number 

and  is the flow attack angle. 

 

8.3  Boundary Conditions 
The boundary conditions are basically of three 

types: solid wall, entrance and exit. These 

conditions are implemented in special cells named 

ghost cells. 

(a) Wall condition: This condition imposes the flow 

tangency at the solid wall to the inviscid case. This 

condition is satisfied considering the wall tangent 

velocity component of the ghost volume as equals to 

the respective velocity component of its real 

neighbor cell. At the same way, the wall normal 

velocity component of the ghost cell is equaled in 

value, but with opposite signal, to the respective 

velocity component of the real neighbor cell. 

 The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 

formulation. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 

gas. 

 To the viscous case, only the velocity 

components are determined in a different way from 

the inviscid case. This condition is satisfied 

considering the wall tangent velocity component of 

the ghost volume as equals to the respective velocity 

component of its real neighbor cell, with opposite 

signal. At the same way, the wall normal velocity 

component of the ghost cell is equaled in value, but 

also with opposite signal, to the respective velocity 

component of the real neighbor cell. 

 The pressure gradient normal to the wall is 

assumed be equal to zero, following the boundary 

layer theory. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 

gas. 

(b) Entrance condition: 

(b.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain ([31]). In other 

words, three characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qn-a)” velocity cannot 

be specified and should be determined by interior 

information of the calculation domain. The u 

velocity component was the extrapolated variable 

from the real neighbor volume to the nozzle 

problem, while the pressure was the extrapolated 

variable to the others problems. Density and 

pressure had their values determined by isentropic 

relations in the nozzle problem, while density and 

velocity components had their values determined by 

the freestream flow properties in the others 

problems. The total energy per unity fluid volume is 

determined by the state equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with 

their freestream flow values. 

(c) Exit condition: 

(c.1) Subsonic flow: Three characteristic directions 

of information propagation point outward the 

computational domain and should be extrapolated 

from interior information ([31]). The characteristic 

direction associated to the “(qn-a)” velocity should 

be specified because it penetrates the calculation 

domain. In this case, the ghost volume’s pressure is 

specified by its freestream value. Density and 

velocity components are extrapolated and the total 

energy is obtained by the state equation of a perfect 

gas. 

(c.2) Supersonic flow: All variables are extrapolated 

from the interior domain due to the fact that all four 

characteristic directions of information propagation 

of the Euler equations point outward the calculation 

domain and, with it, nothing can be fixed. 

 

9 Results 
Tests were performed in a microcomputer with 

processor AMD SEMPRON (tm) 2600+, 1.83GHz, 

and 512 Mbytes of RAM memory. The criterion 

adopted in this work to obtain convergence 

considers a reduction of 3 orders in the magnitude 

of the maximum residual in the domain, a typical 

criterion in the CFD community. In all problems, 

the entrance angle was set equal to 0.0. To the 

inviscid cases, the implicit formulation was 

employed to generate the numerical results, whereas 

to the viscous laminar and turbulent cases, the 

explicit version was used. 

 

9.1 Inviscid Results 
 

9.1.1 Convergent-Divergent Nozzle 
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Stagnation flow was adopted as initial condition to 

this problem. Figures 8 to 10 show the pressure 

contours obtained by the [6], the [14]/TVD, and the 

[14]/ENO schemes, respectively. All schemes 

presented the same quantitative pressure field. Good 

symmetry characteristics are observed in all 

solutions. 

 
Figure 8. Pressure contours ([6]). 

 
Figure 9. Pressure contours ([14]/TVD). 

 

 
Figure 10. Pressure contours ([14]/ENO). 

 

 Figure 11 exhibits the lower wall pressure 

distributions along the convergent-divergent nozzle. 

They are compared with the experimental results of 

[32]. As can be observed, the [6] TVD scheme 

presents the best pressure distribution (closer to the 

experimental data). 

 
Figure 11. Wall pressure distributions. 

 

9.1.2 Compression Corner 
A freestream Mach number of 3.0, characterizing a 

moderate supersonic flow regime, was adopted as 

initial condition to this problem. The flow reaches 

the compression corner, generating an oblique shock 

wave along the corner. Figures 12 to 14 exhibit the 

pressure contours obtained by the schemes of [6], of 

[14]/TVD, and of [14]/ENO, respectively. The most 

severe pressure field after the oblique shock wave is 

obtained by the [6] TVD scheme. All solutions are 

clear, without pressure oscillations. 

 
Figure 12. Pressure contours ([6]). 

 Figure 15 exhibits the wall pressure distributions 

along the compression corner obtained by all 

schemes. They are compared with the oblique shock 

wave theory results. As can be observed, the [6] 

TVD scheme presents oscillations at the 

discontinuity, originating a pressure peak at the 

corner. The [14]/TVD and [14]/ENO schemes 

present smooth transition at the shock wave, 

highlighting the good behavior of the ENO scheme 

as yielding an essentially non-oscillatory solution at 
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extrema. All schemes slightly under-predict the 

shock plateau. Figure 16 shows the same pressure 

distributions plotted using symbols to identify how 

much cells are necessary to capture the shock 

discontinuity. All schemes detect the shock 

discontinuity using four cells, which is a good 

number of cells in terms of high resolution schemes. 

 

 
Figure 13. Pressure contours ([14]/TVD). 

 
Figure 14. Pressure contours ([14]/ENO). 

 

 One way to quantitatively verify if the solutions 

generated by each scheme are satisfactory consists 

in determining the shock angle of the oblique shock 

wave, , measured in relation to the initial direction 

of the flow field. [33] (pages 352 and 353) presents 

a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and of the deflection angle of the flow after 

the shock wave, . To the compression corner 

problem,  = 10º (ramp inclination angle) and the 

freestream Mach number is 3.0, resulting from this 

diagram a value to  equals to 27.5º. Using a 

transfer in Figures 12 to 14, it is possible to obtain 

the values of  to each scheme, as well the 

respective errors, shown in Tab. 1. As can be 

observed, the best scheme was the Yang/ENO 

(1990) one, with a percentage error of 0.36%. 

 
Figure 15. Wall pressure distributions. 

 
Figure 16. Wall pressure distributions. 

 

Table 3. Shock angle and respective percentage 

errors to the corner problem. 

 

Algorithm  () Error (%) 

[6] 28.0 1.82 

[14]/TVD 27.8 1.09 

[14]/ENO 27.6 0.36 

 

9.2 Viscous Results 
The physical problem studied in the viscous laminar 

and turbulent simulations is the flow along a ramp. 

This problem is a low supersonic flow hitting a 

ramp with 20 of inclination. It generates a shock 

and an expansion fan. A boundary layer is also 

formed along the ramp wall. The freestream Mach 

number adopted as initial condition to this 

simulation was 2.0. The Reynolds number was 

estimated to be 1.613x10
5
 at a flight altitude of 

20,000m and l = 0.0437m, based on the work of 

[22]. To this Mach number and Reynolds number, a 
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separated flow is formed at the ramp wall, with the 

formation of a circulation bubble. This behavior is 

observed in all solutions of all schemes. 

 

9.2.1 Laminar Viscous Results 

Figures 17 to 19 exhibit the pressure contours 

obtained by the [6], the [14]/TVD, and the 

[14]/ENO schemes, respectively. The most severe 

pressure field, which characterizes the most 

conservative solution, is obtained by the [14]/ENO 

scheme. The shock wave is better captured by the 

[14] schemes. All schemes detect a weak shock 

wave formed ahead of the ramp’s corner. This shock 

is due to the meaningful increase in the thickness of 

the boundary layer, which simulates a thicker 

geometry to the flow. This increase in the boundary 

layer thickness is originated by its separation, 

resulting in a circulation bubble, highlighted in Figs. 

20 to 22. 

 
Figure 17. Pressure contours ([6]). 

 
Figure 18. Pressure contours ([14]/TVD). 

 

 Figures 20 to 22 show the velocity vector fields 

close to the ramp wall and the respective streamlines 

obtained by the [6], by the [14]/TVD, and by the 

[14]/ENO schemes. It is possible to note regions of 

separated flow in the solutions generated by all 

schemes. The streamlines highlight this separated 

flow close to the wall, as well the formation of a 

circulation bubble. The separation region detected 

by the [6] TVD scheme is shorter than the 

respective ones detected by the [14]/TVD and 

[14]/ENO schemes. Nonethless, a thicker boundary 

layer is characterized in this case. The effect of the 

increase of the boundary layer thickness tends to 

yield a weaker shock ahead of the ramp, as 

mentioned in the pressure field analyses, detected by 

all schemes. 

 
Figure 19. Pressure contours (Yang/ENO). 

 
Figure 20. Velocity field and streamlines ([6]). 

 
Figure 21. Velocity field and streamlines ([14]/TVD). 
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Figure 22. Velocity field and streamlines ([14]/ENO). 

 

 Figure 23 exhibits the wall pressure distributions 

obtained by all schemes. They are compared with 

inviscid solution, which represents the correct 

solution considering the boundary layer theory. The 

oblique shock wave and the Prandtl-Meyer 

expansion fan theories were applied to define the 

inviscid solution. All schemes present a small peak 

of pressure ahead of the ramp’s corner, which 

defines the weaker shock (approximately at x = 

0.125m). Better solutions are obtained by the 

[14]/TVD and [14]/ENO schemes, with pressure 

peaks, at the ramp region, closer to the pressure 

plateau of the inviscid solution. Both schemes 

under-predict the pressure plateau. The pressure 

after the expansion fan is also better captured by the 

versions of the [14] scheme. 

 
Figure 23. Wall pressure distributions (Lam). 

 

 Again, one way to quantitatively verify if the 

solutions generated by each scheme are satisfactory 

consists in determining the shock angle of the 

oblique shock wave, , measured in relation to the 

initial direction of the flow field. To the ramp 

problem,  = 20º (ramp inclination angle) and the 

freestream Mach number is 2.0, resulting from this 

diagram a value to  equals to 53.0º. Using a 

transfer in Figures 17 to 19, it is possible to obtain 

the values of  to each scheme, as well the 

respective errors, shown in Tab. 4. As can be 

observed, the [6] and the [14]/ENO schemes present 

the best solutions, with an error of 2.83%. 

 

Table 4. Shock angle and respective percentage 

errors to the ramp problem (Laminar). 

 

Algorithm  () Error (%) 

[6] 51.5 2.83 

[14]/TVD 51.3 3.21 

[14]/ENO 51.5 2.83 

 

9.2.2 Turbulent Viscous Results 

 

[15] Results. Figures 24 to 26 exhibit the pressure 

contours obtained by the [6], the [14]/TVD, and the 

[14]/ENO schemes, respectively, using the [15] 

turbulence model. The most severe pressure field, 

which characterizes the most conservative solution, 

is again obtained by the [14]/ENO scheme. The 

shock wave is better captured by the [14] schemes. 

All schemes detect the weak shock wave formed 

ahead of the ramp’s corner described in the laminar 

case, with less extension and intensity because the 

effect of the turbulence model is to proportionate a 

more stable boundary layer. This shock is due to the 

meaningful increase in the thickness of the 

boundary layer, which simulates a thicker geometry 

to the flow. This increase in the boundary layer 

thickness is originated by its separation, resulting in 

a circulation bubble, highlighted in Figs. 27 to 29. 

As aforementioned, the effect of the turbulence 

model is to stabilize the boundary layer, originating 

a less extension region of separated flow. 

 Figures 27 to 29 show the velocity vector fields 

close to the ramp wall and the respective streamlines 

obtained by the [6], by the [14]/TVD, and by the 

[14]/ENO schemes using the [15] turbulence model. 

It is possible to note regions of separated flow in the 

solutions generated by all schemes. The streamlines 

highlight this separated flow close to the wall, as 

well the formation of a circulation bubble. The 

separation region detected by the [6] TVD scheme is 

longer than the respective ones detected by the 

[14]/TVD and [14]/ENO schemes. It also results in 

a thicker boundary layer captured by the [6] TVD 

scheme. 

 Figure 30 exhibits the wall pressure distributions 

obtained by all schemes using the [15] turbulence 

model. They are compared with inviscid solution, 

which represents the correct solution considering the 
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boundary layer theory. Better solutions are obtained 

by the [14]/TVD and [14]/ENO schemes, with 

pressure peaks, at the ramp region, closer to the 

pressure plateau of the inviscid solution. All three 

schemes under-predict the pressure plateau. The 

pressure after the expansion fan is also better 

captured by the versions of the [14] scheme. 

 
Figure 24. Pressure contours ([6]). 

 
Figure 25. Pressure contours ([14]/TVD). 

 
Figure 26. Pressure contours ([14]/ENO). 

 

 
Figure 27. Velocity field and streamlines ([6]). 

 
Figure 28. Velocity field and streamlines ([14]/TVD). 

 
Figure 29. Velocity field and streamlines ([14]/ENO). 

 

 Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 

flow field. Using a transfer in Figures 24 to 26, it is 

possible to obtain the values of  for each scheme, 

as well the respective errors, shown in Tab. 5. As 

can be observed, the best scheme employing the 
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[15] turbulence model was the [14]/TVD scheme, 

with an error of 0.38%. 

 
Figure 30. Wall pressure distributions ([15]). 

 

Table 5. Shock angle and respective percentage 

errors to the ramp problem ([15] case). 

 

Algorithm  () Error (%) 

[6] 53.9 1.70 

[14]/TVD 52.8 0.38 

[14]/ENO 52.5 0.94 

 

[16] Results. Figures 31 to 33 exhibit the pressure 

contours obtained by the [6], the [14]/TVD, and the 

[14]/ENO schemes, respectively, using the [16] 

turbulence model. The most severe pressure field, 

which characterizes the most conservative solution, 

is again obtained by the [14]/ENO scheme. The 

shock wave is better captured by the [14] schemes. 

All schemes detect the weak shock wave formed 

ahead of the ramp’s corner described in the laminar 

case. With this turbulence model, the extension of 

the separated flow was similar to the laminar case. 

Hence, the reduction of the extension of the 

separated flow is small. Even so, this reduction 

occurs. However, it results in the [15] model 

presenting better flow characteristics. 

 Figures 34 to 36 show the velocity vector fields 

close to the ramp wall and the respective streamlines 

obtained by the [6], by the [14]/TVD, and by the 

[14]/ENO schemes using the [16] turbulence model. 

It is possible to note regions of separated flow in the 

solutions generated by all schemes. The streamlines 

highlight this separated flow close to the wall, as 

well the formation of a circulation bubble. The 

separation region detected by the [6] TVD scheme is 

shorter than the respective ones detected by the 

[14]/TVD
 
and [14]/ENO schemes. Nonetheless, a 

thicker boundary layer is characterized in this case. 

 
Figure 31. Pressure contours ([6]). 

 
Figure 32. Pressure contours ([14]/TVD). 

 
Figure 33. Pressure contours ([14]/ENO). 

 

     Figure 37 exhibits the wall pressure distributions 

obtained by all schemes using the [16] turbulence 

model. They are compared with inviscid solution. 

All schemes present a small peak of pressure ahead 

of the ramp’s corner, which defines the weaker 

shock (approximately at x = 0.130m). Better 

solutions are obtained by the [14]/TVD and 

[14]/ENO schemes, with pressure peaks, at the ramp 
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region, closer to the pressure plateau of the inviscid 

solution. Both schemes under-predict the pressure 

plateau. The pressure after the expansion fan is also 

better captured by the versions of the [14] scheme. 

 
Figure 34. Velocity field and streamlines ([6]). 

 
Figure 35. Velocity field and streamlines ([14]/TVD). 

 
Figure 36. Velocity field and streamlines ([14]/ENO). 

 

     Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 

flow field. Using a transfer in Figures 31 to 33, it is 

possible to obtain the values of  to each scheme, as 

well the respective errors, shown in Tab. 6. As can 

be observed, all three schemes employing the [16] 

turbulence model present the same value to the 

shock angle, with an error of 2.26%. 

 
Figure 37. Wall pressure distributions ([16]). 

 

Table 6. Shock angle and respective percentage 

errors to the ramp problem ([16] case). 

 

Algorithm  () Error (%) 

[6] 51.8 2.26 

[14]/TVD 51.8 2.26 

[14]/ENO 51.8 2.26 

 

[17] Results. Figures 38 to 40 exhibit the pressure 

contours obtained by the [6], the [14]/TVD, and the 

[14]/ENO schemes, respectively, using the [17] 

turbulence model. The most severe pressure field, 

which characterizes the most conservative solution, 

is again obtained by the [14]/ENO scheme. The 

shock wave is better captured by the [14] schemes. 

All schemes detect the weak shock wave formed 

ahead of the ramp’s corner described in the laminar 

case. With this turbulence model, the extension of 

the separated flow was similar to the laminar case. 

Hence, the reduction of the extension of the 

separated flow is small. Even so, this reduction 

occurs. However, it results in the [15] model 

representing better flow characteristics. 

 Figures 41 to 43 show the velocity vector fields 

close to the ramp wall and the respective streamlines 

obtained by the [6], by the [14]/TVD, and by the 

[14]/ENO schemes using the [17] turbulence model. 

It is possible to note regions of separated flow in the 

solutions generated by all schemes. The streamlines 

highlight this separated flow close to the wall, as 

well the formation of a circulation bubble. The 

separation region detected by the [6] TVD scheme is 
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shorter than the respective ones detected by the 

[14]/TVD and [14]/ENO schemes. Nonethless, a 

thicker boundary layer is characterized in this case.  

 
Figure 38. Pressure contours ([6]). 

 
Figure 39. Pressure contours ([14]/TVD). 

 
Figure 40. Pressure contours ([14]/ENO). 

 

 Figure 44 exhibits the wall pressure distributions 

obtained by all schemes using the [17] turbulence 

model. They are compared with inviscid solution. 

All schemes present a small peak of pressure ahead 

of the ramp’s corner, which defines the weaker 

shock (approximately at x = 0.130m). Better 

solutions are obtained by the [14]/TVD and 

[14]/ENO schemes, with pressure peaks, at the ramp 

region, closer to the pressure plateau of the inviscid 

solution. Both schemes under-predict the pressure 

plateau. The pressure after the expansion fan is also 

better captured by the versions of the [14] scheme. 

 
Figure 41. Velocity field and streamlines ([6]). 

 
Figure 42. Velocity field and streamlines ([14]/TVD). 

 
Figure 43. Velocity field and streamlines ([14]/ENO). 

 

 Again, it is possible to determine by each scheme 

the shock angle of the oblique shock wave, , 

measured in relation to the initial direction of the 
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flow field. Using a transfer in Figures 38 to 40, it is 

possible to obtain the values of  to each scheme, as 

well the respective errors, shown in Tab. 7. As can 

be observed, all three schemes employing the [17] 

turbulence model present the same value to the 

shock angle, with an error of 2.64%. 

 
Figure 44. Wall pressure distributions ([17]). 

 

Table 7. Shock angle and respective percentage 

errors to the ramp problem ([17] case). 

 

Algorithm  () Error (%) 

[6] 51.6 2.64 

[14]/TVD 51.6 2.64 

[14]/ENO 51.6 2.64 

 

9.3 Computational Costs 
 

Table 8. Computational costs. 

 

Case Scheme Cost
(1)

: 

 [6] 1.061x10
-4

 

Inviscid [14]/TVD 1.319x10
-4

 

 [14]/ENO 1.325x10
-4

 

 [6] 2.260x10
-5

 

Laminar [14]/TVD 2.292x10
-4

 

 [14]/ENO 2.316x10
-4

 

 [6] 4.473x10
-5

 

[15] Model [14]/TVD 2.733x10
-4

 

 [14]/ENO 2.740x10
-4

 

 [6] 2.613x10
-5

 

[16] Model [14]/TVD 2.279x10
-4

 

 [14]/ENO 2.295x10
-4

 

 [6] 3.107x10
-5

 

[17] Model [14]/TVD 2.396x10
-4

 

 [14]/ENO 2.491x10
-4

 
(1): Measured in seconds/per iteration/per cell. 

 

 

 The computational costs of each numerical 

scheme for the inviscid, laminar and turbulent cases 

were incorporated in the present work. It gives an 

idea of the computational complexity of the 

numerical implementation of each scheme. As can 

be seen from Table 8, the inviscid-implicit-

numerical implementations of each scheme are the 

cheapest in terms of computational cost. The most 

expensive implementations are due to the [15] 

turbulence model. In general terms, the studied 

schemes present the expected behavior: the [14] 

versions are more complex than the [6] scheme and 

it is reflected in their bigger computational costs for 

each case; the [15] turbulence model requires more 

quantities to be defined and the [16] turbulence 

model is more concise, being the [17] model an 

intermediary between them; and the inviscid 

simulations are less expensive than the viscous 

simulations. 

 

10  Conclusions 
In the present work, the [6], and the [14] schemes 

are implemented, on a finite volume context and 

using a structured spatial discretization, to solve the 

Euler and the laminar/turbulent Navier-Stokes 

equations in the two-dimensional space. The [6] 

scheme and the [14] schemes are TVD or ENO high 

resolution flux difference splitting ones, based on 

the concept of Harten’s modified flux function. The 

[6] TVD scheme is second order accurate in space, 

except at extrema, where the accuracy is reduced to 

first order. The [14] scheme, in its ENO version, is 

uniformly second order accurate in space, inclusive 

at extrema. Its TVD version is also second order 

accurate in space, except at extrema. An implicit 

formulation is employed to solve the Euler 

equations in the inviscid problems. To solve the 

laminar/turbulent Navier-Stokes equations, an 

explicit formulation based on a dimensional splitting 

procedure is employed. Turbulence is taken into 

account considering two algebraic models, namely: 

the [15] and the [16] ones, and the one-equation 

model of [17]. The algorithms are accelerated to the 

steady state solution using a spatially variable time 

step, which has demonstrated effective gains in 

terms of convergence rate ([20-21]). All schemes 

are applied to the solution of the physical problems 

of the transonic flow along a convergent-divergent 

nozzle and the supersonic flow along a compression 

corner in the inviscid case. To the laminar / 

turbulent viscous case, the supersonic flow along a 

ramp is solved. The results have demonstrated that 

the most severe solutions are obtained with the [6] 

TVD scheme in the inviscid problems, whereas the 

[14] algorithm present the most severe solutions in 
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the viscous problem, in both laminar and turbulent 

cases. The most accurate results are obtained by the 

[6] TVD scheme in the nozzle problem, by the 

[14]/ENO scheme in the corner problem and by the 

[14]/TVD scheme in the ramp problem, viscous 

case. 

 In the inviscid case, it is possible to highlight that 

the [6] TVD scheme yields the best pressure 

distribution along the nozzle lower wall. In the 

compression corner, the [14] schemes present good 

wall pressure distributions, slightly under-predicting 

the pressure plateau. The shock transition in all 

schemes is captured using four cells, which is a 

good number of cells to high resolution schemes. 

The shock angle of the oblique shock wave that is 

formed at the compression corner is best estimated 

by the [14]/ENO algorithm. 

 In the ramp viscous case, the laminar results 

present the [6] and the [14]/ENO schemes as 

yielding the best values to the shock angle at the 

ramp. The turbulent results presents the [14]/TVD 

scheme using the [15] model as presenting the best 

value to the shock angle at the ramp. The most 

severe pressure peak at the ramp is due to the 

[14]/TVD and the [14]/ENO schemes using the [15] 

turbulence model. All pressure distributions, related 

to the three algorithms, under-predict the pressure 

plateau of the inviscid solution - the correct solution 

considering the boundary layer theory. The most 

critical pressure distributions, generated by each 

scheme, are obtained when using the [15] turbulence 

model. As general conclusion in terms of viscous 

simulations, all algorithms present the most severe 

solution considering wall pressure distribution as 

using the [15] model. 
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