

ATNN and SVM for Autonomous Mobile Robot

I.BENCHENNANE
Département d’informatique, Ecole Nationale Polytechnique d’Oran ENPO, ALGERIA

A. SERRA, M. BENYETTOU

LAMOSI, dept. of Computer Sciences, University Of Sciences and Technologies Oran, 31000, ALGERIA

Abstract—If a robot does not know where it is, it can be difficult to determine what to do next. In order to localize
itself, a robot has access to relative and absolute measurements giving the robot feedback about its driving actions and
the situation of the environment around the robot. Given this information, the robot has to determine its location as
accurately as possible. What makes this difficult is the existence of uncertainty in both the driving and the sensing of
the robot. The uncertain information needs to be combined in an optimal way. The Kalman Filter is a technique from
estimation theory that combines the information of different uncertain sources to obtain the values of variables of
interest together with the uncertainty in these. In this work we provide a thorough discussion of the robot localization
problem resolved by Kalman Filter, Adaptive Time Delay Neural Network and Support Vector machines.

Keywords-Extended Kalman Filter, Adaptive Time Delay Neural Network, Support Vector Machines, Robot,
Localization
Received: January 7, 2020. Revised: July 31, 2020. Accepted: September 14, 2020. Published: September 24, 2020.

1. Introduction

The problem of robot localization consists of answering the
question Where am I? from a robot's point of view. This means
the robot has to find out its location relative to the
environment. When we talk about location, pose, or position
we mean the x and y coordinates and heading direction of a
robot in a global coordinate system. The localization problem
is an important problem. It is a key component in many
successful autonomous robot systems [1]. If a robot does not
know where it is relative to the environment, it is difficult to
decide what to do. The robot will most likely need to have at
least some idea of where it is to be able to operate and act
successfully [2, 3]. By some authors the robot localization
problem has been stated as the \most fundamental problem to
providing robots truly autonomous capabilities" [4]. To be able
to move around in an environment a robotic vehicle has a
guidance or driving system [5]. A guidance system can consist
of wheels, tracks or legs, in principle anything that makes the
vehicle move around. These components are called actuators.

Obviously, the guidance system plays an important role in
the physical position of a robot. The guidance system directly
changes the location of the vehicle. Without a guidance system
the robot is not driving around, which makes localizing itself a
lot easier. Assuming that a robot does have a guidance system,
the way the guidance system changes the location contains
valuable information in estimating the location.

2. Kalman Filter

The Kalman filter is essentially a set of mathematical
equations that implement a predictor-corrector type estimator
that is optimal in the sense that it minimizes the estimated error
covariance—when some presumed conditions are met.

The Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process state at some
time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall
into two groups: time update equations and measurement
update equations. The time update equations are responsible
for projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the
next time step. The measurement update equations are
responsible for the feedback—i.e. for incorporating a new
measurement into the a priori estimate to obtain an improved a
posteriori estimate[6].

The time update equations can also be thought of as
predictor equations, while the measurement update equations
can be thought of as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector
algorithm for solving numerical problems as shown below in
Figure 1.

Figure 1: Kalman Filter Cycle.

The specific equations for the time and measurement updates
are presented below:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 132 Volume 17, 2020

Figure 2 : Kalman Filter operations.
Where:

 A might change with each time step, and matrix B

relates the optional control input u to the state x.
 Q is the process noise covariance; P- is the a priori

estimate error covariance.
 Kt is Kalman gain, H in the measurement equation

relates the state to the measurement zt .

I. THE EXTENDED KALMAN FILTER
 The Kalman Filter above addresses the general problem of
trying to estimate the state x of a discrete-time controlled
process that is governed by a linear equation. But if the
process to be estimated and (or) the measurement relationship
to the process is non-linear we have work with the extended
form as in figure 3.

Figure 3. Extended Kalman Filter Operations.

 Where

 H, V are the measurement Jacobians at step k,
and Rk is the measurement noise covariance.

II. ADAPTIVE TIME DELAY NEURAL NETWORK

 The Adaptive Time Delay Neural Network takes the
structure of the Multi Layer perceptron taking delay into
account. Instead of taking all the neurons at the same time one

takes only part of them. Each entry is delayed by an adjustable
time delay like the weights of the network. One thus will
sweep window of a fixed but variable size on the space of
entry.
 Figure 4 shows a delay block between two units i, j, and
Figure 5 presents general view of an ATNN (Adaptive Time
Delay Neural Network).

Figure 4: Delay Block diagram

Figure 5: Diagram of ATNN.

3. Training
A basic concept in the study and the use of networks of

neurons is that of training. We indicate by this term, always in
reference to biology, the procedure which consists in
estimating the parameters of the various neurons of the
network so, as well as possible; it fills the task which is
affected.

It is supposed that the parameters of the network are
updated in a discrete way and that the entries are
differentiable.

The output of node is defined as follows [7]:

 
  

 

j,h j,h n

j,h n

j,0 n

f S t si h 2
a t =

a t si h=1

 

 (1)

Where:

 𝑆𝑗,ℎ(𝑡𝑛) = ∑ ∑ 𝑤𝑗𝑖,ℎ−1 ∗ 𝑎𝑖,ℎ−1(𝑡𝑛 − 𝜏𝑗𝑖𝑘,ℎ−1)
𝐾𝑗𝑖,ℎ−1

𝑘=1𝑖∈𝑁ℎ−1
 (2)

And f is a differentiable and non decreasing function definite
as follows

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 133 Volume 17, 2020

 𝑓𝑗,ℎ(𝑥) =
𝛽𝑗,ℎ

1+𝑒
−𝛼𝑗,ℎ𝑥 − 𝛾𝑗,ℎ (3)

Where

 fj,h(x) is in [, , ,,j h j h j h   
].

The modification of the weights as well as the
deadlines is made by the algorithm of the gradient descent.
Where the error is defined as follows:

𝐸(𝑡𝑛) =
1

2
∑ (𝑑𝑗(𝑡𝑛) − 𝑎𝑗𝑗∈𝑁𝐿

(𝑡𝑛))2 (4)
Where NL is the number of neurons in the output layer, and

(tn)d j is the desired exit of the node i at time tn.

Time Delay are adapted as follows:

τ =τ +Δτ

jik,h-1 jik,h-1 jik,h-1 (5)
Such as:

E(t)nΔτ =-η
1jik,h-1 τ

jik,h-1





(6)

 The weight changes in the following way:

w =w +Δw

jik,h-1 jik,h-1 jik,h-1
 (7)
Such as:

E(tn)
Δw =-η

2jik,h-1 w
jik,h-1




 (8)

4. Support Vector Machines

Consider the following problem: we are given a data set

   1
,

N

i i i
g x y


 obtained by sampling, with noise, some

unknown function f(x) and we are asked to recover the
function f , or an approximation of it, that has at most ε
deviation from the actually obtained targets yi for all the
training data g , and at the same time is as flat as possible. In
other words, we do not care about errors as long as they are
less than, but will not accept any deviation larger than this
[08].

A. Linear Case

We have:

 |𝒚 − 𝒇(𝒙)|𝜺 ≔ 𝒎𝒂𝒙{𝟎, |𝒚 − 𝒇(𝒙)| − 𝜺} (9)

  f(x) w ,x b b R (10)

Where .,. denotes the dot product in the space of the
input patterns. Flatness in the case of (10) means that one
seeks a small w. One way to ensure this is to minimize the
norm. We can write this problem as a convex optimization
problem [09]:

𝑤𝑖𝑡ℎ {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ∈ 𝜀

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖

(11)

(12)

The tacit assumption in (10) was that such a function
actually exists that approximates all pairs  ,

i i
x y that the

convex optimization problem is feasible.

Sometimes, however, this may not be the case, or we also
may want to allow for some errors. One can introduce slack
variables ζ

i
 to cope with otherwise infeasible constraints of

the optimization problem (10).

We define:

ζ max(0, y f(x) ε)
i i i
  

0

0

y f x
i i i

f x y
i i i

 

 












max(, - () -)

-
max(, () - -)

(13)

(14)

(15)

Hence we arrive at the formulation stated in [10].



 



N1 -
min w ² C (ξ ξ)

i i2 i 1

(16)

wiith {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 − 𝜀 ≤ 𝜁𝑖

+

〈𝑤,𝑥𝑖〉 + 𝑏 − 𝑦𝑖 − 𝜀 ≤ 𝜁𝑖
−

𝜁𝑖
+, 𝜁𝑖

− ≥ 0

 (17)

The constant C > 0 determines the trade-off between the

flatness of f and the amount up to which ε deviations larger
than are tolerated.

In most cases the optimization problem (17) can be solved
more easily in its dual formulation. Moreover, the dual
formulation provides the key for extending SV machine to
nonlinear functions. Hence we will use a standard dualization
method utilizing Lagrange multipliers, as described [10].




-
ζ max(ζ ,ζ)
i i i

min w ²
1

2

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 134 Volume 17, 2020

 Figure 6. The soft margin loss setting

B. Dual problem and Qudrature Program

The idea is to build a function of Lagrange by the objective
function and its constraints by introducing a dual set of
variables. It can be shown that this function has a saddle point
with respect to the primal and dual variables at the solution.
For details see e.g. [11]. We proceed as follow:

1 -² () (,)2 1 1

N N
L w C y w x bi i i ii ii i

             
 

* - * -(,) ()
1 1

N N
y w x bi i i i i i iii i

             
 

* *, , , 0avec i i i i    

(18)

 Where * *, , ,
i i i i

   
are the Lagrange Multipliers.

 The Lagrangian has to be minimized with respect to w, b
and maximized with respect to α≥ 0.

At point of optimality we have:

1
0

N

b i i
i

L  


   
*()

1
0

i

N

w i i
i

L xw  


   
*()

0
i

i i
L C


     (*)

(*) (*)

(19)

(20)

(21)

Substituting (19, 20, and 21) in (18) we get:

1
2 1

N
x x

i i j j i ji j
   



* *max - (-)(-) ,
,

1 1

N N
y

i i i i ii i
      
 

* *- () (-)

0
1

0

N

i iiavec

C
i i

i

 

 












*(-)

*, [,]

(22)

(23)

In deriving (18) we already eliminated the dual variables


i
; *

i
 through condition (21) which can be reformulated

as

  C
i i
* (-)

(24)

Eq. (20) can be rewritten as follows:

1

N
w x

i i ii
  



*(-)

(25)

Thus;

1

N
f x x x b

i i ii
  



*() (-) ,

(26)

What is called support vectors expansion i.e. w can be
completely described as a linear combination of the training
patterns. In a sense, the complexity of a function's
representation by SVs is independent of the dimensionality of
the input space, and depends only on the number of SVs.

Moreover, note that the complete algorithm can be
described in terms of dot products between the data. Even
when evaluating f (x) we need not compute w explicitly.

C. Computing b

b can be computed by exploiting the so called Krush-
Kuhn-Tucker (KKT) conditions [12]. These state that at the
point of the solution the product between dual variables and
constraints has to vanish.

0y w x b
ii i i

       (,)

(27)

And

0C
i i

   (-)
0C

i i
  * -(-)

(28)

(29)

For points which are apart from the band (ε-insensitive
tubes) have

 
C

i
 

*

(30)

The points inside the band have

0
i

 
(*)

 (31)

The others

0 C
i

 
(*)

 (32)

The latter one has

0  (33)

Consequently b calculation as follows [13]:

, (0,)    b y w x for C
i i i

*, (0,)b y w x pour Ci i i    

(34)

(35)

From (24) it follows that only for │y-f(x)│≥ε the Lagrange
multipliers may be nonzero, or in other words, for all samples
inside the ε- insensitive tube (i.e. the shaded region in Fig.

1) the vanish for │y-f(x)│<ε the second factor in (27) is

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 135 Volume 17, 2020

nonzero, hence 
(*)
i has to be zero such that the KKT

conditions are satisfied. Therefore we don’t need all the points
to define w .The examples that come with non vanishing
coefficients are called Support Vectors.

D. Linear Case Non Linear Case

This concept can be extended to the case when f is non
linear. A non-linear mapping which maps the input data to a
high dimensional space (also called the feature space) is
introduced. We can then try to find a linear function in feature
space.

Thus we avoid translating the input data to feature space
first and then finding their inner products.

The difference in the linear case is that w is no longer
given explicitly. Also note that in the nonlinear setting, the
optimization problem corresponds to finding the flattest
function in feature space, not in input space [14].

5. Experimental Results
We consider a mobile robot with the kinematics of a

unicycle. Motion is generated by two independently actuated
wheels, whose rotation is measured by incremental encoders
[15].

A simplified model of a mobile robot is presented in Figure
7.

Figure 7: The Location of a Robot.

 A three layered ATNN is used to perform the estimation
task. This network contains an input layer with five inputs,
one hidden layer with ten hidden units, and three output nodes
to indicate the position at each step.
The number of time-delays is selected as 4 and 6 on the first
and second layer of connections, respectively.
The results of ATNN are:

TABLE I. ATNN RESULT

 Training Error Test error

ATNN

On X 7,97E-04 3,60E-02
On Y 4,22E-04 3,70E-04
On  3,10E-02 1,01E-04

And EKF results are:

TABLE II. EKF RESULT

Error on X Error on Y Error on the orientation


7.26E -04 1.73E-03 3.43E-02

And SVM results are:

TABLE III. SVM RESULT

 Training Error Test Error

On X 1,29E-01 9.24E-04

On Y 4,29E-01 2.68E-03

On  1,17E-02 2,44E-10

 According to Tables 1, 2 and 3 we see well that the new
estimators proposed within the framework of this study gives
better results which the EKF itself which is sensitive to the
strong disturbances, and which at any moment requires the
knowledge of all the variables defining the state of the system,
on the other hand the SVM models and ATNN reach to the
global minimum of the error.
 We judge that SVM is the best estimator within the
framework of our study.

6. Conclusion
As we see ATNN and SVM gave better results than EKF.

The results show promise for using neural networks and SVM
in estimating the states of a nonlinear systems.

REFERENCES

[1] S. Thrun, D. Fox, W. Burgard, and F. Dellaert,
“Robust monte carlo localization for mobile
robots,” Artificial Intelligence 128,1-2, pp.99-
141,2001.

[2] J. Borenstein, H. Everett, L. Feng, and D. Wehe,
“Mobile robot positioning: Sensors and
techniques,” Journal of Robotic Systems 14, 4 ,
231-249,1997.

[3] D. Kortenkamp, R. Bonasso, and R. Murphy, “AI-
based Mobile Robots: Case studies of successful
robot systems,” MIT Press, Cambridge, MA, 1998.

[4] J. Cox J., “Blanche: Position estimation for an
autonomous robot vehicle, Autonomous Mobile
Robots: Control,” Planning, and Architecture Vol.
2, IEEE Computer Society Press, Los Alamitos,
CA, 285-292, 1991.

[5] J Cox, G. Wilfong, (Editors), “Autonomous Robot
Vehicles,” Springer-Verlag, New York 1990.

[6] G. Welch, G. Bishop, “An Introduction to the
Kalman Filter,” SIGGRAPH,2001.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 136 Volume 17, 2020

[7] D.T Lin , “Trajectory production with the adaptive
time-delay neural network,” Neural network, Vol
8,3, pp. 447-46 I, 1994.

[8] K. P. Bennett and O. L Mangasarian.:«Robust linear
programming discrimination of two linearly
inseparable sets». Optimization Methods and
Software, 1992, pp 1,23-34.

[9] H. W. Kuhn and A. W.: Tucker «Nonlinear
programming». In Proc. 2nd Berkeley Symposium
on Mathematical Statistics and Probabilistics,
Berkeley, University of California Press. 1951 pp
481-492.

[10] G. P. McCormick «Nonlinear Programming:
Theory, Algorithms, and Applications». John Wiley
and Sons, New York, 1983.

[11] L.Miclet « Apprentissage Artificiel : Méthodes
et Algorithmes ». Eyrolles, Novembre, 2002.

[12] A.J. Smola and B. Scholkopf « A Tutorial on
Support Vectors regression». NeuroColt2, 1998.

[13] V Vapnik.: « The Nature of Statistical Learning
Theory », Springer, New York, 1995.

[14] K. P. Bennett and O. L Mangasarian.:«Robust
linear programming discrimination of two linearly
inseparable sets». Optimization Methods and
Software, 1992, pp 1,23-34.

[15] R Negenborn, “Robot Localization and Kalman
Filters” M.S. thesis, Utrecht -University, 2003.

 Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra,
M. Benyettou

E-ISSN: 2224-3402 137 Volume 17, 2020

