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Abstract: The method described in this paper can be used to compare three-dimensional upper limbs trajectories
between two motion capture (MoCap) recordings. It analysis the kinematic chain using dynamic time warping,
starting from hands trajectories, then elbows, arms and finally shoulders. Method generates Dynamic Time Warp-
ing align function (DTWaf) of hands which is used to detect local maxima which indicates the part of motions
where the highest differences between reference and input recordings are present. Those maxima are used later to
compare DTWaf of other body joints and to indicate which body joints caused deviation from the reference. The
proposed method is evaluated on dataset containing six exercises performed by a healthy person and persons that
suffer cuff muscle pain or shoulder injuries. The results obtained by our method supports the diagnosis of injured
subjects which reassures us, that our approach works correctly. The method beside the numerical results enables
to generate valuable visualizations that can be used to perform three-dimensional evaluation and comparison of
motion ranges between subjects. This approach can be applied for example to support rehabilitation process. By
using proposed method physician can easily visualize and measure improvement or deterioration of patient motion
abilities comparing it to various reference MoCap.

Key–Words: Motion capture, kinematic chain, dynamic time warping, rehabilitation, motion analysis, signal pro-
cessing.

1 Introduction
This paper is extended version of conference paper
[10]. It has been significantly improved by adding de-
tailed description of motion analysis procedure which
includes motion aligning and Dynamic Time Warp-
ing align function (DTWaf) analysis. This paper has
new and detailed evaluation and discussion of the pro-
posed method on test MoCap dataset. Both dataset
and source code can be downloaded and results can
be easily reproduced. Beside of already mentioned
changes all figures present in this paper have been up-
dated and the state of the art discussion has been ex-
tended.

Motion capture (MoCap) technology has many
important applications, among them is human motion
analysis for rehabilitation purposes. There are many
papers describing MoCap usage it this task. For ex-
ample in paper [1] authors propose a method of up-
per body posture estimation using a kinematic model
and steady-state genetic algorithm. Paper [2] intro-
duces a real-time human arm movement tracking sys-
tem that can be used to aid the rehabilitation of stroke
patients. The project [3] focuses on markerless de-

termination of deviations between the selected bones
and joints. The implemented application presents in-
structional animation of the exercises and verifies the
correctness of its performance in real time. Work [4]
describes a tele-immersion system for telerehabilita-
tion using real-time stereo vision and virtual environ-
ments. Stereo reconstruction is used to capture user’s
3D avatar in real time and project it into a shared vir-
tual environment, enabling a patient and therapist to
interact remotely. Paper [5] presents inertial sensor-
based monitoring system for measuring and analyz-
ing upper limb movements is presented. A kinematic
model is built to estimate 3D upper limb motion for
accurate therapeutic evaluation. Work [6] describes
a vision-based approach for analyzing a Parkinson
patient’s movements during rehabilitation treatments.
Authors in [7] propose adaptive exercise models, mo-
tion processing algorithms, and delivery techniques
designed to achieve exercises that effectively respond
to physical limitations and recovery rates of individ-
ual patients.
Dynamic Time Warping is popular technique that is
often utilized together with motion capture technol-
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ogy for human motion classification [11] [12] [13]
[15]. It can be used also for example to limb segments
acceleration measurement during functional task per-
formance [14], gait and activity analysis [16][17][18]
or simply motion alignment [19].
In contrary to majority of already published papers
method presented in this paper is capable to ana-
lyze the kinematic chain of upper body joints jointly
by comparing two motion capture recordings of per-
sons performing the same exercise. It does not uti-
lize motion derivatives like velocity or acceleration
but rather analyze the hand trajectory and then, basing
on maxima found in aligned motion paths it detects
most important differences between template and in-
put recording in hands kinematic chain. The found
differences indicate which body joints caused devia-
tion from the reference path.

2 Material and methods
In this section I will describe kinematic model the pro-
posed method is using, the evaluation approach for
motion analysis and validation dataset.

2.1 Features selection
The test dataset was gathered using IMU-based
Shadow 2.0 MoCap system. It is consisted of 17 iner-
tial measurement units that contain: 3-axis accelerom-
eter, gyroscope, and magnetometer. The tracking fre-
quency was set to 100 Hz with 0.5 degree static accu-
racy and 2 degrees dynamic accuracy. The hierarchi-
cal kinematic model that was used during data acqui-
sition procedure, that is a part of kinematic model of
MoCap system, is presented in Figure 1 – left.
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Figure 1: Left – a part of hierarchical kinematic model
that is an output of our MoCap. Right – kinematic
model that was used in our research for motions eval-
uation.

For motion analysis the proposed method uses the
following kinematic model, similar to one presented

in [1] (see also Figure1 – right). At first the coordinate
frame relative to shoulder coordinates is defined:


xt := RightShoulder−LeftShoulder

‖RightShoulder−LeftShoulder‖

zt := xt×[0,1,0]
‖xt×[0,1,0]‖

yt := xt×zt
‖xt×zt‖

(1)

This frame is used to calculate the rotation angles
of upper body parts. Angles are calculated as projec-
tion of vector representing the limb onto plane desig-
nated by pair of vectors from (1). Shoulder and arm
rotation angles are calculated according to following
formula:



v := LeftShoulder − LeftArm
or

v := RightShoulder −RightArm
or

v := LeftArm− LeftForearm
or

v := RightArm−RightForearm

(2)

Then the normal vector of the plane is calculated:

n := xt× zt (3)

and projection of v onto plane with normal n:{
proj y := v − (n · (v · n))
angle y := ](proj y, xt)

(4)

Rest of the angles are calculated as follow:
n := yt× zt

proj z := v − (n · (v · n))
angle z := ](proj z, yt)

(5)

and 
n := zt× xt

proj x := v − (n · (v · n))
angle x := ](proj x, zt)

(6)

As the elbow joint rotate in only one plane, elbow
angles can be calculated in the following way:


RightElbowAngle := ](RightArm−RightShoulder,

RightArm−RightForearm)
LeftElbowAngle := ](LeftArm− LeftShoulder,

LeftArm− LeftForearm)
(7)
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Figure 2: This figure presents aligning error plot
which is a result of the DTW aligning procedure.

2.2 Data evaluation
The proposed approach compares the three-
dimensional hands trajectories between two ex-
periments participants. The goal is to compare
the differences in upper body performance (shoul-
ders, arms and elbows, motion is expressed with
angles defined in previous section) between two
subjects. Those might be for example a healthy
person (a reference recording - Ref) and person with
some disabilities (input data - In). We also have
to standardize the body proportions between both
recordings in order to make them comparable. It
can be done for example by using only the body
proportions of the reference person. Applying
different body proportions in hierarchical kinematic
chain is straightforward and does not require further
explanation. Also recalculation of hierarchical to
direct kinematic model is well defined [8].

Let us assume that the hips (root of kinematic
chain) joint coordinates of both input and reference
MoCap is constants and equals [0,0,0] during whole
recording. That means that all other joints coordi-
nates are described relatively to this joint. In order
to start analysis, two motion capture recordings have
to be aligned to each other so that vectors designated
by shoulder coordinates of reference and input data
(8) were parallel.


V 1 := [RefShoulderLeft.X, 0, RedShoulderLeft.Z]
−[RefShoulderRight.X, 0, RedShoulderRight.Z]
V 2 := [InShoulderLeft.X, 0, InShoulderLeft.Z]
−[InShoulderRight.X, 0, InShoulderRight.Z]

(8)
Where: RefShoulderLeft.X ,

RefShoulderLeft.Z are X and Z coordinates
of left shoulder joint in reference recording in di-
rect kinematic model while InShoulderLeft.X ,
InShoulderLeft.Z are X and Z coordinates of left
shoulder joint in input recording in direct kinematic
model.
We want to find an angle α that minimizes dot product
between vector V 1 rotated around Y axis and V 2
vector:

MrotY (x)) =

 cos(x) 0 sin(x)
0 1 0

−sin(x) 0 cos(x)

 (9)

fmin(x) = min(V 1 ∗MrotY (x) · dotv2) (10)

Where ∗ is vector by matrix multiplication and ·
is dot product.
This is one-parameter optimization procedure that is
solved using simplex method. In proposed solution
simplex starts from initial angle x0 = 0 and performs
optimization until obtaining coverage. In the next step
the same optimal angle α is applied to rotate all body
joints coordinates of input MoCap. Because motion
description is described relatively to root joint, this
rotation can be easily done just by multiplication of
vector with joint coordinates by rotation matrix (9).
All motions are calculated relatively to the chosen left
or right shoulder depending which hand we want to
evaluate. Let us assume that we want to calculation
motion relatively to left shoulder. In order to do so
proposed method iterates through all motion samples
using Algorithm 1:

Next we need to align reference and input Mo-
Cap so that they have common left or right shoulder
coordinate (depending which hand we want to eval-
uate). This is relatively easy operation presented in
Algorithm 2.

After applying Algorithm 1 and Algorithm 2 both
reference and input MoCap are initially preprocessed
and ready to calculate features (1) - (7).

The hand position is an effect of motion of whole
kinematic chain that includes shoulder, arm and elbow
rotation. Proposed approach aligns three-dimensional
trajectories of hands between input and reference sig-
nal and calculates the output signal with distances
between input and reference MoCap using dynamic
time warping (DTW) with Euclidean distance mea-
sure. Then so called DTW alignment function (DT-
Waf) is calculated. DTWaf is generated using follow-
ing approach:

• DTWaf has length of the input signal.
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Algorithm 1: Recalculates motion relatively to left shoulder coordinates vector.
Data: ShoulderLeft[a] - three dimensional vector holding left shoulder coordinates in data sample with

index a. AllJoints are are all vectors that have body joints coordinates, instruction
AllJoints[b]← AllJoints[b]− diff menas that we modify all joints coordintates in our dataset by
subtracting them by diff value.

Result: After applaying this algorithm AllJoints are calculated relatively to left shoulder coordinates
vector.

1 for a in 1:number of samples - 1 do
2 diff ← ShoulderLeft[a+ 1]− ShoulderLeft[a, signal1];
3 for b in (a+1):number of samples do
4 AllJoints[b]← −AllJoints[b]− diff ;

Algorithm 2: Aligns reference and input MoCap so that they have common left shoulder coordinate.
Data: In are coordinates of input MoCap, Ref are coordinates of reference MoCap.
Result: After applaying this algorithm reference and input MoCap have common left shoulder coordinate.

1 diff ← In.ShoulderLeft[1]−Ref.ShoulderLeft[1];
2 for a in 1:number of samples do
3 In.AllJoints[a]← In.AllJoints[a]− diff ;

Algorithm 3: Calculates DTW alignment function (DTWaf) of RefSignal and InSignal.
Data: RefSignal and InSignal are multidimensional signals to align, warping path length is a length of

warping DTW paths WarpingPathRef and WarpingPathIn of Ref and In signals (both warping paths
have same length), FUN is a distance function (in this case it is Euclidean distance).

Result: DTW alignment function (DTWaf) of RefSignal and InSignal.
1 idprev ← −1 for a in 1:warping path length do
2 id←WarpingPathIn[a];
3 vec1 ← RefSignal[WarpingPathRef [a]];
4 vec2 ← InSignal[WarpingPathIn[a]];
5 if id 6= idprev then
6 DTWaf [id]← FUN(vec1, vec2);
7 else
8 DTWaf [id]← max(DTWaf [idprev], FUN(vec1, vec2));

9 idprev ← id;
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• Values of DTWaf samples are calculated using
Algorithm 3.

Then we investigate in which samples are the
largest differences are in hand positions between par-
ticipants of evaluation. Those differences can be
found as local maxima of DTWaf . Knowing the
temporal coordinates of samples in which maxima
were detected, we can check if similar maxima are
present in preceding elements of kinematic chain (el-
bows, arms and shoulders). If those maxima are also
present we can suspect, that largest differences of
hand trajectories are caused by differences discovered
that way.
In order to detect local maxima we use the follow-
ing method: signal is smoothed with Gaussian kernel
sized smoothSize = 0.1 of the input signal. Local
maxima are found in smoothed signals using straight-
forward approach: Extreme is present in data sample
with index a when:

derivative[a] > 0 ∩ derivative[a+ 1] < 0 (11)

Where derivative is first derivative of DTWaf .
We take into account only those maxima, which have
value above certain treshold:

(smoothdata[a]−min(smoothdata)) ≥
((min(smoothdata)

−max(smoothdata) · extremumtreshold)
(12)

Where extremumtreshold = 0.66. After de-
tecting all local maxima in handDTWof we can per-
form alignment of all other features (1) - (7). In order
to do so following algorithm is performed:
For each feature:

1. DTW aligning between reference and input Mo-
Cap is performed using warping path that was
calculated for hand;

2. we calculate DTWaf for this feature using Algo-
rithm 3;

3. we detect local maxima in new DTWaf using
(11) and (12);

4. we check if those signals also have maxima that
are in similar temporal moments like in hand
signal. We take into account only those max-
ima that are in range: [t − ceiling(length(In) ·
smoothSize),
t+ ceiling(length(Ref) · smoothSize)]
where t is a moment of time where maximum on
DTWaf of hand is detected and length is num-
ber of samples in a signal. This heuristic is used

because displacement in kinematic chain is pro-
portional to the length of the signal and kernel
size. Besides detecting maximum we can also
indicate parts of the motion preceding the max-
imum, which caused large values in DTWaf .
That region of interest (ROI) can be defined as
set of sample preceding maxima that has positive
value of derivate and begins on the first sample
with negative derivate. The role of ROI is to
show the fragment of motion that leads to largest
displacement between input and reference Mo-
Cap.

2.3 Dataset
Six types of exercises have been recorded that can
be used to visualize the injuries of upper body. Tra-
jectories of arms motion of those exercises can be
seen on three-dimensional renderings in Figure 2.
Those exercises were: bear hug, dumbbells lift-
ings, shoulder touch with right hand, rising right arm
frontally, touching between shoulders with right hand
and shoulder elevation. Same exercises were per-
formed by a healthy subject (reference data) and per-
sons suffering some minor injuries (input data). Par-
ticipants with disabilities suffered a rotator cuff mus-
cle pain or shoulder injuries. Table 1 presents frames
(samples) count of test MoCap dataset were used in
this research. As can be seen in Table 1 all reference
MoCap was performed faster than input recordings
(they have less samples). That was because injured
persons struggled more trying to perform actions cor-
rectly.
In Figure 2 a reference motion is green while in-
put motion is red. Corresponding samples of MoCap
recordings are marked with blue lines. Yellow line in-
dicates frames in which maxima in DTWaf were de-
tected. On the left from person visualization the coor-
dinate frame is presented (1) which is calculated from
first frame of reference MoCap. Orange line is an X
axis, white one Y axis, and black Z axis.

Table 1: This table presents frames (samples) count of
test MoCap dataset that was used in our research.

Action Reference Input
Bear hug 151 240

Dumbbells lifting 179 327
Shoulder touch 193 294

Rising arm frontally 160 247
Hand between shoulders 241 327

Shoulder elevation 286 417
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3 Results
In order to evaluate the proposed method I have ap-
plied it to dataset described in previous section. The
implementation of this method has been done in R lan-
guage and can be downloaded together with a dataset
from [9]. Values of aligning procedure error presented
in Figure 2 indicate that simplex-based approach in-
troduced in Section 2.2 coverages giving a stable so-
lution. After evaluation, I have made visualizations
of obtained results and confront them with disabilities
that those people suffered. In Tables 2-7 I present val-
ues of DTWaf functions for various exercises. I take
into account only those signals in which local maxima
satisfy conditions described in Section 2B (are above
threshold and within a certain range from maximum
detected in DTWaf of hand motion). Figures 4-9 vi-
sualize selected DTWaf of those exercises. Among all
possible plots I have presented hand DTWaf and one
shoulder, arm and elbow angle DTWaf provided that
local maximum that satisfies conditions described in
Section 2B has been detected.

4 Discussion
Hand trajectories analysis in Figure 2 performed with
DTWaf approach prove that maxima detected by
proposed algorithm corresponds to parts of motions
where there were highest difference in motion range
between reference and input MoCap. Three dimen-
sional renderings from Figure 2 gives general concept
of difference between analyzed motion pairs however
to get precise results plots from Figure 4-9 and val-
ues from Table 2-7 have to be analyzed. For example
in case of Bear hug motion (see Figure 4), only one
maximum with a sufficient value over threshold has
been detected. This ROI corresponds to the last part
of motion that indicates the inability of an injured per-
son to dynamically move right arm back in XZ plane.
As can be seen the basic statistic calculated from DT-
Waf supplies us with information how much two mo-
tions present on MoCap differs from each other. The
values are either with cm (hands trajectories) or radi-
ans (shoulder, arm and elbow rotation angles). In all
cases minimal values (that are often present at initial
part of the motion) are close or equals zero but during
motion execution those values becomes higher giving
relatively high maximal value. This maximal value is
good indicator how limited is a motion range of in-
jured person. Generally mean and median value does
not differ much between each other and give general
numerical concept of averaged distance between mo-
tion trajectories on DTWaf plots.
In this experiment detected ROIs correspond to part of
motions that indicates the inability of an injured per-

son to dynamically move right arm back in a certain
plane which is caused by an injury. Thise results sup-
port the diagnosis of injuries described in section 2.3.

5 Conclusion
The research presented in this paper proves that the
proposed method is useful for evaluation of upper
body motion analysis. The method beside the nu-
merical results enables to generate valuable visualiza-
tions that can be used to perform three-dimensional
evaluation and comparison of motion ranges between
subjects. This approach can be applied for exam-
ple to support rehabilitation process. By using pro-
posed method physician can easily visualize and mea-
sure improvement or deterioration of patient motion
abilities comparing it to various reference MoCap. It
might be either MoCap of other, healthy person or of
the same subject before or during various stages of in-
jury.

Table 2: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Bear hug exercise.
I present only those DTWaf in which local maxima
satisfies conditions described in Section 2 B are de-
tected.

Feature Min Median Mean Max
Hand [cm] 0.46 3.98 6.86 31.21

ShoulderZ [rad] 0.00 0.11 0.11 0.29
ArmX [rad] 0.00 0.06 0.10 0.49
ArmY [rad] 0.00 0.06 0.09 0.49
Elbow [rad] 0.00 0.09 0.10 0.24
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(a) Bear hug (b) Touch between shoulders on the back

(c) Touch shoulder (d) Shoulder elevation

(e) Dumbbells lifting (f) Rising arm frontally

Figure 3: This figure presents three-dimensional renderings of a reference MoCap aligned with input MoCap.
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Figure 4: This figure presents plots of DTWaf of Bear hug exercise. I present only those DTWaf in which local
maxima satisfies conditions described in Section 2 B are detected.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Tomasz Hachaj

E-ISSN: 2224-3402 42 Volume 16, 2019



0 50 100 150 200 250 300

0
10

20
30

40

Time [10^−2 s]

D
is

ta
nc

e 
[c

m
]

DTWaf of right hand trajectory analysis

Original
Maxima over treshold
ROI

(a) DTWaf of right hand

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time [10^−2 s]

A
ng

le
 [r

ad
]

DTWaf of right elbow angle analysis

Original
Maxima over treshold
ROI

(b) DTWaf of right elbow angle

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Time [10^−2 s]

A
ng

le
 [r

ad
]

DTWaf of right RightArm X trajectory analysis

Original
Maxima over treshold
ROI

(c) DTWaf of right arm rotation around X axis
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Figure 5: This figure presents plots of DTWaf of Dumbbells lifting exercise. I present only those DTWaf in which
local maxima satisfies conditions described in Section 2 B are detected.
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Figure 6: This figure presents plots of DTWaf of Shoulder touch exercise. I present only those DTWaf in which
local maxima satisfies conditions described in Section 2 B are detected.
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(c) DTWaf of right arm rotation around X axis
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Figure 7: This figure presents plots of DTWaf of Rising arm frontally exercise. I present only those DTWaf in
which local maxima satisfies conditions described in Section 2 B are detected.
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Figure 8: This figure presents plots of DTWaf of Hand between shoulders exercise. I present only those DTWaf in
which local maxima satisfies conditions described in Section 2 B are detected.
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Figure 9: This figure presents plots of DTWaf of Shoulder elevation exercise. I present only those DTWaf in which
local maxima satisfies conditions described in Section 2 B are detected.
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Table 3: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Dumbbells lifting
exercise. I present only those DTWaf in which local
maxima satisfies conditions described in Section 2 B
are detected.

Feature Min Median Mean Max
Hand [cm] 1.25 5.19 8.01 28.82

ShoulderX [rad] 0.03 0.07 0.10 0.26
ShoulderY [rad] 0.00 0.06 0.07 0.13

ArmX [rad] 0.00 0.04 0.06 0.15
ArmY [rad] 0.00 0.04 0.05 0.15
ArmZ [rad] 0.00 0.05 0.24 2.78
Elbow [rad] 0.00 0.05 0.09 0.36

Table 4: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Shoulder touch ex-
ercise. I present only those DTWaf in which local
maxima satisfies conditions described in Section 2 B
are detected.

Feature Min Median Mean Max
Hand [cm] 2.741 9.68 9.14 13.80

ShoulderX [rad] 0.07 0.12 0.12 0.14
ShoulderY [rad] 0.00 0.05 0.05 0.10
ShoulderZ [rad] 0.00 0.15 0.14 0.23

Table 5: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Rising arm frontally
exercise. I present only those DTWaf in which local
maxima satisfies conditions described in Section 2 B
are detected.

Feature Min Median Mean Max
Hand [cm] 2.42 13.60 12.02 18.44

ShoulderX [rad] 0.00 0.03 0.03 0.11
ShoulderY [rad] 0.00 0.03 0.03 0.11
ShoulderZ [rad] 0.00 0.07 0.09 0.27

ArmX [rad] 0.00 0.17 0.14 0.42
ArmY [rad] 0.00 0.17 0.14 0.42
ArmZ [rad] 0.00 0.16 0.17 0.37
Elbow [rad] 0.01 0.17 0.16 0.2

Table 6: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Hand between
shoulders exercise. I present only those DTWaf in
which local maxima satisfies conditions described in
Section 2 B are detected.

Feature Min Median Mean Max
Hand [cm] 0.82 6.90 8.67 18.08

ShoulderX [rad] 0.00 0.03 0.09 0.22
ShoulderY [rad] 0.00 0.03 0.09 0.22
ShoulderZ [rad] 0.00 0.06 0.16 0.41

ArmX [rad] 0.00 0.12 0.19 0.55
ArmY [rad] 0.00 0.08 0.11 0.37
Elbow [rad] 0.00 0.08 0.17 0.50

Table 7: This table presents minimal, maximal, me-
dian and mean value of DTWaf of Shoulder elevation
exercise. I present only those DTWaf in which local
maxima satisfies conditions described in Section 2 B
are detected.

Feature Min Median Mean Max
Hand [cm] 0.61 5.45 9.56 46.94

ShoulderX [rad] 0.00 0.03 0.03 0.11
ShoulderY [rad] 0.00 0.02 0.03 0.11
ShoulderZ [rad] 0.00 0.07 0.08 0.23

ArmX [rad] 0.00 0.04 0.13 0.82
ArmY [rad] 0.00 0.04 0.13 0.82
Elbow [rad] 0.00 0.02 0.10 0.67
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[5] R. Pérez R, Ú. Costa , Torrent M, et al.,
Upper Limb Portable Motion Analysis Sys-
tem Based on Inertial Technology for Neu-
rorehabilitation Purposes, Sensors (Basel,
Switzerland), 10(12):10733–10751, 2010,
doi:10.3390/s101210733
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