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Abstract: - Information visualization plays an important role in human life. It is believed that about 90% of all 
received information people receive through vision. Humanity for thousands of years has overcome the way 
from simple imaging methods in the form of rock paintings to maps, charts and graphs. Currently, visualization 
based on graph models is an inherent part of the processing of complex information about the structure of 
objects, systems and processes in many applications in science and technology. In this paper, we describe an 
effective algorithm for visualization of graph representations of data-flow programs and its effective 
implementation within the Visual Graph system for visualization of arbitrary attributed hierarchical graphs with 
ports. 
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1 Introduction 
Visualization is a process of transformation of large 
and complex abstract forms of information into 
visual form, strengthening user's cognitive abilities 
and allowing them to take the most optimal 
decisions. Graphs are the most common abstract 
structure encountered in computer science and are 
widely used for abstract information representation. 

Currently, visualization based on graph models is 
an inherent part of the processing of complex 
information about the structure of objects, systems 
and processes in many applications in science and 
technology [1 - 4]. At the market there are widely 
presented software products, using the information 
visualization on the basis of graph models: such as 
aiSee [5], yEd [6], Cytoscape [7], Higres [8] or 
Visual Graph [9]. 

The Cloud Parallel Programming System (CPPS) 
being under development at Institute of Informatics 
system is a visual programming system on the base 
of the Cloud Sisal language [10]. The Cloud Sisal 
language continues the tradition of previous 
versions of the SISAL language, remaining a 
functional data-flow programming language 
oriented to writing large scientific programs, and 
expands their capabilities with tools for supporting 
cloud computing [11].  

The goal of the CPPS project is to develop 
methods and tools for architecturally independent 
parallel programming to support cloud-based high-

performance computing (supercomputing) based on 
the functional-data-flow paradigm and the 
transformational approach. It is assumed that the 
CPPS system will provide means to write and debug 
Cloud-Sisal-programs regardless target architectures 
on low-cost devices. Adaptation of an 
architecturally independent functional Cloud-Sisal-
program to a specific parallel supercomputer will be 
implemented by optimizing cross-compilation 
during which the program is subjected to the 
necessary optimizing and restructuring 
transformations under user control. By this the 
degree of the user's participation can be different — 
from complete non-participation or simply 
providing additional information about the program 
and the supercomputer (in the form of annotations-
statements) to direct or indirect (using annotations-
directives) control of the transformations. In 
particular, the user should be able to visually 
manipulate the Cloud Sisal program within the 
framework of its graph representation. As a result of 
cross-compilation an effective parallel program, 
appropriate to a target execution platform, will be 
constructed and can be executed in clouds.The 
CPPS system uses an internal graph representation 
of the Cloud Sisal programs, which focuses on their 
semantic and visual processing and which is based 
on attributed hierarchical graphs [12]. This 
representation, called Intermediate Representation 
(IR), in contrast to the control flow graph, 
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commonly used in optimizing compilers for 
imperative languages (such as C or Fortran), 
expresses data dependencies, with control left 
implicit [10]. 

The CPPS system will support visualisation of 
IR-graphs of Cloud-Sisal programs and its use in 
development and debugging of architecturally 
independent functional Cloud-Sisal-programs. The 
system will also support visualization of both 
internal data structures that arise in the optimizing 
cross-compiler when building parallel programs, 
and the dynamic processes that arise when 
executing parallel programs. This visualization can 
be used for control of optimizing compilation in 
order to improve the performance of parallel 
programs obtained from their functional 
specifications by using the cross-compiler. 

The main difficulties in solving problem of the 
visualization of IR graphs are due to the fact that, in 
contrast to the standard problem of drawing of 
graphs on the plane [1 - 4] vertices of IR-graphs are 
connected by arcs through their different ports as 
well as can have different sizes depending on the 
image characteristics of those graphs, which are 
embedded in these vertices. 

In this paper, we describe an effective algorithm 
for visualization of IR-graphs and its effective 
implementation within the framework of Visual 
Graph system for visualization arbitrary attributed 
hierarchical graphs with ports. 

The rest of the paper is structured as follows. 
Section 2 presents definitions of hierarchical graphs 
and graph models. IR-graphs and its drawings are 
presented in Section 3. Section 4 is a general 
description of algorithm. Section 5, 6 and 7 presents 
in more details three main stages of the algorithm: 
layer assignment when vertices to horizontal layers 
are assigned and thus their y-coordinates are 
determined, crossing reduction when orders of 
vertices within each layer to reduce the number of 
arc crossings are determined, horizontal coordinate 
assignment when an x-coordinates for each vertex is 
determined. Implementation of the algorithm within 
the Visual Graph system is presented in Section 8. 
Section 9 provides our conclusion. 
 
 
2 Hierarchical Graphs and Graph 
Models 
Let us consider some definitions from [12, 13]. 

Let G be a graph of some type, e.g. G can be an 
undirected graph, a digraph or a hypergraph. A 
graph C is called a fragment of G, denoted by 
C ⊆ G, if C includes only elements (vertices and 

edges) of G. A set of fragments F is called a 
hierarchy of nested fragments of the graph G, if 
G∈F and C1 ⊆ C2, C2⊆C1 or C1 ∩ C2=∅ for any C1, 
C2 ∈ F. 

A hierarchical graph H = (G, T) consists of a 
graph G and a rooted tree T that represents an 
immediate inclusion relation between fragments of a 
hierarchy F of nested fragments of G. G is called the 
underlying graph of H.  T is called the inclusion tree 
of H. 

A hierarchical graph H is called a connected one, 
if each fragment of H is connected graph, and a 
simple one, if all fragments of H are induced 
subgraphs of G. 

 
Fig. 1. A simple hierarchical graph H=(G, T) which has only two 
nontrivial fragments: G and C. 

It should be noted that any clustered graph H 
[14] can be considered as a simple hierarchical 
graph H = (G, T), such that G is an undirected graph 
and the leaves of T are exactly the trivial subgraphs 
of G (See Fig. 1). 

Let V be a set of objects called simple labels (e.g. 
V can include some numbers, strings, terms and 
graphs). Let W be a set of label types of graph 
elements and let a label set V(w)= V1× V2× … × Vs, 
where s≥1 and for any i, 1≤ i≤ s, Vi⊆ V, be 
associated with each  w∈ W.  

A labeled hierarchical graph is a triple (H,M,L), 
where H is a hierarchical graph, M is a type function 
which assigns to each element (vertex, edge and 
fragment) h of H its type M(h)∈ W, and L is a label 
function, which assigns to each element h of H its 
label L(h)∈V(M(h)).  

Under the graph model, in general, we 
understand a class of graph objects being attributed 
(labeled) graphs with a given equivalence relation 
on it. So in the definition of a graph model we can 
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distinguish between a static (or syntactic) part of the 
specification which defines a class of graph objects, 
and a dynamic (or semantic) part which defines a 
partition of this class into subclasses of graphs being 
pair-wise equivalent. 

When the image of a graph model is made a type 
of its elements may be associated with a certain 
geometrical shape of corresponding representations 
and / or with their certain color range, as well as 
with the place and manner of representations of 
attributes relating to the elements of the type. 

As for the dynamic part of a hierarchical graph 
model, it brings to the visualization of graph models 
different aspects of animation. Two main 
approaches to the presentation of semantic part of 
the graph model are used typically: either by 
explicitly specifying a set of so-called invariants 
(i.e. properties being common to all equivalent 
models), which distinguishes the equivalence 
classes of graph models, or through so-called 
equivalent transformations of graph models, which 
retain the specified set of invariants. Both 
approaches to the presentation of the semantic graph 
model are based on graph transformations and 
actively studied and developed in the theory of 
program schemes (see, for example, [15]). 

 

 
Fig. 2. A drawing of the simple hierarchical graph H=(G, T) with two 
nontrivial fragments G and C represented as rectangles. 

A drawing D of a hierarchical graph H = (G,T) is 
a representation of H in the plane such that the 
following properties hold (See Fig. 2).  

• Each vertex of G is represented either by a 
point or by a simple closed region. The 
region is defined by its boundary - a simple 
closed curve in the plane. 

• Each fragment of G is drawn as a simple 
closed region which includes all vertices and 
subfragments of the fragment.  

• Each edge of G is represented by a simple 
curve between the drawings of its endpoints.  

So, different fragments in a drawing of a 
hierarchical graph can have different sizes 
depending on the image characteristics of those 
graphs, which are included in these fragments. 
 
 
2 IR-Graphs and Their Drawings 
The CPPS system uses so-called IR-graph as an 
internal graph representation of a source Cloud-
Sisal-program. The vertices of the IR-graph 
correspond to the expressions of the Cloud Sisal 
program, and the arcs show the transmissions of 
data between the vertex ports, the ordered sets of 
which are assigned to the vertices as their arguments 
(input ports or inputs) and results (output ports or 
outputs).  

Vertices of the IR-graphs denote operations on 
their inputs (arguments), the results of which are at 
the outputs of vertices. There is, however, a special 
kind of vertices denoting literals (constants) of any 
type, each of which has one output and an empty set 
of inputs. 

Vertices of the IR-graphs can be either simple or 
compound. Simple vertices do not have an internal 
structure in addition to the associated operation, 
such as add or divide. The compound vertices (or 
fragments) correspond to complex expressions of 
Cloud-Sisal-program, such as loop expression or 
function, and contain ordered sets of vertices (or 
subfragments) corresponding to the subexpressions 
from which they consist. The number of 
subfragments may be fixed (in Loop and Let 
vertices), may vary (in Function and Select 
vertices). 

Because of the property of the Cloud Sisal 
language, any IR-graph is a DAG (Directed Acyclic 
Graph) and does not contain two arcs that enter the 
same input port. 

The following rules for drawing of IR-graphs are 
assumed: 

1. Simple vertices without inputs are represented 
in the form of circles containing the representations 
of the constants. 

2. Simple vertices with inputs are represented in 
the form of rectangles with semicircular projections 
from above, representing the vertex inputs in their 
order from left to right, and semicircular projections 
from below, depicting the outputs of the vertex. 
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Inside the rectangles are the representations of 
corresponding operations. 

3. Compound vertices are represented as 
rectangles with a rectangular ledge from the top left 
to indicate the type of the composite vertex, as well 
as with circles from the top right and bottom to 
show the inputs and outputs of this vertex in their 
order from left to right. Each circle representing a 
certain pole of the fragment consists of a 
semicircular projection outward and a semicircular 
projection inside this rectangle. Inside the rectangle 
that represents the compound vertex, there are 
images of all the vertices and all arcs contained in it, 
and only they (See Fig. 3). 

4. Images of two different vertices either do not 
intersect, or one of them lies entirely in the other. 

5. Arcs are represented as curves (splines) with 
arrows that connect the corresponding ports and do 
not intersect the vertices' images at their internal 
points 

So, IR-graphs are hierarchical graphs whose 
vertices are connected by arcs through their 
different ports, and the problem of visualization of 
IR graphs cannot be solved by methods and 
algorithms known for drawing of graphs on the 
plane [1 - 4]. 
 

 
 

Fig. 3. A fragment n0::n0::n2 with tree arguments and one result which 
consists of single subfragment n0::n0::n2::n0. 

 
 
3 General Description of Algorithm 
Below it is assumed that the original IR-graph is a 
directed acyclic graph (DAG).  

The algorithm consists in sequentially executing 
the steps of constructing images of the contents of 
fragments of the original graph, beginning with the 
innermost one, on each of which the drawing of a 
fragment is constructed with using of the sizes and 
locations of the elements of subfragments directly 
enclosed in it. 

The construction of the image of a fragment is 
based on the technique of the so-called the 
hierarchical approach for creating layered drawings 
of DAGs, which was proposed by K. Sugiyama, and 
consists of the following three main stages [1], [2]:  

(1) layer assignment when vertices to horizontal 
layers are assigned and thus their y-coordinates are 
determined,  

(2) crossing reduction when orders of vertices 
within each layer to reduce the number of arc 
crossings are determined,  

(3) horizontal coordinate assignment when an x-
coordinates for each vertex is determined. 
 
 
4 Layer Assignment 
The task of this stage is to assign to each vertex its 
y-coordinate. For this, the source graph G = (V, E) 
must be reduced to a layered digraph, which is a 
partition of V into subsets L1, L2, … , Lh, such that if 
(u,v)∈E, where u∈Li and v∈Lj, then i > j. It is 
assumed that all vertices of the same level are 
assigned the same vertical y-coordinate, i.e. vy = i, 
for all vertices from the level Li. The height of a 
layered digraph is the number h, and the width wi is 
the number of vertices in the largest Li. The span of 
arc (u,v) with u∈Li and v∈Lj is i - j. The layered 
digraph is said to be proper if no arc with a span 
greater than one.  

The existence of a layered digraph for any DAG 
is obvious. However, not for every DAG there is a 
proper layered digraph (see Fig. 5, a). 

To make a proper layered digraph, the technique 
of inserting “dummy vertices” can be used. Each arc 
(u, v) of span k=i–j>1 is replaced with path (u=v1, 
… vk=v) where v2, … vk-1 are added dummy vertices 
and vm ∈ Li – m+1 for all m (see Fig. 5, b). The dummy 
vertices are needed because the crossing stage 
assumes that the digraph is proper. 

There are three important requirements of the 
layering that are taken into account by this stage of 
our algorithm.  

Firstly, the layered directed graph should be 
compact. This means that its height and width 
should be small.  

Secondly, the layering should be proper. This is 
easily achieved by inserting “dummy vertices”. 

Thirdly, the number of dummy vertices should 
be small. 

So, the aim of the layer assignment stage is to 
transform into a layered digraph an acyclic directed 
graph G = (V, E) which represents some fragment F 
in such a way that V consists of the ports of the 
fragment F and the vertices directly contained in F.  
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Let t be the length of the longest path in G. Then 
a layered digraph L1, L2, … , Lt +1 in which L1 
consists of all inputs of F, and Lt +1 consists of all 
outputs of F  will be constructed as follows.  

First, L1 and Lt +1 are constructed from the ports 
of the fragment and these ports are removed from G 
together with the incident arcs. The process of 
construction of layered digraph continues in steps, 
on each of which one of the vertices that does not 
have incoming arcs in the current state of G is 
included in the set Li +1, where i is the maximum 
number of the set Li containing its predecessor in the 
source graph G, with simultaneous removal of this 
vertex from G together with all arcs outgoing from 
it. Moreover, among the vertices that do not have 
incoming arcs in the current state of G, the vertex 
that has the least number of incoming arcs and the 
largest number of outgoing arcs in the original graph 
G (these numbers are pre-counted for all vertices of 
the original graph) is selected and included in the 
corresponding set, . This process continues until the 
current graph G becomes empty. After this, the 
layered digraph G is reduced to a proper one using 
the technique of dummy vertices. 
 

 
 
Fig. 4. The three main stage of the construction of the image of 
a fragment 

 
 
5 Crossing Reduction 
The task of this stage is to find the order of vertices 
at each level, in order to minimize the number of 
intersections of arcs.  

It should be noted that the number of 
intersections of arcs in a layered digraph does not 
depend on the precise position of the vertices, but 
depends only on their relative position within each 
layer (their ordinal number at a given level). Thus, 
the task of this stage is not just a geometric problem, 
but merely a combinatorial one. However, this 
problem is NP-complete already for a graph having 
only two layers. 

The execution of this stage for a given fragment 
is carried out as follows: 

1. If a fragment has input and/or output ports 
located at L1 and/or Lh, respectively, then the 
corresponding serial numbers should be assigned to 
these ports. 

 

 
a        b 

Fig. 5. Adding dummy vertex (drawn as dark square) to break up 
long edge in the layered digraph.  

2. Consider the vertices of the L1 level in their 
ordering, if the fragment has no ports, or L2, if it has 
ports, and traverse the contents of the fragment 
starting from these vertices using the stack. 

3. If the stack is empty, either we continue 
step 2, or this stage is completed. Otherwise, 
consider the vertex located at the top of the stack, 
but do not remove it from the stack. If there are no 
successor numbers for the vertex in question, then 
we assign the current order number to the vertex, 
delete it from the stack and go to step 3. If there are 
such successors at the top, we add one of them to 
the stack and go to step 3; when choosing a 
successor for placement on the stack, consider the 
following: 

• If all successors of a given vertex are connected 
by arcs outgoing from different ports, then the order 
of inclusion of these vertices does not contradict the 
order of the ports. 

• If there are vertices among successors 
associated with vertices that have already received 
sequence numbers, then they are included earlier 
than others. 

• If there are fictitious peaks among the 
successors, they are selected in such order that they 
are located at the level in the middle, and the real 
tops on the level edges. 
 
 
6 Horizontal Coordinate Assignment 
After determining the order of the vertices at the 
level, it is necessary to determine their real 
coordinates. Arcs of the graph are represented in the 
form of broken lines with fracture points located in 
fictitious vertices; therefore, the task of determining 
the final coordinates of all vertices is simultaneously 
the task of carrying out arcs. If the arcs of the graph 
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have some other form and / or method of 
conducting, then the corresponding criteria should 
be considered when solving the problem of 
determining the coordinates of the vertices.  

At the input of this stage, we have a vertex 
division by levels L1, L2, … , Lh, the vertices on each 
level are of the order from 1 to wi, where i varies 
from 1 to h. And the largest number of vertices is at 
the level of L1 (or at the level of Lh-1, if there are no 
output ports). 

Beginning with the last level, using the 
barycenter method in combination with the vertex 
order constraints obtained in the previous step, 
determine the x-coordinate at the previous level. The 
vertices of the last level are distributed uniformly on 
a certain segment of the horizontal line allocated to 
the vertices of this level. Then, for each next level, 
the coordinates of its vertices are successively 
determined as the arithmetic mean of the 
coordinates of their neighbors from the already set 
levels. At the same time, the initial vertex order is 
not violated at the level. 

If at some step the layering takes place, because 
the two vertices are assigned one x-coordinate, then 
the last level should be slightly expanded. For 
example, suppose that initially the vertices at this 
level have the x-coordinates 0, 1, 2, 3, 4, etc. At the 
next step they will have the x-coordinates 0, 2, 4, 6, 
8, etc. And if you do not succeed in laying down the 
graph, you can still multiply the base: 0, 3, 6, 9, etc. 
 
 
7 Implementation of the Algorithm 
The described algorithm has been implemented 
within the Visual Graph system [9], [13].  
 

 
Fig. 6. Using the Visual Graph system by a user of the GNU 

Compiler Collection  (GCC). 

The Visual Graph system has been developed to 
visualize the internal data structures typically found 
in compilers and other programming systems. Data 
structures that occur in these systems are usually 
represented as attributed hierarchical graphs of big 
size. For example, the attributed syntax trees are 

used as the internal representations of translated 
programs in almost all compilers or interpreters. 
Optimizing and restructuring compilers require 
static analysis of control and data relationships in a 
program and their presentation in the form of a more 
general graph model of the program, for example, 
such as the control-flow graph. 

It is assumed that the Visual Graph system is 
used as follows (Fig. 3). First, a compiler (or 
another programming system) itself or with an 
auxiliary program transforms a graph model arisen 
during compiling a source program from its internal 
representation into a graph representation (a file of 
one of the formats supported by the Visual Graph 
system, usually into the GraphML-file). Then the 
Visual Graph system will be able to read this graph 
model from the file, to visualize it and to provide a 
user with different navigation tools for its visual 
exploration. 

 
Fig. 7. An example of drawing of a control graph with loops. 

Bacwards arcs are shown by dashed lines. 
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In describing the algorithm, it was assumed that 
every IR-graph is a DAG. However, its 
implementation within the Visual Graph system was 
performed for more general graphs and includes 
also the steps of preliminary and final processing of 
the graph, which allow the system to work not only 
with DAGs (See Fig. 7).  

The essence and purpose of these 
transformations lies in the reversible transformation 
of the structure of the original graph. 

If the original graph contains undirected edges, 
then as a preliminary step it is realized its direction 
in accordance with the traversal of the graph in 
depth with the removal of orientation in the final 
processing.  

If the original graph contains loops, then to 
obtain DAG the orientation of some of the arcs (so-
called backwards arcs) of the loops is changed, and 
then the drawing of the original graph is constructed 
by the inverse transformation in the constructed 
drawing of DAG.  
 
 
8 Conclusion 
The problem of drawing of hierarchical graphs with 
ports has been considered and solved. An effective 
algorithm for visualization of IR-graphs and its 
effective implementation within the framework of 
Visual Graph system for visualization arbitrary 
attributed hierarchical graphs with ports are 
described. 

The algorithm for visualization of IR-graphs has 
a quadratic time complexity and constructs a good 
drawing of any IR-graph. Its implementation within 
the framework of the Visual Graph system can be 
used for drawing of an arbitrary attribute 
hierarchical graph with ports and allows on an 
ordinary PC to obtain in real time (without visible 
delays) a good drawing of graph containing up to 
10000 elements. 
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