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Abstract— The new corona virus 2019 (COVID-19) has become the most pressing issue facing mankind. Like a 
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disease in chest radiographs, using a constrained dataset. 
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1.  Introduction  

COVID-19 is a disease that can cause what doctors call a 
respiratory infection. It can affect the upper respiratory tract 
(sinus, nose, and throat) or the lower respiratory tract (trachea 
and lungs). It is caused by a coronavirus called SARS-CoV-2. 
In December 2019, the first cases were observed in Wuhan, 
China before developing worldwide [1, 2, 3]. On March 11, 
2020, the epidemic was officially confirmed as a pandemic 
[4]. 
COVID-19 disease has become the most urgent problem that 
has attracted worldwide attention quickly due to the rapid 
increase in the number of new cases. 
This new virus is temporarily designated as the new 
coronavirus 2019 (2019-nCoV) by the World Health 
Organization (WHO) on January 12, 2020. WHO officially 
named the disease caused by a coronavirus 2019-nCoV 
(COVID-19) on February 11, 2020 [5].  
COVID-19 has spread to 185 territories, on six continents, and 
the number of confirmed COVID-19 cases worldwide has 
exceeded 1.9 million, according to an online virus detection 
system hosted by Johns Hopkins University on April 14, 2020 
[6, 7]. There were 5 countries with 100,000 confirmed positive 
cases, 17 countries with 1 in 10,000 cases and 50 countries 
between 1 and 10000 confirmed cases [6]. In Tunisia, there 
were 200 662 confirmed cases of COVID-19 infection in 
Tunisia [8] on January 27, 2021. 
COVID-19 disease changed the world landscape in just four 
months. An increased risk of complications has resulted in 
border closings, rampant storage, empty streets, mass self-

isolation policies. The world has entered a new world war 
guided by an invisible enemy. 
Strategies to fight the virus before April have mainly revolved 
around containment and tracing - to find and isolate possible 
cases before they develop. However, with the exponential 
increase in the number of positive cases, hospitals around the 
world are quickly overwhelmed and government policies have 
moved to mitigation, if not acceptance. The frustrating process 
is further compounded by a lack of testing capacity in the 
affected countries, which means that the number of positive 
cases lags behind the number of actual cases. This has led 
health authorities worldwide to temporarily revert to 
symptom-based diagnosis and chest x-rays / CT scans based 
on Artificial Intelligence (AI), which have recently been 
widely explored for the use of pneumonia detection [9]. These 
approaches have also been proposed during this pandemic. 
Their intrinsic experimental nature requires that confirmatory 
approaches are also used in tandem, as part of a 
multidisciplinary approach to diagnosis. 
Machine learning techniques have been a very important 
breakthrough in the field of AI in the past few decades. These 
techniques are widely used to extract tiny features in the 
analysis of medical images. 
In this article, we will explore the feasibility and difficulties of 
building a diagnostic support system capable of detecting 
COVID-19 disease in chest radiographs, using a machine 
learning process and a constrained dataset. 
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2. Methodology 

2.1. Features extraction based on DTM 

In recent years, mathematical moments were widely used in 
several computer vision areas of research such as objects and 
shape descriptors, pattern recognition, template matching, and 
image analysis. These moments are scalar quantities used to 
characterize an image, reflecting significant attributes of it. 
They provide the most salient characteristics and precise 
features of representation capability for any given image.  The 
literature distinguishes two kinds of orthogonal moments: the 
continuous and the discrete. However, discrete moments 
provide better results than continuous [11].  
Several types of mathematical discrete moments have been 
developed and used as objects feature extraction since they 
have less redundancy and represent the object more faithfully 
than the continuous moments such as Zernike or Legendre. 
In the present study,  we focus on a certain category of discrete 
mathematical moments called the ‘Discrete Tchebychef 
Moments’ (DTMs). these moments are obtained by a Discrete 
Tchebychef Transform (DTT) and they offer very interesting 
results in terms of object recognition rate of accuracy for 
object classification [12]. 
DTM are determined by projecting the input image on to a set 
of Tchebichef polynomials as follows: 
For a given image 𝑓(𝑥, 𝑦)of size 𝑁 × 𝑁 and value 𝑥 within 
range [0, 𝑁 − 1], a set of tchebichef polynomials 𝑡𝑛(𝑥)  ;  𝑛 =

0,1, … 𝑁 − 1, is defined through the use of the following 
recurrence relation: 

𝑡𝑛(𝑥) =
(2𝑛 − 1)𝑡1(𝑥)𝑡𝑛−1(𝑥) − (𝑛 − 1)(1 −

(𝑛 − 1)2

𝑁2 𝑡𝑛−2(𝑥)

𝑛
  (1) 

 
Where 𝑡0(𝑥) = 1 and  𝑡1(𝑥) =

2𝑥+1−𝑁

𝑁
 

 
Set{𝑡𝑖} has a squared norm as follows: 

𝜌(𝑛, 𝑁) = ∑{𝑡𝑖(𝑥)}2                           (2) 

 
The Tchebichef moments 𝑇𝑚𝑛(𝑚, 𝑛 = 0,1, … , 𝑆 − 1) can be 
represented by: 
 

𝑇𝑚𝑛 =
1

𝜌(𝑚,𝑆)𝜌(𝑛,𝑆)
∑ ∑ 𝑡𝑚(𝑥)𝑡𝑛(𝑦)𝑓(𝑥, 𝑦)        𝑁−1

𝑦=0
𝑁−1
𝑥=0 (3) 

Along spatial coordinates, the repetitive variation patterns are 
represented by the image texture. Because of such a repetitive 
property, we can capture the patterns by correlating an image 
using a set of Tchebichef polynomials.  
As a result, a larger magnitude of 𝑇𝑚𝑛  will lead to a higher 
correlation. The 𝐹(𝑘)(𝑘 =  0, 1, . . .2𝑁 − 2) feature vector can 

measure such a correlation while considering the image 
directions expressed by:  𝐹(𝑘) = ∑ |𝑇𝑚𝑛| 𝑚+𝑛=𝑘 . 
Feature 𝐹(𝑘)gives data about the texture properties which is 
able to be viewed like a texture signature. 

2.2. KPCA for dimentionality reduction  

The most common technique which is widely used for 
dimensionality reduction of features is the principal 
component analysis (PCA) [11]. Despite the proven 
performance of the PCA technique, it is based on the idea that 
the system is linear. To address the above issue, a nonlinear 
PCA method called kernel PCA (KPCA) has been developed 
in the literature [12]. KPCA can be presented in two steps:  the 
first step is to project the input data onto the feature space 
through a nonlinear mapping function, and the second step is 
to implement PCA in that feature space. 
KPCA has been widely used to model various nonlinear 
processes [13,14,15].In this work, we used KPCA method that 
reduced the size of the image as following: 
Let us consider𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 the data matrix upgrade to 
unit variance and zero mean. 
The mapping of sample in the feature space can be written as: 

∅: 𝐸 ⊂ ℝ𝑚 → 𝐹 ⊂ ℝ𝐻        ;      𝑥 → ∅(𝑥) (4) 

Where𝑥 ∈ 𝐸 ⊂ ℝ𝑚 is a data vector. 
We define the covariance matrix in F as: 

𝐶∅ =
1

𝑁
∑ ∅𝑖∅𝑖

𝑇 =
1

𝑛−1
𝑋𝑇𝑋                     𝑁

𝑖=1 (5) 

Where ∅ = ∅(𝑥𝑖) ∈ ℝ𝑁and 𝑋 = [∅(𝑥1), ∅(𝑥2), … , ∅𝑁]𝑇 ∈

ℝ𝑁∗ℎ. The KPCA reference model (The principal components 
of data after mapping ∅(𝑥1), ∅(𝑥2), … , ∅(𝑥𝑁)) is computed by 
solving the eigenvalue decomposition of the covariance matrix 
𝐶∅ in the feature space H such that: 

𝜆𝑗𝜇𝑗 =  𝐶𝜙𝜇𝑗     𝑤𝑖𝑡ℎ 𝑗 = 1, … , ℎ          (6) 

Where 𝜇𝑗  is the jth eigenvector of 𝐶∅ corresponding to 
eigenvalue 𝜆𝑗 . 
For 𝜆𝑗 ≠ 0, there exist coefficients𝛼𝑖,𝑗 𝑖 = 1, … , 𝑁such all 
eigenvectors𝜇𝑗can be considered a linear combination 
of[∅(𝑥1), ∅(𝑥2), … , ∅𝑁]and can be expressed by: 

𝜇𝑗 = ∑ 𝛼𝑖,𝑗 

𝑁

𝑖=1

∅(𝑥𝑖)                𝑗 = 1, … , 𝑛        (7) 

However, practically, the mapping function Φ is not 
defined and then 𝐶∅ in the feature space cannot be calculated 
implicitly. Thus, instead of solving eigenvalue problem 
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directly on 𝐶∅, we apply the kernel trick. The inner product 
given in (6) may be determined by a kernel function 𝑲(. , . ) 
that satisfies Mercer’s theorem [16] as follows: 

〈∅(𝑥), ∅(𝑥′)〉𝐻 =  𝐾(𝑥, 𝑥′)  ∀ 𝑥, 𝑥′ ∈ ℝ𝑚    (8) 

The definition of a Kernel matrix 𝐾 ∈ ℝ𝑁×𝑁 associated to a 
kernel function k is the following: 

𝐾 = [
𝐾(𝑥1, 𝑥1) ⋯ 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) ⋯ 𝐾(𝑥𝑁 , 𝑥𝑁)

]  ∈ ℝ𝑁×𝑁        (9) 

We can reduce the problem of eigenvalue decomposition 
of 𝐶∅ by the application of the kernel matrix. Hence, eigen 
decomposition of the kernel matrix K is equivalent to 
performing PCA in ℝ𝐻, so that: 

NΛΥ = 𝐾Υ                                               (10) 

With: 
Λ = diag(𝜆1, … , 𝜆𝑗 , … 𝜆𝑁) is the diagonal matrix of 
eigenvalues 𝜆𝑗 arranged in descending order and 
Υ = [𝛼1, … , 𝛼𝑗, … 𝛼𝑁]  is the matrix of their corresponding 
eigenvectors. 
Since the principal components are orthonormal, it is required 
to guarantee the normality of 𝜇𝑗  in (7), such that: 

〈𝜇𝑗 , 𝜇𝑗〉𝐻;         𝑗 = 1 … 𝑛                      (11) 
With N as the number of the first non-zero eigenvalues.  

〈𝜇𝑗 , 𝜇𝑗〉𝐻 = ∑ 𝛼𝑖,𝑗 , 𝛼𝑘,𝑗 
𝑁
𝑖,𝑘 〈∅(𝑥𝑖), ∅(𝑥𝑘

′)〉𝐻

                     = ∑ 𝛼𝑖,𝑗 , 𝛼𝑘,𝑗 
𝑁
𝑖,𝑘 𝐾𝑖,𝑘 = 〈𝛼𝑗 , 𝐾𝛼𝑗〉𝐻

             = 〈𝛼𝑗 , 𝐾𝛼𝑗〉𝐻   = 𝜆𝑗〈𝛼𝑗 , 𝛼𝑗〉𝐻

  (12) 

Where  𝑲𝑖,𝑘 = 𝑲(𝑥1, 𝑥𝑁). The corresponding eigenvectors 𝛼𝑗  
must be scaled as: 

〈𝛼𝑗 , 𝛼𝑗〉𝐻 = ‖𝛼𝑗‖
2

=
1

𝜆𝑗

 ;     𝑗 = 1 … 𝑛          (13) 

Many kernel functions have been proposed in literature 
such as: Linear Kernel, Polynomial kernel, Radial basis 
function kernel (RBF).   
The Radial Basis Function (RBF) is studied such that: 

𝐾(𝑥, 𝑦) = exp (−
‖𝑥−𝑦‖2

2 𝜎2 )                         (14) 

where  𝜎 ∈ ℝ+Mean centering the training data in the feature 
space should be Performed ∑ ∅𝑖 = 0 𝑛

𝑖=1 if this is not the case, 
kernel matrix 𝑲 should be scaled such that :   
 

𝐾 = 𝐹𝐾𝐹        With   𝐹 = (𝐼𝑛 − 𝐸)                  (15) 
Where 1𝑛 =

1

𝑛
[1, … ,1]𝑇 ∈ ℝ𝑛 and E is an 𝑛 × 𝑛 matrix with 

elements 1

𝑛
 . 

3. Kernel-ELM Algorithm  

  The ELM has been considered as one of the Single Layer 
Feedforward Networks (SLFN) put forward in [26]. The ELM 
was suggested for training the SLFN in the first place and then 
extended to train the SLFN in a general way, where hidden 
layers did not need to be neurons. 
The used structure in the ELM is typically an SLFN one that 
comprises three layers: input, hidden, and output (Fig. 1). 
Through the use of a weighted connection named weight (w), 
each neuron is linked. In addition to that, other parameters are 
utilized; we can mention mainly the bias (b) which provides 
further adaptable model parameters, and the activation 
function (g) that computes output (y). It is possible for transfer 
function f to be sigmoid-functional, radial-based, Tang-
hyperbolic, linear, or logarithmic. Thus, the network could be 
described utilizing triplet (w, b, g). Fig.3 illustrates the ELM 
structure. 

 
Fig.1.ELM structure  

Let consider the training samples𝑋 = {𝑥𝑖 , 𝑦𝑖}𝑖=1,…𝑁with𝑥𝑖 =
[𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑛]𝑇 ∈ 𝑅𝑛  , 𝑦𝑖 = [𝑦𝑖1 , 𝑦𝑖2 , … , 𝑦𝑖𝑚]𝑇 ∈
𝑅𝑚}𝑖=1,…,𝑁where m, d, and N represent, in the order given, the 
number of output nodes, the dimension, and the number of 
instances. On the one hand, m = 1 for regression problems. On 
the other hand, m stands for the number of labels, classes or 
categories for classification problems. 

The ELM output function of the SLFN with L hidden layer 
nodes is expressed as: 

𝑓(𝑥𝑖) = 𝑦𝑖 = ∑ 𝛽𝑗  ℎ(𝑤𝑗 . 𝑥𝑖

𝑘

𝑗=1

+ 𝑏𝑗)  𝑖 = 1, … , 𝑁      (16) 

where 𝑤𝑗 = [𝑤𝑗1 , 𝑤𝑗2 , … , 𝑤𝑗𝑛]is the weight vector that links 
up between input neurons and the jth hidden neuron, 𝛽𝑗 =

[𝛽𝑗1 , 𝛽𝑗2 , … , 𝛽𝑗𝑚]𝑇is the weight vector that ties in an output 
neuron with the jth hidden neuron, ℎis a sigmoid function, 
𝑤𝑗 . 𝑥𝑖indicates an inner product of 𝑤𝑗and𝑥𝑖, 𝑏𝑗is the bias of the 
jth hidden neuron, and k is the hidden neurons number in a 
hidden layer. 
We can write equation (17) in a matrix format as: 𝐻𝛽 = 𝑌. In 
this case, H represents a neural network hidden-layer output 
matrix: 

𝑯 = [
ℎ(𝑤1. 𝑥1 + 𝑏1) ⋯ ℎ(𝑤𝑘 . 𝑥1 + 𝑏𝑘)

⋮ ⋱ ⋮
ℎ(𝑤1. 𝑥𝑁 + 𝑏1) ⋯ ℎ(𝑤𝑘 . 𝑥𝑁 + 𝑏𝑘)

]

𝑵×𝒌

    (17) 
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With 𝛽 = (

𝛽1
𝑇

....

𝛽𝑘
𝑇
)

𝑘×𝑚

   and     𝑌 = (

𝑦1
𝑇

....

𝑦𝑘
𝑇

)

𝑁×𝑚

 

In the condition when the hidden layer bias and the input 
weight are generated in a random way according to the H 
output matrix, then we consider that SFLN learning is merely 
and essentially equal to finding a least square solution. In fact, 
this is mathematically modeled as: 𝛽 = 𝐻+𝑌 

In such a case,𝐻+ is Moore-Penrose pseudo-inverse [27] of H 

in a way that: 𝐻+ = (
𝐼

𝐶
+  𝐻𝑇 . 𝐻)

−1

. 𝐻𝑇  
 

Hence, the ELM output is:  

𝑓(𝑥) = ℎ(𝑥)𝛽 = ℎ(𝑥) (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

𝐻𝑇𝑌        (18)  

For any attribute 𝑥, 𝑙𝑎𝑏𝑒𝑙(𝑥) = 𝑠𝑖𝑔𝑛(ℎ(𝑥)𝛽) 
As for the ELM with kernels, in general, very good regression 
and classification accuracy can be obtained through kernel 
introduction. According to [28], when ℎ(𝑥) is unknown (that 
is to say the function is implicit), Mercer’s conditions can be 
applied up on the ELM and an ELM kernel matrix is defined 
as follows: 

𝐾𝐸𝐿𝑀 = 𝐻𝐻𝑇:  𝐾𝐸𝐿𝑀(𝑖, 𝑗) = ℎ(𝑥𝑖). ℎ(𝑥𝑗) = 𝐾(𝑥𝑖 , 𝑥𝑗)         (19) 

In the KELM, 𝐻 = [ℎ(𝑥1)𝑇 … ℎ(𝑥𝑁)𝑇]𝑇 is a hidden layer 
output matrix whose role is to map the 𝑥𝑖  data into a hidden 
layer feature space from an input space. This is beside the 
point for the target value 𝑦𝑖as well as for the number of output 
nodes m. As illustrated in Table 2, the 𝐾𝐸𝐿𝑀 = 𝐻𝐻𝑇kernel 
matrix is just linked with the 𝑥𝑖 input data as well as the 
number of training samples N. This is in particular for multi 
class classification, binary classification and regression. Then, 
it is possible to write the ELM classifier output function (19) 
in a compact way as: 

𝑓(𝑥) = ([
𝐾(𝑥, 𝑥1)

⋮
𝐾(𝑥, 𝑥𝑁)

²
]

𝑇

(
𝐼

𝐶
+ K𝐸𝐿𝑀)

−1

𝑌)               (20) 

 
TABLE1. THREE COMMON KERNELS WITH THEIR PARAMETERS AND 

FORMULA  

Name  Formula and parameters  

RBF kernel 
(RBF_KELM) 

𝐾𝜎(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
1

2

‖𝑥 − 𝑦‖2

𝜎2 ) 

𝜎 is parameter of Rbf kernel 

Polynomial  kernel 
(Poly-KELM) 

𝐾𝑝(𝑥, 𝑦) = (𝑥. 𝑦 + 1)𝑝 

p is the degree of the polynomial  

Linear kernel (Lin-
KELM) 

𝐾𝑙(𝑥, 𝑦) = 𝑥. 𝑦 

 

4. Experimental Evaluation  

4.1. Datasets used 

To target the issue at hand, we’ve collected own dataset, 
combining the Kaggle Chest X-ray dataset [18] with 
the COVID19 Chest X-ray dataset [19] collected by Dr. Joseph 
Paul Cohen of the University of Montreal. Both of these 
datasets consist of posterior anterior chest images of patients 
with pneumonia. As the COVID19 dataset is being updated 
daily as more cases are published 

A. Statistical analysis 

In order to show the effectiveness of our approach, objective 
evaluation criteria are measured: sensitivity, specificity, 
accuracy and F-score. They are described below. The 
definition of TPR, FNR, FPR and TNR are illustrated in Table 
1. 
 

TABLE 2   DEFINITION OF TPR, FNR, FPR AND TNR 

 Total population Predicted class 

  Pneumonia 
(covid19) 

Normal 

True class Pneumonia  
(covid19) TPR FNR 

Normal FPR TNR 

Where TPR and TNR respectively mean True Positive Rate 
and True Negative Rate, which determine the number of 
pneumonia (COVID-19) cases classified as such (TPR) and the 
number of normal cases classified as such (TNR). FPR and 
FNR respectively denote False Positive Rate and False 
Negative Rate, which represent the classification of pneumonia 
(COVID-19) cases in normal cases (FNR) and normal cases in 
pneumonia (COVID-19) cases (FPR). The specificity (Sp) of a 
classifier measures the ability to correctly detect normal cases, 
while the definition of the sensitivity (Se) is given as the TPR 
instances and FNR instances that have been classified as TPR. 
This measure is used in the medical field as it gives knowledge 
about the number of cases that are correctly identified either as 
malignant (COVID-19 cases) or as benign (normal cases). It is 
the ability of the model to find all the relevant cases in the 
dataset. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃𝑅

𝑇𝑃𝑅+𝐹𝑁𝑅
                           (21) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁𝑅

𝑇𝑁𝑅 + 𝐹𝑃𝑅
                            (22) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

𝑇𝑃𝑅 + 𝐹𝑃𝑅 + 𝑇𝑁𝑅 + 𝐹𝑁𝑅
   (23) 
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𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃𝑅

𝑃
×

𝑇𝑃𝑅

𝑄
÷ (

𝑇𝑃𝑅

𝑃
+

𝑇𝑃𝑅

𝑄
) (24) 

With: 𝑃 = 𝑇𝑃𝑅 + 𝐹𝑃𝑅 and 𝑄 = 𝑇𝑃𝑅 + 𝐹𝑁𝑅 

4.2. Results and discussion  

The proposed methodology has experimented with our own 
dataset collected by combining the Kaggle Chest X-ray dataset 
with the COVID19 Chest X-ray dataset collected by Dr.Joseph 
Paul Cohen of the Université de Montréal. These two datasets 
consist of posterior and anterior chest images of patients with 
pneumonia. The images collected are classified as normal or 
pathological using the proposed methodology. The 
performance of the proposed model is evaluated according to 
different performance measures, namely sensitivity, 
specificity, and success rate (ACC). Before the feature 
extraction module, images are preprocessed with CLAHE to 
improve contrast.  
Next, the DTT technique is applied to the images to obtain the 
characteristic matrix. Thus, in order to reduce the size of the 
vector of characteristics and to simplify the classification, 
KPCA is used, which reduces the number of characteristics by 
preserving 95% of the variance of the original data. Reduced 
functionality is passed to the three Poly-KELM, Lin-KELM, 
and Rbf-KELM algorithms to classify images as normal or 
pathological. 
 

 
 

Fig 2 Bar chart of classification results 

Figure 2 shows the results of accuracy, specificity, and 
F_score of different classifiers obtained. 
Based on the figure above, it was verified that when using 
RBF-KELM and Lin-KELM we obtained better results, which 
were 92% and 95.6% of accuracy, 25% and 60% of 
specificity, 100% and 99.8% of sensitivity, and a F_score of 
95.71% and 97.59%, respectively. On the other hand, Poly-
KELM classifiers showed to be more efficient. 
 

TABLE 3 COMPARISON OF CONFUSION MATRIX OF THE THREE 
CLASSIFICATION METHODS 

Classifier  TPR FPR TNR FNR 
Rbf-KELM 670 60 20 0 
Poly-KELM 670 80 0 0 
Lin-KELM 669 32 48 1 

 
In order to demonstrate the superior performance of different 
classifiers, a detailed comparison in terms of TPR, TNR, FPR, 
and FNR is shown in Table 2. 
 

TABLE 4. COMPUTATIONAL COST OF THE THREE CLASSIFICATION 
METHODS  

Classifier  Train-Time (s) Test-Time (s) 
Rbf-KELM 0.015 0.013 
Poly-KELM 0.11 0.05 
Lin-KELM 0.007 0.002 

From the above results, we can conclude that the RBF-KELM 
and the Lin-KELM gives higher classification performance 
than the Poly-KELM method with the best training and testing 
times. 

5. Conclusion and feature works 

In this work, we present a method of classifying the textural 
characteristics of chest x-ray images using the RBF-KELM, 
Poly-KELM, and Lin-KELM classifiers to diagnose COVID-
19. To target the problem, we collected our own dataset, 
combining the Kaggle chest x-ray dataset with the COVID19 
chest x-ray dataset. The RBF-KELM and Lin-KELM methods 
performed better than the Poly-KELM algorithm. From the 
above results, we can conclude that the introduction of the RBF 
and linear kernel function for KELM as classification 
techniques gives greater precision.. 
For our next research perspectives, we will then have to 
implement the prototype of the method in future portable 
devices that we will develop to automatically classify COVID 
19 disease using radiographic images of the chest. 
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