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Abstract: - The study and application of neural networks is one of the main areas in the field of artificial 
intelligence. The effectiveness of the neural network depends significantly on both its architecture and the 
structure of the training set. This paper proposes a probabilistic approach to evaluate the effectiveness of the 
neural network if the images intersect in the receptor field. A theorem and its corollaries are proved, which are 
consistent with the results obtained by a different path for a perceptron-type neural network. 
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1 Introduction 
A continuous stream of sensory information from 
the outside world is processed in the human brain. 
Understanding the human memory process is a 
serious problem; new images are remembered in 
such a form that the previously memorized ones are 
not modified or forgotten. This creates a dilemma: 
how the memory remains plastic, capable of 
perceiving new images, and at the same time 
maintains stability, ensuring that the images are not 
destroyed or damaged in the process of 
functioning[1-4] . 
The traditional artificial neural networks were 
unable to solve the problem of stability-plasticity. 
Very often neural network training on a new image   
destroys or alters the results of previous training. 
Training images are passed into the network to 
accumulate information about the belonging of these 
images to the corresponding classes. In networks 
with back propagation, for example, training images 
(vectors) are fed to the network input sequentially 
until the network has been trained on the entire 
input set. If however a fully trained network needs 

to memorize a new training vector, it can change the 
weights so much that it requires a complete 
retraining of the network. 
Many works are devoted to the selection of training 
images supplied to the input of the network, as well 
as to the location of these images in the receptor 
field when they are consistently fed to the input of 
the network. Different teaching methods and related 
research and evaluation of network parameters have 
the goal of improving the efficiency of the neural 
network, i.e. increasing  the probability of excitation 
of layers of the neural network  where the 
transmitting information is accumulated [2,3]. 
In the present paper we propose a method for 
studying the probability of correct classification of 
input data in the case of the intersection of these 
images in the receptor field when they are passed to 
the network. It turns out that the efficiency of the 
neural network can be improved by reducing the 
area of intersection of the input images during 
training. It can be said that in a certain sense, the 
problem of stability-plasticity for artificial neural 
networks is solved by choosing the structure of the 
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training set and the parameters of the classification 
model during training. 
In the paper the theorem and its corollaries are 
proved  where  the   obtained results coincide with 
the results proved for a perceptron-type neural 
network [3]. 
 

2 Problem Statement and Solution 
A direct propagation neural network is considered, 
which consists of a layer S of input nodes (S-
elements), hidden layers with associative A-
elements and an output layer with reactive elements 
[3, 6, 7]. Denote   𝑁𝑠  the number of   S-elements 
and   𝑁𝐴  the number of   A-elements. 
Neurons have unidirectional connections, do not 
contain connections between the elements inside the 
layer and feedback connections between the layers. 
The neurons of the input layer are connected to the 
neurons of the hidden layer by excitatory and 
inhibitory connections in a random way. The 
outputs of all the neurons of the hidden layer are 
connected to the neurons of the output layer [2,3]. 
An image is formed in the receptor field, 
corresponding to external irritation. Under the 
image we mean a certain vector, the coordinates 
of which correspond to individual elements of 
the receptor field and can take the values 1 and 
0, depending on whether the corresponding 
element is excited or not. 
Thus, the image X on the retina (receptor field) 
is represented by the vector 𝑋 = {𝑥𝑗},
(𝑗 = 1,2, … , 𝑁𝑠),  each component of which can 
be in an excited or unexcited state: 
 

𝑥𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑒𝑥𝑐𝑖𝑡𝑒𝑑

 0, 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑖𝑡𝑒𝑑
 

 

Below we prove a theorem that gives the 

condition for the synthesis of an effective 

structure of a neural network for practical 

application. 

Theorem. Let A - element has a threshold,  𝑛 

excitatory and 𝑚 inhibitory connections, 

randomly and equiprobably distributed on the 

retina. 

If the images   𝑋 ′   and 𝑋 ′′excite the retina, 

respectively, with success probability 

𝑝1 and 𝑝2,  and with failure probability 𝑞1  =

 1 − 𝑝1, 𝑞2  =  1 −  𝑝2, then the probability 

that the A- element is excited from 

each 𝑋 'and  𝑋′ ′  is 
 

𝑃12 = √
𝑃1

𝑝1

𝑃2

𝑝2

𝑄1

𝑞1

𝑄2

𝑞2

(𝑝12 − 𝑝1𝑝2) + 𝑃1𝑃2 

 

where 𝑃1  is  the probability of A-element 

excitation   when an image  𝑋′ appears on the 

retina of neural network,    𝑃2  is  the 

probability of A-element excitation   when  

the image  𝑋′′     appears on the retina , and 

  𝑃12  is  the probability of A-element 

excitation   when  a pair of images 𝑋′ and   

𝑋′′ from the both classes appear on the retina  

(the image 𝑋′ is from the first class   and  the  

image 𝑋′′  is from the second class), 

 𝑄1 =  1 −  𝑃1,   𝑄2  =  1 −  𝑃2. 

Proof. Let the images 𝑋 ′ and 𝑋′′ excite the 

retina with probabilities   𝑝1 and 𝑝2, 

respectively. Since the state of each their 

component (being excited or unexcited) is 

random, so    𝑋  ′ and 𝑋  ′′ can be considered as 

random variables of  𝑁𝑆 dimension. 

𝑋′ = {𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁𝑆

′ }  ,  𝑋′′ = {𝑥1
′′, 𝑥2

′′, … , 𝑥𝑁𝑆

′′ } 

Let the random variable 𝑋 ′takes the value 1 

with the probability  𝑝1, and the value 0 with 

the probability 𝑞1  =  1 − 𝑝1 , and the 

random variable  𝑋  ′′takes  the value 1 with 

the probability  𝑝2, and the value 0 with the 

probability 𝑞2  =  1 −  𝑝2 . 

The correlation coefficient 𝑟𝑠 between the 

random variables 𝑋  ′and 𝑋 ′′ is determined by 

the formula 

𝑟𝑠 =
𝐶𝑂𝑉(X’ , X’’)

√σ(X’)σ ( X’’) 
 

where 𝐶𝑂𝑉(𝑋′, 𝑋′′) = 𝑀(𝑋′𝑋′′) − 𝑀(𝑋′) ∗

𝑀(𝑋′′), where  𝑀(𝑋′) and 𝑀(𝑋′′) are the  

mathematical expectations  for 𝑋 ′and 𝑋 ′′. 

𝑀(X′) = ∑ 𝑀(𝑥𝑖
′)

𝑁𝑆

𝑖=1

 ∑ 1 ∗ 𝑃(𝑥𝑖
′ = 1) + 0

𝑁𝑆

𝑖=1

∗ 𝑃(𝑥𝑖
′ = 0)  
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𝑀(X′′ ) = ∑ 𝑀(𝑥𝑖
′′ )

𝑁𝑆

𝑖=1

 ∑ 1 ∗ 𝑃(𝑥𝑖
′′ = 1) + 0

𝑁𝑆

𝑖=1

∗ 𝑃(𝑥𝑖
′′ = 0) 

 

All elements of the image   𝑋 ′ are excited 

equally likely i.e. 

𝑃(𝑥𝑖
′ = 1) = 𝑃(𝑥𝑖

′ = 0) = 𝑃′  and  
𝑀(𝑋′ )=𝑁𝑠 ∗ 𝑃′ =𝑝1 

Similarly  𝑀(𝑋′′ )=𝑁𝑠 ∗ 𝑃′′ =𝑝2  . 
Define the vector 𝑋′′′ = (𝑋′𝑋′′ )  as follows 
𝑋′′′ = { 𝑥1

′ 𝑥1
′′, 𝑥2

′ 𝑥2
′′, … , 𝑥𝑁𝑠

′ 𝑥𝑁𝑆

′ }, where 

𝑥𝑖
′′′ = 𝑥𝑖

′𝑥𝑖
′′ = {

  1, 𝑖𝑓 𝑥𝑖
′ = 𝑥𝑖

′′ = 1

  0, otherwise
 

𝑋′′′ is a random variable of 𝑁𝑠 dimension and 
            𝑀(X′′′ ) = ∑ 𝑀(𝑥𝑖

′′′ )
𝑁𝑆
𝑖=1 =  

∑ 1 ∗ 𝑃(𝑥𝑖
′′′ = 1) + 0 ∗ 𝑃(𝑥𝑖

′′′ = 0)

𝑁𝑆

𝑖=1

 

Suppose that all values of the coordinates of the 
vector  𝑋′′′ are equiprobable  i.e. 
𝑃(𝑥𝑖

′′′ = 1) = 𝑃(𝑥𝑖
′′′ = 0) = 𝑃 (𝑖 = 1,2, … , 𝑁𝑆). 

So, 𝑀(𝑋′′′)=𝑁𝑠 ∗ 𝑃 =𝑝12. 
The covariance of the random variables 𝑋′and 𝑋′′ is 
expressed by the formula 
𝐶𝑂𝑉(𝑋′, 𝑋′′) = 𝑀(𝑋′𝑋′′) − 𝑀(𝑋′) ∗ 𝑀(𝑋′′) =
 𝑝12 − 𝑝1 ∗ 𝑝2   (1) 
The variances of the vectors 𝑋′ and  𝑋′′   are 

𝜎(𝑋′) = 𝑀(𝑋′ − 𝑀(𝑋′))2 = 𝑀(𝑋′)2 − (𝑀𝑋′)2 
𝜎(𝑋′′) = 𝑀(𝑋′′ − 𝑀(𝑋′′))2 = 𝑀(𝑋′′)2 − (𝑀𝑋′′)2 
The random variable (𝑋′)2 =  𝑋′𝑋′ is the 
intersection of images 𝑋′ and  𝑋′  on the retina and 
since (𝑋′)2 =  𝑋′, then 𝑀(𝑋′)2 = 𝑀(𝑋′) = 𝑝1 and 
𝜎(𝑋′) = 𝑀(𝑋′)2 − (𝑀𝑋′)2 = 𝑝1 − 𝑝1

2 =
𝑝1(1 − 𝑝1) = 𝑝1 ∗ 𝑞1,   𝑞1 = 1 − 𝑝1                (2) 
Similarly, since 𝑀(𝑋′′)2 = 𝑀(𝑋′′) = 𝑝2   then 
𝜎(𝑋′′) = 𝑀(𝑋′′)2 − (𝑀𝑋′′)2 = 𝑝2 − 𝑝2

2 =
𝑝2(1 − 𝑝2) = 𝑝2 ∗ 𝑞2,   𝑞2 = 1 − 𝑝2               (3) 
Substituting (1), (2), (3) into the expression for 𝑟𝑠 
we get 

𝑟𝑠 =
p12 − p1 ∗ p2

√p1p2q1q2

 

For random vectors 𝑋′ and 𝑋′′, we construct their 
activity vectors in the associative layer - random 
variables 𝜂′ and 𝜂′′  and calculate the correlation 
coefficients between them  [3, 6, 7]. 

Let 𝜂′ = {𝜂1
′ , 𝜂2

′ , … , 𝜂𝑁𝐴

′  }  corresponds to     𝑋′ =

{𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁𝑆

′ }, where 

η𝑖
′ = {

1, 𝑖𝑓 𝑖 𝑡ℎ𝐴 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑒𝑥𝑐𝑖𝑡𝑒𝑑 𝑓𝑟𝑜𝑚   𝑥𝑖
′

0,   otherwise

 

and similarly 𝜂′′ = {𝜂1
′′, 𝜂2

′′, … , 𝜂𝑁𝐴

′′  }    corresponds 
to 𝑋′′ = {𝑥1

′′, 𝑥2
′′, … , 𝑥𝑁𝑆

′′ } .Let calculate the 

correlation coefficient between the random 

variables 𝜂′and 𝜂′′ 

𝑟𝐴 =
COV(η’, η’’) 

√σ(η′)σ(η′′)
 

where        𝐶𝑂𝑉(𝜂′, 𝜂′′) = 𝑀(𝜂′𝜂′′) − 𝑀(𝜂′)𝑀(𝜂′′). 

We denote  𝐵1as the event of exciting  an A - 
element  on the image   𝑋′.    If the event  𝐵1occurs,  
then  𝜂′ takes the value 1, and otherwise -  0. We 

denote  𝐵2 as the event of exciting  an A - 

element  on the image    𝑋′′.    If the event   

𝐵2  occurs, then  𝜂′′   takes the value 1, and 

otherwise  - 0.  And    𝐵3  is  the event of 

exciting  an A - element  on the 

images     𝑋 ′   and    𝑋′′ ( i.e. the events 𝐵1 and 

𝐵2 occur together). If the event 𝐵3 occurs , 

then  𝜂′′′   takes the value 1, and otherwise  - 

0.  

Let 𝜂′′′ = 𝜂′𝜂′′ = {𝜂1
′ 𝜂1

′′, 𝜂2
′ 𝜂2

′′, … , 𝜂𝑁𝐴

′ 𝜂𝑁𝐴

′′ },  where  

η𝑖
′′′ =  ηi

′ηi
′′ = {

1, 𝑖𝑓 ηi
′ = ηi

′′ = 1
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

As noted above    𝑃1 and   𝑃2   are, 

respectively, the probabilities of excitation of 

an A-element from   𝑋 ′and   𝑋′′, and   𝑃12     

the probability   of excitation of an A-element 

from the chain  𝑋 ′ and    𝑋 ′′, and the 

covariance between  𝜂 ′   and    𝜂′′   is 

𝐶𝑂𝑉(𝜂′, 𝜂′′) = 𝑀(𝜂′𝜂′′) − 𝑀(𝜂′)𝑀(𝜂′′)        (4) 

Since  the  mathematical expectations of  𝜂 ′, 𝜂 ′′  
and  𝜂 ′𝜂′′       are 

𝑀𝜂′ = 1 ∗ 𝑃1 + 0 ∗ 𝑄1 = 𝑃1 ,  

𝑀𝜂′′ = 1 ∗ 𝑃2 + 0 ∗ 𝑄2 = 𝑃2 , 
𝑀(𝜂′𝜂′′) = 𝑀(𝜂′′′) = 1 ∗ 𝑃12 + 0 ∗ 𝑄12 = 𝑃12 ,

𝑄12 = 1 − 𝑃12 
then  substituting  them  into (4)  we get 

𝐶𝑂𝑉(𝜂′, 𝜂′′) = 𝑃12 − 𝑃1𝑃2. 
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To calculate the variances   𝜎 (𝜂 ′)   and   𝜎 (𝜂′′)    
we note that the random variable (𝜂′)2 = 𝜂′𝜂′ 
characterizes the intersection of the same set of 
excited  A- elements. 
This means that the values assumed by the random 
variables (𝜂′)2 and 𝜂′ and the probabilities with 
which they take these values are equal. 
The random variable   (𝜂′′)2   is defined similarly. 
Let calculate the variances   𝜎 (𝜂 ′)   and   𝜎 (𝜂′′). 
Since  

𝑀𝜂′ = 1 ∗ 𝑃1 + 0 ∗ 𝑄1 = 𝑃1 , 

then 

𝜎(𝜂′) = 𝑀(𝜂′)2 − (𝑀𝜂′)2 = 𝑃1 − 𝑃1
2 =

= 𝑃1(1 − 𝑃1) = 𝑃1𝑄1. 

Similarly, 

𝜎(𝜂′′) = 𝑀(𝜂′′)2 − (𝑀𝜂′′)2 = 𝑃2 − 𝑃2
2 =

= 𝑃2(1 − 𝑃2) = 𝑃2𝑄2. 

The correlation coefficient between the random 
variables 𝜂′  and  𝜂′′  will be 

𝑟𝐴 =
𝑃12 − P1 ∗ P2

√P1P2Q1Q2

 

Since     𝑟𝑆  =  𝑟𝐴   [3],     then 
𝑃12 − P1 ∗ P2

√P1P2Q1Q2

 =    
p12 − p1 ∗ p2

√p1p2q1q2

 

and therefore 

𝑃12 = √
𝑃1

𝑝1

𝑃2

𝑝2

𝑄1

𝑞1

𝑄2

𝑞2

(𝑝12 − 𝑝1𝑝2) + 𝑃1𝑃2        (5) 

The theorem is proved. 

Corollary 1. If classes of pathogens satisfy the 
condition    𝑝12 = 𝑝1 ∗ 𝑝2 ,  then  𝑃12 = 𝑃1 ∗ 𝑃2 .   

Proof. 

Let the pathogens X ′ and X ′′ excite the retina with 
propabilities p1 and p2 respectively.  The condition   
𝑝12 = 𝑝1 ∗ 𝑝2    means that these random variables 
are independent. It follows from the  formula (5) 
that  P12 = P1 ∗ P2 , i.e. in the associative layer, the 
independence of the random variables η ′  and     
η′′    is preserved. 

This result coincides with the result of Theorem 4 
given in [3, p. 306], where the proof is presented in 
a completely different way. 

Corollary 2. When the intersection area of two 
images on the retina decreases, then the efficiency 
of the neural network increases (that is, the degree 
of correct recognition increases). 

Proof. 

When an image appears on the retina,  then an A-
element is either excited or remains not excited. 

For each class of pathogens S.V Dayan introduced 
the characteristic function (CHF) of the perceptron-
type neural network as a measure of the quality of 
recognition [3]. In the case of two classes, this 
function has the form 

ζi =  𝑃i − 𝑃12    ,  (i=1,2), 

where    𝑃𝑖 (𝑖 = 1,2) –  is the probability that an A-
element is excited when a single image appears 
from the i-th class,  and   𝑃12   is the probability of 
exciting an A-element from pathogens from both 
classes. 

Note that the CHF characterizes the probability that 
the A-element is excited when a pathogen belonging 
to a certain class is shown and is not excited by a 
pathogen not belonging to this class. 
If   𝑝12 → 0  , then, as proved in [3],  𝑃12 → 0. Thus, 
when  𝑝12 → 0  , that is, when the intersection area 
of two images on the retina decreases,   𝜁1    and  𝜁2     
tend to their maximum values. This means that the 
correct recognition for stimuli of the first and 
second class tends to the maximum. 
The obtained dependence (5) is a convenient 
mathematical tool for the study of the statistical 
characteristics of neural networks and for the 
synthesis of their effective structures. 

  
 

3 Conclusion 
The probabilistic methods for the study of neural 
networks  allow to obtain its optimal parameters  in 
order to improve its classification ability. The 
results obtained in the proposed paper contribute to 
the solution of such problems. They are also 
interesting because they are consistent with the 
results obtained by a different path for the 
perceptron-type neural network. 
 

 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2020.17.21 Siranush Sargsyan, Anna Hovakimyan

E-ISSN: 2224-3402 175 Volume 17, 2020



[1] Frank Rosenblatt F. Principles of 
Neurodynamics. Perceptrons and Theory of 
Brain Mechanisms. M., Mir, 1965, (in 

Russian) 

[2] Perceptron - pattern recognition system, 

Edited by Ivahnenko A.G., Kiev, Naukova 

Dumka, 1975, (in Russian). 
[3] Kroug P.G. Neural Networks and 

Neurocomputers: Course Tutorial 
"Microprocessors". - M .: Publishing house 

MEI, 2002,  (in Russian)  

[4] Sevastyanov B.A. The course of probability 
theory and mathematical statistics, M., 

Nauka, 1982.  

[5] S. Sargsyan, A. Hovakimyan, Probabilistic 

Methods for Neural Networks Study, 

Quarterly Journal of Mechanics and Applied 
Mathematics, Issue 4 (2), Volume 69,“Oxford 

University Press”, Nov. 2016, pp.669-675 

[6] S. Sargsyan, A. Hovakimyan, Statistical 

Evaluation of the Performance of the Neural 

Network, London Journal of  Research in 
Computer Science and Technology, Volume 

17 | Issue 1 | Compilation 1.0,  2017, pp.1-6 
 

 
 

Contribution of individual authors to 

the creation of a scientific article  
 

Siranush Sargsyan has given the main idea,  created 
the model,  proved the main theorem. 
Anna Hovakimyan has proved the corollaries and 
prepared the text. 
 
 

 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

References: 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2020.17.21 Siranush Sargsyan, Anna Hovakimyan

E-ISSN: 2224-3402 176 Volume 17, 2020




