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Abstract—If a robot does not know where it is, it can be difficult to determine what to do next. In order to localize 
itself, a robot has access to relative and absolute measurements giving the robot feedback about its driving actions and 
the situation of the environment around the robot. Given this information, the robot has to determine its location as 
accurately as possible. What makes this difficult is the existence of uncertainty in both the driving and the sensing of 
the robot. The uncertain information needs to be combined in an optimal way. The Kalman Filter is a technique from 
estimation theory that combines the information of different uncertain sources to obtain the values of variables of 
interest together with the uncertainty in these. In this work we provide a thorough discussion of the robot localization 
problem resolved by Kalman Filter, Adaptive Time Delay Neural Network and Support Vector machines.   
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1. Introduction 

The problem of robot localization consists of answering the 
question Where am I? from a robot's point of view. This means 
the robot has to find out its location relative to the 
environment. When we talk about location, pose, or position 
we mean the x and y coordinates and heading direction of a 
robot in a global coordinate system. The localization problem 
is an important problem. It is a key component in many 
successful autonomous robot systems [1]. If a robot does not 
know where it is relative to the environment, it is difficult to 
decide what to do. The robot will most likely need to have at 
least some idea of where it is to be able to operate and act 
successfully [2, 3]. By some authors the robot localization 
problem has been stated as the \most fundamental problem to 
providing robots truly autonomous capabilities" [4]. To be able 
to move around in an environment a robotic vehicle has a 
guidance or driving system [5]. A guidance system can consist 
of wheels, tracks or legs, in principle anything that makes the 
vehicle move around. These components are called actuators. 

Obviously, the guidance system plays an important role in 
the physical position of a robot. The guidance system directly 
changes the location of the vehicle. Without a guidance system 
the robot is not driving around, which makes localizing itself a 
lot easier.  Assuming that a robot does have a guidance system, 
the way the guidance system changes the location contains 
valuable information in estimating the location. 

2. Kalman Filter 

The Kalman filter is essentially a set of mathematical 
equations that implement a predictor-corrector type estimator 
that is optimal in the sense that it minimizes the estimated error 
covariance—when some presumed conditions are met. 

The Kalman filter estimates a process by using a form of 
feedback control: the filter estimates the process state at some 
time and then obtains feedback in the form of (noisy) 
measurements. As such, the equations for the Kalman filter fall 
into two groups: time update equations and measurement 
update equations. The time update equations are responsible 
for projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are 
responsible for the feedback—i.e. for incorporating a new 
measurement into the a priori estimate to obtain an improved a 
posteriori estimate[6].  

The time update equations can also be thought of as 
predictor equations, while the measurement update equations 
can be thought of as corrector equations. Indeed the final 
estimation algorithm resembles that of a predictor-corrector 
algorithm for solving numerical problems as shown below in 
Figure 1. 

Figure 1: Kalman Filter Cycle. 
 
 
 
The specific equations for the time and measurement updates 
are presented below: 
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Figure 2 : Kalman Filter operations. 
Where: 

 A might change with each time step, and matrix B 

relates the optional control input u to the state x. 
 Q is the process noise covariance; P- is the a priori 

estimate error covariance. 
 Kt is Kalman gain, H in the measurement equation 

relates the state to the measurement zt . 

I. THE EXTENDED KALMAN FILTER 
    The Kalman Filter above addresses the general problem of 
trying to estimate the state x of a discrete-time controlled 
process that is governed by a linear equation. But if the 
process to be estimated and (or) the measurement relationship 
to the process is non-linear we have work with the extended 
form as in figure 3. 
 

 
Figure 3. Extended Kalman Filter Operations. 

 
    Where  

 H, V are the measurement Jacobians at step k, 
and Rk is the measurement noise covariance. 

II. ADAPTIVE TIME DELAY NEURAL NETWORK 
 

     The Adaptive Time Delay Neural Network takes the 
structure of the Multi Layer perceptron taking delay into 
account. Instead of taking all the neurons at the same time one 

takes only part of them. Each entry is delayed by an adjustable 
time delay like the weights of the network. One thus will 
sweep window of a fixed but variable size on the space of 
entry.   
 Figure 4 shows a delay block between two units i, j, and 
Figure 5 presents general view of an ATNN (Adaptive Time 
Delay Neural Network). 

Figure 4: Delay Block diagram 

 
Figure 5: Diagram of ATNN. 

 
 
3. Training 
A basic concept in the study and the use of networks of 

neurons is that of training.  We indicate by this term, always in 
reference to biology, the procedure which consists in 
estimating the parameters of the various neurons of the 
network so, as well as possible; it fills the task which is 
affected. 

It is supposed that the parameters of the network are 
updated in a discrete way and that the entries are 
differentiable. 

The output of node is defined as follows [7]: 
 

 
  

 

j,h j,h n

j,h n

j,0 n

f S t si h 2
a t =

a t si h=1

 

               (1) 

Where: 
 

 𝑆𝑗,ℎ(𝑡𝑛) = ∑ ∑ 𝑤𝑗𝑖,ℎ−1 ∗ 𝑎𝑖,ℎ−1(𝑡𝑛 − 𝜏𝑗𝑖𝑘,ℎ−1)
𝐾𝑗𝑖,ℎ−1

𝑘=1𝑖∈𝑁ℎ−1
 (2) 

And f is a differentiable and non decreasing function definite 
as follows 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2020.17.16

I. Benchennane, A. Serra, 
M. Benyettou

E-ISSN: 2224-3402 133 Volume 17, 2020



                  𝑓𝑗,ℎ(𝑥) =
𝛽𝑗,ℎ

1+𝑒
−𝛼𝑗,ℎ𝑥 − 𝛾𝑗,ℎ                                   (3) 

Where 

         fj,h(x)  is in  [ , , ,,j h j h j h   
]. 

The modification of the weights as well as the 
deadlines is made by the algorithm of the gradient descent. 
Where the error is defined as follows:  

𝐸(𝑡𝑛) =
1

2
∑ (𝑑𝑗(𝑡𝑛) − 𝑎𝑗𝑗∈𝑁𝐿

(𝑡𝑛))2  (4)  
Where NL is the number of neurons in the output layer, and 

(tn)d j  is the desired exit of the node i at time tn. 

Time Delay are adapted as follows:   

         
τ =τ +Δτ

jik,h-1 jik,h-1 jik,h-1   (5)  
Such as:     

         

E(t )nΔτ =-η
1jik,h-1 τ

jik,h-1




                 

(6) 
 
    The weight changes in the following way: 

        
w =w +Δw

jik,h-1 jik,h-1 jik,h-1   
                                 (7) 
Such as:          

       

E(tn)
Δw =-η

2jik,h-1 w
jik,h-1




                        (8)  

 

4. Support Vector Machines 

Consider the following problem: we are given a data set

   1
,

N

i i i
g x y


  obtained by sampling, with noise, some 

unknown function f(x) and we are asked to recover the 
function f , or an approximation of it, that has at most ε 
deviation from the actually obtained targets  yi for all the 
training data g , and at the same time is as flat as possible. In 
other words, we do not care about errors as long as they are 
less than, but will not accept any deviation larger than this 
[08]. 

A. Linear Case   

We have: 

 |𝒚 − 𝒇(𝒙)|𝜺 ≔ 𝒎𝒂𝒙{𝟎, |𝒚 − 𝒇(𝒙)| − 𝜺}                    (9) 

  f(x) w ,x b b R  (10) 

Where .,.  denotes the dot product in the space of the 
input patterns. Flatness in the case of (10) means that one 
seeks a small w. One way to ensure this is to minimize the 
norm. We can write this problem as a convex optimization 
problem [09]: 

 
 
 
 
 

𝑤𝑖𝑡ℎ {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ∈ 𝜀

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖
 

 
 

(11) 
 
 

(12) 

The tacit assumption in (10) was that such a function 
actually exists that approximates all pairs  ,

i i
x y  that the 

convex optimization problem is feasible. 

Sometimes, however, this may not be the case, or we also 
may want to allow for some errors. One can introduce slack 
variables ζ

i
 to cope with otherwise infeasible constraints of 

the optimization problem (10).  

We define: 
 

ζ max(0, y f(x ) ε)
i i i
  

 

0

0

y f x
i i i

f x y
i i i

 

 












max( , - ( ) - )

-
max( , ( ) - - )

 

 

(13) 

 

(14) 

 

 

(15) 

 
Hence we arrive at the formulation stated in [10]. 

 


 



N1 -
min w ² C (ξ ξ )

i i2 i 1  
 

(16) 

wiith {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 − 𝜀 ≤ 𝜁𝑖

+

〈𝑤,𝑥𝑖〉 + 𝑏 − 𝑦𝑖 − 𝜀 ≤ 𝜁𝑖
−

𝜁𝑖
+, 𝜁𝑖

− ≥ 0

 (17) 

                                                                                                                                                                                                                                                                                                                                 
The constant C > 0 determines the trade-off between the 

flatness of f and the amount up to which ε deviations larger 
than are tolerated. 
 

In most cases the optimization problem (17) can be solved 
more easily in its dual formulation. Moreover, the dual 
formulation provides the key for extending SV machine to 
nonlinear functions. Hence we will use a standard dualization 
method utilizing Lagrange multipliers, as described [10]. 

  




-
ζ max(ζ ,ζ )
i i i

min w ²
1

2
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      Figure 6. The soft margin loss setting  

B. Dual problem and Qudrature Program 

The idea is to build a function of Lagrange by the objective 
function and its constraints by introducing a dual set of 
variables. It can be shown that this function has a saddle point 
with respect to the primal and dual variables at the solution. 
For details see e.g. [11]. We proceed as follow:  

1 -² ( ) ( , )2 1 1

N N
L w C y w x bi i i ii ii i

             
   

* - * -( , ) ( )
1 1

N N
y w x bi i i i i i iii i

             
   

* *, , , 0avec i i i i    
 

 

(18) 

 

     Where * *, , ,
i i i i

   
are the Lagrange Multipliers. 

 The Lagrangian has to be minimized with respect to w, b 
and maximized with respect to α≥ 0. 

At point of optimality we have:  

1
0

N

b i i
i

L  


   
*( )

 

1
0

i

N

w i i
i

L xw  


   
*( )  

0
i

i i
L C


     (*)

(*) (*)  

(19) 

 

(20) 

 

(21) 

Substituting (19, 20, and 21) in (18) we get:  

1
2 1

N
x x

i i j j i ji j
   



* *max - ( - )( - ) ,
,  

1 1

N N
y

i i i i ii i
      
 

* *- ( ) ( - )

 

0
1

0

N

i iiavec

C
i i

i

 

 












*( - )

*, [ , ]

 

(22) 

 

(23) 

In deriving (18) we already eliminated the dual variables 


i
; *

i
 through condition (21) which can be reformulated 

as 

  C
i i
* ( - )

 
(24) 

Eq. (20) can be rewritten as follows:  

1

N
w x

i i ii
  



*( - )

 
(25) 

Thus;
  

1

N
f x x x b

i i ii
  



*( ) ( - ) ,

 
(26) 

What is called support vectors expansion i.e. w can be 
completely described as a linear combination of the training 
patterns. In a sense, the complexity of a function's 
representation by SVs is independent of the dimensionality of 
the input space, and depends only on the number of SVs. 

Moreover, note that the complete algorithm can be 
described in terms of dot products between the data. Even 
when evaluating f ( x ) we need not compute w explicitly. 

C. Computing b 

b can be computed by exploiting the so called Krush-
Kuhn-Tucker (KKT) conditions [12]. These state that at the 
point of the solution the product between dual variables and 
constraints has to vanish.  

0y w x b
ii i i

       ( , )
 

(27) 

And 

0C
i i

   ( - )  
0C

i i
  * -( - )

 
(28) 

(29) 

For points which are apart from the band (ε-insensitive 
tubes) have  

 
C

i
 

*

 
(30) 

The points inside the band have  

0
i

 
(*)

 (31) 

The others  

0 C
i

 
(*)

 (32) 

The latter one has 

0   (33) 

Consequently b calculation as follows [13]:  

, (0, )    b y w x for C
i i i  

*, (0, )b y w x pour Ci i i    
 

(34) 

(35) 

From (24) it follows that only for │y-f(x)│≥ε the Lagrange 
multipliers may be nonzero, or in other words, for all samples 
inside the ε- insensitive tube (i.e. the shaded region in Fig. 

1) the  vanish for │y-f(x)│<ε  the second factor in (27) is 
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nonzero, hence 
(*)
i  has to be zero such that the KKT 

conditions are satisfied. Therefore we don’t need all the points 
to define w .The examples that come with non vanishing 
coefficients are called Support Vectors. 

D. Linear Case  Non Linear Case 

This concept can be extended to the case when f is non 
linear. A non-linear mapping which maps the input data to a 
high dimensional space (also called the feature space) is 
introduced. We can then try to find a linear function in feature 
space. 

Thus we avoid translating the input data to feature space 
first and then finding their inner products. 

The difference in the linear case is that w is no longer 
given explicitly. Also note that in the nonlinear setting, the 
optimization problem corresponds to finding the flattest 
function in feature space, not in input space [14]. 

 
5. Experimental Results 
We consider a mobile robot with the kinematics of a 

unicycle. Motion is generated by two independently actuated 
wheels, whose rotation is measured by incremental encoders 
[15].  

A simplified model of a mobile robot is presented in Figure 
7. 

 

 
 

Figure 7: The Location of a Robot. 
 

      A three layered ATNN is used to perform the estimation 
task. This network contains an input layer with five inputs, 
one hidden layer with ten hidden units, and three output nodes 
to indicate the position at each step. 
The number of time-delays is selected as 4 and 6 on the first 
and second layer of connections, respectively. 
The results of ATNN are: 

TABLE I.  ATNN RESULT 

 Training Error Test error 

ATNN 

 

On X 7,97E-04 3,60E-02 
On  Y 4,22E-04 3,70E-04 
On  3,10E-02 1,01E-04 

 
And EKF results are: 

TABLE II.  EKF RESULT 

Error on X Error on Y Error on the orientation 
 

7.26E -04 1.73E-03 3.43E-02 

And SVM results are: 

TABLE III.  SVM  RESULT 

 Training Error Test Error 

On X 1,29E-01 9.24E-04 

On Y 4,29E-01 2.68E-03 

On  1,17E-02 2,44E-10 

     According to Tables 1, 2 and 3 we see well that the new 
estimators proposed within the framework of this study gives 
better results which the EKF itself which is sensitive to the 
strong disturbances, and which at any moment requires the 
knowledge of all the variables defining the state of the system, 
on the other hand the SVM models and ATNN reach to the 
global minimum of the error. 
    We judge that SVM is the best estimator within the 
framework of our study. 

 
6. Conclusion 
As we see ATNN and SVM gave better results than EKF. 

The results show promise for using neural networks and SVM 
in estimating the states of a nonlinear systems. 
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