
Shape-Graph Based Object Recognition Using Node Context
Embedding

MARTON SZEMENYEI
Budapest University of Technology
Department of Control Engineering

Magyar Tudosok krt 2, Budapest
HUNGARY

szemenyei@iit.bme.hu

FERENC VAJDA
Budapest University of Technology
Department of Control Engineering

Magyar Tudosok krt 2, Budapest
HUNGARY

vajda@iit.bme.hu

Abstract: Graphical object representation is fequently used for visual object recognition and detection methods.
Since most machine learning methods requira vectorial input, significant research has been done on assigning
feature vectors to graphs - a process known as graph embedding. However, when one wishes to detect objects in a
larger scene, it is a more viable strategy to assign feature vectors to graph nodes, and classify them individually. In
this paper, we present a graph node embedding algorithm for 3D object detection based on primitive shape graphs.
Our embedding algorithm encodes the local context of the selected node into the feature vector, thus improving
the classification accuracy of nodes. The method also imposes no restriction on the structure of the graphs or the
weights on the nodes and edges. The method presented here will be used as part of an intelligent object pairing
algorithm for Tangible Augmented Reality.

Key–Words: Artificial Intelligence, Shape Recognition, Graph Embedding, Object Detection, Augmented Reality

1 Introduction
Visual object recognition and detection is one of the
most intensely researched ares of computer vision.
Most applications use common two dimensional im-
ages for recognition, still, with the increase in avail-
ability of 3D datasets, the interest in 3D object recog-
nition has increased significantly. While most of these
object detection algorithms take the whole appearance
of the object into account, there is a great number of
methods that make decisions based on 3D shape only.
Object detection is a key step for achieving scene un-
derstanding [1], which has a number of applications
in different fields, such as robotics [2] or augmented
reality [3].

Scene understanding offers great potential for
Tangible Augmented Reality applications (TAR) [4].
In TAR systems the virtual objects used by the system
are attached to real ones, and the real-world objects
serve as input devices for user manipulation. This idea
allows for intuitive man-machine interaction, which
makes these systems easy to use. While most TAR
systems use real objects with artificial markers [5, 6],
there are a few that are able to use any object with nat-
ural features [7]. However, even these systems rely on
the user to determine the pairing of the objects, mak-
ing the setup of the scene time consuming.

In this paper we present an algorithm that per-
forms the matching of virtual and real objects in a

scene with natural features using 3D shape recogni-
tion. This way, virtual objects can be paired with real
ones with similar shape, resulting in interaction tech-
niques that are easy to master. Our method describes
the shape of objects and scenes using graphs of prim-
itive shapes [8]. This ensures that the actual segmen-
tation of objects is also learnable. We use a support
vector machine to classify the segments individually.

Our main contribution in this paper is a graph
node embedding framework that aims to improve the
node level classification. Our embedding method
works on both directed and undirected graphs, without
restrictions on the structure. Furthermore, the embed-
ding is extended to graphs that have vector (or tensor)
weights on their nodes and edges by using a feature
transform function. We show, that this embedding
significantly improves the segment-by-segment clas-
sification accuracy by producing a feature vector that
also describes the local context of the given node. This
local context is defined as the subgraph that is “close”
to the given node, by using some distance measure. In
the rest of the paper we assume that the edge features
of the graph have a “distance” feature.

In the next section, we discuss relevant results of
other workshops in the areas of 3D shape recognition
and the classification of graphs. Then, in section 3,
we first shortly discuss our shape description method,
while in the latter part of the section we elaborate on

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 91 Volume 15, 2018



the graph node embedding framework. Finally, in sec-
tion 4, we present and evaluate the results of our meth-
ods on several datasets.

2 Previous Work
In this chapter, we discuss the research of other work-
shops related to our own work. We begin by elaborat-
ing on the various methods for 3D object recognition,
while in the second part we discuss graph classifica-
tion and detection in graphs.

2.1 Shape Recognition
Two dimensional shape recognition is a relatively
common task in computer vision, for which a great
variety of methods exist. Most of these, however, can-
not be generalized easily to 3D shapes [9]. Still, there
are a few methods, such as the Generalized Hough
Transform [10] or the RANSAC algorithm [11], that
work reliably for the 3D case as well. Nonetheless,
these algorithms require a reference model for match-
ing, which cannot be easily obtained, mainly due to
high intra-class variation.

In order to perform shape recognition without
a reference model, learning algorithms are recom-
mended. There are numerous approaches for this,
such as using local features [12, 13] to create a learn-
ing algorithm. Another approach is using shape dis-
tributions [9], or global features [14] to describe ob-
jects. These algorithms, however, require a segmenta-
tion step in order to find object candidates to classify
in larger scenes. In 3D scenes with helpful prior in-
formation (such as urban scenes, where the ground is
easy to segment [14]) this may be relatively straight-
forward to do. In complex, cluttered scenes (such
as indoors scenes), however, segmentation might be-
come unreliable, resulting in inferior detection perfor-
mance.

In recent years, deep convolutional neural net-
works (CNN) have become increasingly popular
amongst researchers working on object recognition
and detection due to their superior performance [15,
18]. Unsurprisingly, there is significant work on 3D
object detection using either RGBD [16, 17] or volu-
metric [18, 19] data. Since CNNs are able to perform
classification for every (super)pixel or voxel, multi-
object detection in larger scenes using CNNs is rel-
atively straightforward. [16, 20] Nonetheless, CNNs
are notoriously difficult to train [21, 22], since they are
fraught with numerical difficulties. Moreover, train-
ing CNNs requires large amounts of training data and
computational resources, since deep networks have
millions of free parameters.

Schnabel et. al [23] presents a different approach,
that may alleviate the difficulty of segmentation. They
proposed a variant of the RANSAC algorithm to seg-
ment a scene into primitive shapes (such as plane,
sphere, cylinder, etc.), which they treat as the “build-
ing blocks” of the objects and the scene. Their al-
gorithm uses local sampling, in order to increase the
chance of finding local shapes. Their solution also
uses an octree grid for fast inlier counting, resulting
in relatively low runtime, even on large point clouds.
They describe the 3D shape by constructing a topol-
ogy graph of the scene, where the nodes of the graph
are the primitives, and edges represent the geometric
relations between the nodes. The adjacency between
the shapes is determined by their distance [8].

In order to detect objects in a larger scene, they
construct a reference graph for each category and ap-
ply brute-force graph matching. Since a single ref-
erence graph has relatively low number of nodes, the
matching algorithm remains feasible [8]. To further
decrease the number of possible matches between the
scene and the reference graphs, they introduce a three
types of of constraints. Node constraints ensure that
only nodes of the same primitive type are matched,
while edge constraints enforce the similarity of the re-
lations between adjacent nodes. A third type or con-
straints - graph constraints can be used to take the re-
lationship of non-adjacent nodes into account as well.

Their method, however, still uses reference ob-
jects for each category, which might not be easy to
obtain. Furthermore, they use a brute-force matching
algorithm, which cannot easily handle segmentation
errors. By employing a learning algorithm to find spe-
cific subgraphs in a larger scene, these limitations may
be overcome.

2.2 Graph Recognition
Machine learning with graphical data has various ap-
plications, including bioinformatics [24] or network
analysis [25]. It is also quite common to recognize
objects visually using graph-based learning, since ob-
jects can usually be described using graph of (visual)
features [32]. The difficulty of graph classification is
that most standard learning algorithms require a vec-
tor (or tensor) of features as their input. Since these
methods cannot take graphs as inputs, one needs a
way to convert it to a vectorial representation - to em-
bed the graph into a vector space. This, however, is
not a simple task, since the ordering of graph nodes
is arbitrary, and any simple method of vectorizing a
graph would yield a vector that is not invariant to the
ordering of nodes [26]. A related difficulty is, that
graphs of different sizes yield vectors of different di-
mensions, while standard learning algorithms assume

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 92 Volume 15, 2018



that all data is in the same vector space.
A special class of learning algorithms, called ker-

nel methods, present an elegant solution to this prob-
lem. These methods employ kernel functions, which
allow the algorithm to use a higher dimensional rep-
resentation of the data implicitly. Kernel functions are
symmetric, positive semi-definite functions that can
usually be interpreted as a similarity measure between
objects [27]. When using kernel learning methods
(such as SVM), one may simple define a kernel func-
tion between graphs. Since a kernel function does not
require a vectorial input, nor does it explicitly produce
a vectorial representation, the entire problem can be
circumvented.

Perhaps the most widely-known graph kernel is
the random walk kernel [27], which interprets the
edge weights of the graph as the probabilities of taking
that edge during a random walk. It performs simulta-
neous random walks on the two graphs, and derives a
similarity score based on the probability of perform-
ing the same walk. The logic behind the random walk
kernel is, that if two graphs are similar, then perform-
ing the same walk on the two graphs is likely. This
probability is computed using the direct product of
the two graphs, since performing the same walk on
the two graphs is equivalent of performing a walk on
the direct product. The kernel function is computed
according to the following equation:

K(X,Y ) =
N∑
i=1

w(i)eTAis (1)

w(i) = e−ϑi, (2)

where A is the adjacency matrix of the direct
product, s and e contain the probabilities of starting
and ending the walk on a given node respectively, N is
the maximum length of the walks considered, and ϑ is
a hyperparameter controlling the slope of the weight
w. The staring and ending probabilities may be set
uniformly, or according to a priori information.

When not using kernel learning methods, how-
ever, then the graphs must be embedded explicitly.
Perhaps the most widely used method for explicit vec-
torial embedding is the spectral representation [28].
The simplest version of spectral embedding is to com-
pute the spectral decomposition of the adjacency ma-
trix of the graph. (3) If the graph has weights on the
nodes, these can be inserted in the diagonal of the ad-
jacency matrix [28].

A = VΛVT (3)

If the eigenvalues and the corresponding eigenvectors
are ordered, then this representation will be partially
invariant to node ordering. Since this invariance is

only partial, and alignment step is still needed [29].
In order to handle graphs of different sizes, smaller
graph is enlarged by adding dummy nodes to it [30].

Aside from the adjacency matrix, other matrices
may be used for the spectral decomposition. One such
instance is the Laplacian matrix of graphs, which is
computed (4) using the adjacency (A), and the degree
(D) matrices of the graph. One other method for em-
bedding graphs is the heat kernel (5). The t param-
eter heat kernel controls the trade-off between local
and global representation of the graph. According to
Zhu and Wilson [31] the heat kernel outperforms the
other two. It is also possible to mix different spectral
representations [30] in order to create a more robust
method.

L = D−A (4)

H = Ve−tΛVT (5)

In our method, however, we intend to classify a
graph on a node-by-node basis, which means, that in-
stead of embedding entire graphs, we need to embed
nodes into a vector space. In contrast with embed-
ding graphs, there has been very little work done on
the topic of embedding nodes. For instance, Demirci
et. al. [32] has used a low-distortion node embedding
framework to perform many-to many feature match-
ing using the earth movers distance. Riba et. al. [33]
use binary embedding to produce hash keys for fast
graph retrieval.

These methods, however, place limitations on the
structure of the graphs or the weights of nodes and
edges. One assumes the graphs are trees, while the
other assumes labeled graphs. Also, Riba et. al. pro-
duce hash keys, not feature vectors, which makes it
hard to base a learning algorithm on their work. Since
our shape description method yields full graphs with
vectorial weights on both the nodes and edges, the
previous methods are insufficient for our application.
To our best knowledge, no work has been done yet on
embedding graph nodes of vectorial weighted graphs,
with no restrictions on the topology.

3 Embedding Graph Nodes
Object detection algorithms capable of detecting mul-
tiple instances usually employ a segmentation pro-
cedure, in order to produce object candidates for a
subsequent classification method. This is a viable
method of shape recognition, especially when applied
to scenes where segmentation is relatively straightfor-
ward. In urban scenes, for instance, one can easily
remove the ground, resulting in most of the objects
becoming disjoint in the point cloud [14].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 93 Volume 15, 2018



Segmentation, however, becomes significantly
more difficult in indoors scenes, since objects much
more likely to be cluttered in this context. For this
reason, we use a different approach: we segment our
scene into primitive shapes, which we interpret as the
“building block” of the scene. Then, we classify prim-
itive shapes individually, and determine objects based
on the segment labels. Since primitive shapes have
several features (depending on the primitive type), it
would be straightforward to use these features to clas-
sify each primitive.

While the simplicity of this method is alluring,
it ignores the geometric relations between the prim-
itives and the local context of each primitive. This
could lead to high classification errors, especially if
two classes contain very similar shapes, albeit in dif-
ferent contexts. In order to avoid this, we construct a
graph from the primitive shapes, and use a graph node
embedding procedure to produce a feature vector for
each node that encodes the local context of the primi-
tive as well.

In order to construct shape graphs, we segment
the 3D point cloud of the scene using the algorithm
proposed by Schnabel et. al. [23] Their implemen-
tation is able to detect five different primitive shapes:
planes, cylinders, cones, spheres and tori. We then
construct a graph using the primitive shapes as nodes,
while the edges represent the geometric relations be-
tween the nodes. (Fig.1)

Figure 1: The graph constructed from primitive
shapes (only close edges are drawn).

Each primitive shape type has a few distinct fea-
tures that further define the exact shape of the point
cloud they represent. (Table 1) By computing these
features we are able to assign a feature vector to each
primitive shape. Since the features of the different
primitive types are incompatible, it makes sense to
construct a unified feature vector for each primitive
by concatenating the individual feature vectors. Of
course, for every primitive shape the features of the
other types will be set to zero.

Furthermore, each primitive shape can be easily

assigned with a well-defined coordinate system, con-
sisting of an origin and at least a single direction in the
3D space. (The only exception is the sphere, where
one cannot find a special direction.) This means, that
we may describe the geometric relations between the
primitives by computing the rigid transform between
their coordinate systems. (Table 1) However, since
we want our algorithm to be invariant to rotation, we
only consider the distance between the origins, and the
angle of the rotation between their special directions.
Since spheres do not have a special direction, the an-
gle between spheres and other primitives is always set
to zero.

Since primitive shapes are rigid transforms are
described by more than one parameter, the nodes
and the edges of the constructed graph have vectorial
weights. Furthermore, the edges of the graph have two
different types of weights. The first type is the tradi-
tional “distance” type, meaning, that if this feature is
larger, then the two nodes are less connected. The sec-
ond type is the “feature” type, which describes other
qualities of the connection, but its magnitude does not
influence the strength of the connection. While con-
structing graphs, we do not make explicit decisions
on the adjacency of the nodes, we simply store the
distance between them amongst the features. This
means, that we always produce full graphs, which al-
lows us to treat adjacency as a continuous measure
instead of a binary one, thus avoiding loss of informa-
tion.

3.1 The Embedding Framework
In this subsection, we present our graph node embed-
ding framework in detail. Our goal is to create vecto-
rial descriptors for nodes in graphs that have vectorial
node and edge weights. We also wish to place no re-
strictions on the graph structure, that is, we propose a
framework that is applicable to full, directed graphs.
Our embedding method aims to describe “what the
graph looks like” from the perspective of the node that
is being embedded (the central node). Therefore the
framework needs to include information on the fea-
tures of the central node, as well as the surrounding
ones. It also needs to incorporate information on the
geometric relations between the nodes.

The first step of the embedding process is to order
the nodes of the graph in based on the distance from
the central node. Since the spectral embedding is only
partially invariant to the node ordering, this step alone
ensures that the feature vectors are different for sepa-
rate nodes. If the ordering is ambiguous due to some
nodes being too close, then two separate embeddings
may be made with the different orderings and aver-
aged. In order to create descriptors of the same size

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 94 Volume 15, 2018



Primitive Plane Cylinder Sphere Cone Torus
Area Radius Radius Radius Inner Radius

Features Diameter Height Height Outer Radius
Bounding Box Area Angle

Origin Centroid Centroid Centroid Peak Centroid
Direction Normal Axis N/A Axis Normal

Table 1: Features and reference frames for every primitive shape type

for all nodes, the maximum number of nodes included
must be set. Distant nodes are clipped from larger
graphs, while smaller ones are padded with zero nodes
and edges.

Padding the graph with zero nodes may introduce
a notable difficulty with embedding methods. For
most learning algorithms the training data is normal-
ized to zero mean and unit variance in order to avoid
numerical difficulties. However, if features are nor-
malized, then by padding the graphs with nodes with
all zero features meas we are adding “average” nodes
to “average” distance from the central node. Since
padding should not affect the shape of the scene, nor
the result of the embedding, this is problematic.

Luckily, in the case of primitive shape graphs, a
relatively simple solution presents itself. Since our
node and edge features are non-negative, we divide
the features with the standard deviation, but do not
subtract the mean. Thus, the non-negative property of
our features is preserved, and adding zero nodes to the
graph is equivalent with leaving the shape of the scene
unchanged.

With the preprocessing steps completed, we con-
struct a descriptor matrix for the node, called the node
feature matrix F. The matrix is unique for every
node, while it contains information on the neighbor-
ing nodes as well. Is is computed according to the
equation below.

F =


T1,1 T1,2 · · · T1,N

T2,1 T2,2 · · · T2,N
...

...
. . .

...
TN,1 TN,2 · · · TN,N

 (6)

Tij = T (ni, nj , e1i, e1j , eij), (7)
where T is a feature transform function, ni is the

ith node of the graph, while eij is the edge point-
ing from the ith to the jth node. N is the maximum
number of neighboring nodes considered in the em-
bedding. While the node feature matrix is unique for
every node, its spectrum might be the same, espe-
cially or close nodes (provided that eigenvalues are
ordered by magnitude). Still, because of the node or-
dering step, the eigenvectors will be different even if

the spectra are not. One may introduce further dif-
ferences in the descriptors of close nodes by choosing
the feature transform function well.

In order to finalize the embedding process, we
compute the singular value decomposition of the
graph feature matrix, and concatenate the first couple
singular values and vectors (8). It is possible to use
feature transform functions, which ensure that the re-
sulting node feature matrix is symmetric. In this case,
the eigendecomposition may be used. Still, we do
not wish to place such restrictions on the embedding
framework, so using SVD is recommended.

w =



σ1u1

σ1v1

σ2u2

σ2v2
...

σkuk

σkvk


, (8)

where σi, ui, and vi are the ith singular value,
left and right singular vectors respectively, and k is
the maximum number of singular values considered.
In the case of a symmetric node feature matrix, it is
unnecessary to add both the left and right eigenvectors
to the descriptor, since they are the same, thus it is
possible to reduce the size of the feature vector by a
factor of two.

3.2 Feature Transform Functions
Previously, we have said very little about the feature
transform function. This was deliberate, since we do
not intend to pose unnecessary restrictions that limit
our framework’s generality. In this subsection, we
discuss our choices for the feature transform for this
specific problem. For different graphs, however, other
choices may be more appropriate. Notwithstanding,
some of the principles established here may be useful
for other applications as well.

Since our goal is to produce a feature vector that
contains information on the local context of the node,
the influence of nodes farther from the central node

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 95 Volume 15, 2018



Metric eho ecv etrain
Embed No Linear Quad RWK No Linear Quad RWK No Linear Quad RWK
Synth 16.5 5.2 3.4 0.2 17.7 5.0 3.7 1.9 17.0 4.8 2.8 0.0
Synth2 67.8 1.4 0.9 0.0 68.1 1.6 0.9 0.2 67.8 1.2 0.8 0
Images 44.6 36.9 35.9 36.0 45.3 36.6 36.0 36.6 45.2 36.4 36.1 35.9
Images2 13.7 8.9 7.7 8.0 13.9 8.5 9.1 10.9 12.8 7.2 6.8 4.95

Table 2: Node-by-node classifiaction errors

must be less than that of the immediate neighbors.
This means that if the edge features of the graph in-
clude a parameter that can be interpreted as “distance”
or “connection strength”, then this parameter may be
used to weight the influence of the nodes. Since shape
graph edges have a distance parameters, we will use
this for our discussion without loss of generality, since
connection strength may be understood as the inverse
of distance.

That being said, we divide edge features into dis-
tance ed and feature ef types. We treat feature type
values the same way we treat node features, therefore
we concatenate them to the node feature vectors ac-
cording to equation (9). Second, we use the distance
type features to scale the result of the feature trans-
form, therefore distant nodes will not affect the graph
feature matrix significantly. Our choice for the feature
transform function is shown in the equation below.

Tij = wij

[
ni e1if eijf

]T [
nj e1jf eijf

]
(9)

wij =
1

1 + µ(e21id + e21jd + e2ijd)
, (10)

where µ is a hyperparameter controlling the dis-
tance scaling. It is important to note, that we do not
only scale the feature transform using the distance
from the central node, but also the distance between
the two interacting nodes. Thus, the significance of
the interaction between distant nodes will be reduced
in the resulting feature vector.

There are two desirable properties of this trans-
form function. First, it produces a higher dimen-
sional transform of the original features, which makes
it possible for linear learning methods to learn deci-
sion functions that are nonlinear in the original fea-
tures. Moreover, Tij returns a quadratic matrix, and
satisfies the requirement Tij = T T

ji , which means that
the node feature matrix will be symmetrical as well.
Consequently, the eigendecomposition may be used
for embedding, resulting in a smaller feature vector.
It is also possible to define a linear feature transform
function to use with nonlinear learning methods using
the following choice of feature transform function.

Ti,linear =
1

1 + µe21id

[
ni e1if

]
, (11)

where Ti is the feature transform function. Note,
that the index j is omitted, since the feature transform
is the same for all j values. This creates a node fea-
ture matrix with a rank of one, meaning that the re-
sulting feature vector will simply be a concatenation
of Ti values. This seems relatively straightforward,
however, this method cannot add information on the
interactions between nodes into the embedded feature
vector.

3.3 The Random Walk Node Kernel
Aside from explicit node embedding, using implicit
embedding via kernel methods is a viable way of
graph node classification as well. In this subsection
we briefly discuss the modification of the random
walk kernel (RWK) to compare nodes instead of entire
graphs. The underlying idea is that the local context of
the graph node is equivalent with the set of nodes you
are likely to get to through short random walks start-
ing from the given node. This means that two contexts
are similar, if simultaneous random walks can be per-
formed with high probability, starting from the two
nodes being compared.

This idea can be easily introduced into the ran-
dom walk kernel by setting the starting probability
vector s from Eq. (1) so that the walks would always
start from the central nodes. The size of the local con-
text explored by the walks can be influenced by setting
the maximum length of the walks N or the slope of the
weight function ϑ from Eqs. (1) and (2) respectively.

Note, that the random walk kernel requires the di-
rect product of the two graphs. However, in order to
compute the direct product of graphs with vectorial
node and edge weights, kernel functions between the
nodes and edges are needed [27]. A sensible choice
for the node kernel is a relatively simple RBF similar-
ity measure between the feature vectors of the nodes.

Kn = e−ν(n1−n2)T (n1−n2), (12)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 96 Volume 15, 2018



where n1 and n2 are the two nodes compared, and
ν is the hyperparameter controlling the kernel. Choos-
ing the edge kernel is requires somewhat more consid-
eration. Arguably, defining an RBF similarity mea-
sure between the features of the two edges is sensible.
However, edges also posses a “distance” type feature,
which may be to weight the probability of taking the
given edge during a random walk. In order to encour-
age the random walks to explore the local structure we
set these weights to decrease the probability of taking
long edges that take far from the starting nodes, re-
sulting in the following equation:

Ke =
1

1 + γ(e21,d + e22,d)
e−ξ(e1,f−e2,f )

2
, (13)

where e1 and e2 are the two edges compared, γ
and ξ are the hyperparametes controlling the kernel.

4 Experimental Results
In this chapter we present the result of the experiments
based on our embedding method. We test the embed-
ding using our recommendations for feature transform
function, as well as the case where the vectorial node
descriptors are used as feature vectors with no em-
bedding. We use a Support Vector Machine (SVM)
to perform the classification using a linear kernel, and
compare the results achieved using the random walk
node kernel.

There are four different datasets used for training
the classification algorithms. The first dataset consists
of synthetic shape graphs. This dataset is meant to be
easily to learn, for the five classes use different types
of nodes, with some random noise added. Some in-
stances have additional noise nodes, while others are
missing some nodes, to represent errors of the seg-
mentation. The second dataset is also synthetic, how-
ever, the five classes use the same pool of nodes, al-
beit in different combinations. This dataset is meant
to demonstrate that the embedding algorithm signifi-
cantly outperforms the simple node descriptor based
classification in cases where the different classes have
very similar nodes, but in different configurations.

The last two datasets contain series of images
that can be used for 3D reconstruction. The third
dataset consists of images of synthetic objects created
in Blender. There are five classes in ten variations
each, with series of images taken with a moving cam-
era. We created hundreds of partial 3D reconstruc-
tions for each category using VisualSfM [34]. The
last database uses real images in four categories and
4-10 variations for each category. Here, the categories

are relatively simple: box/book, mug/can, sphere, and
horizontal surface).

We evaluated the performance of our node em-
bedding method using support vector machines with
both linear and random walk kernels. We applied
Bayesian optimization to find good hyperparameter
values, using 20% holdout validation error eho as the
objective function. We then compute the training
etrain and 10-fold cross-validation errors ecv with the
acquired hyperparameters. We compare the classifica-
tion and validation errors with different feature trans-
form functions used.

The results clearly show that the graph node em-
bedding algorithm significantly decreases the loss of
the node-by-node classification in most cases. Ar-
guably, the node embedding method is most helpful
for the second synthetic dataset, that contains classes
with similar nodes in different configurations, which
is in line with our expectations. It is worth noting,
that the quadratic feature transform tends to outper-
form the linear version.

Apparently, the random walk node kernel outper-
forms the explicit node embedding using a linear ker-
nel. Still, the random walk kernel has a significant
drawback, namely that it is computationally expen-
sive. While it takes approximately 30 seconds to com-
pute the explicit embedding and train the SVM for a
dataset containing about ten thousand nodes, comput-
ing the random walk kernel takes 30 minutes on the
same dataset. This is especially problematic for hy-
perparameter optimization, since the kernel has to be
reevaluated with every change in the hyperparameters,
while the explicit embedding has to be computed only
once.

5 Conclusion
In this paper, we have presented a 3D object de-
tection algorithm that uses graph node embedding
to classify segments of a larger scene individually.
Our method builds primitive shape graphs from the
3D point clouds, and uses a graph node embedding
method to allow for superb node-level classification.
The embedding method aims to improve the classifi-
cation by embedding the local context of the nodes
into the feature vector as well. The framework pre-
sented is applicable to graphs with any structure, and
the feature transform functions allow us to extend it to
graphs with vectorial node or edge weights.

We performed experimental results and compared
different choices for the feature transform function.
We demonstrated that node embedding improves both
training and validation accuracies significantly, es-
pecially when there are similar nodes in different

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 97 Volume 15, 2018



classes, albeit in different configurations. The pro-
posed method may serve as basis for a high-level op-
timization procedure aimed to determine the setup of
virtual objects for the TAR system.

Acknowledgements: The research was supported by
the University of ABC and in the case of the first au-
thor, it was also supported by the Grant Agency of
DEF (grant No. 000/05/ 0000).

References:

[1] L.-J. Li, R. Socher and L. Fei-Fei, “Towards To-
tal Scene Understanding:Classification, Annota-
tion and Segmentation in an Automatic Frame-
work”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[2] C. Wojek, S. Walk, S. Roth, K. Schindler and
B. Schiele, “Monocular Visual Scene Under-
standing: Understanding Multi-Object Traffic
Scenes”, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 35(4), pp. 882-897
(2012).

[3] O. Pauly, B. Diotte, P. Fallavollita, S. Weidert, E.
Euler and N. Navab, “Machine learning-based
augmented reality for improved surgical scene
understanding”, Computerized Medical Imaging
and Graphics 41(1), pp. 55-60 (2015).

[4] M. Billinghurst, H. Kato and I. Poupyrev, “Tan-
gible Augmented Reality”, in ACM SIGGRAPH
ASIA, 2008.

[5] M. Billinghurst, H. Kato and S. Myojin, “Ad-
vanced Interaction Techniques for Augmented
Reality Applications”, in Lecture Notes in Com-
puter Science, Springer, 2009, pp. 13-22.

[6] G. A. Lee, M. Billinghurst and G. J. Kim, “Oc-
clusion based Interaction Methods for Tangible
Augmented Reality Environments”, Proceed-
ings of the 2004 ACM SIGGRAPH international
conference on Virtual Reality continuum and its
applications in industry, 2004.

[7] W. Broll, E. Meier and T. Schardt, “The Vir-
tual Round Table - a Collaborative Augmented
Multi-User Environment”, Proceedings of the
ACM Collaborative Virtual Environments, 2000.

[8] R. Schnabel, R. Wahl, R. Wessel and R. Klein,
“Shape Recognition in 3D Point Clouds”, Pro-
ceedings of the 16-th International Conference
in Central Europe on Computer Graphics, Visu-
alization and Computer Vision, 2008.

[9] R. Osada, T. Funkhouser, B. Chazelle and
Dobkin David, “Matching 3D Models with
Shape Distributions”, SMI 2001 International
Conference on Shape Modeling and Applica-
tions, 2001.

[10] F. Tombari and L. Di Stefano, “Object recogni-
tion in 3D scenes with occlusions and clutter by
Hough voting”, Fourth Pacific-Rim Symposium
on Image and Video Technology, 2010.

[11] M. A. Fishler and R. C. Bolles, “Random sample
consensus: a paradigm for model fitting with ap-
plications to image analysis and automated car-
tography,”, Magazine Communications of the
ACM, 24(6), pp. 381-395 (1981).

[12] R. Rusu, N. Blodow and M. Beetz, “Fast Point
Feature Histograms (FPFH) for 3D Registra-
tion”, Proceedings of the IEEE International
Conference on Robotics and Automation, Kobe,
2009.

[13] S. Lazebnik, C. Schmid and J. Ponce, “A
sparse texture representation using local affine
regions”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(1), pp. 1265-1278
(2005).

[14] A. Golonivskiy, V. G. Kim and T. Funkhouser,
“Shape-based Recognition of 3D Point Clouds
in Urban Environments”, IEEE 12th Interna-
tional Conference on Computer Vision, 2009.

[15] C. Szegedy, W. Liu and Y. Jia, “Going deeper
with convolutions”, IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015.

[16] C. Wu, I. Lenz and A. Saxena, “Hierarchical Se-
mantic Labeling for Task-Relevant RGB-D Per-
ception”, Robotics: Science and Systems, 2014.

[17] M. Schwarz, H. Schulz and S. Behnke, “RGB-D
Object Recognition and Pose Estimation based
on Pre-trained Convolutional Neural Network
Features”, Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation,
Seattle, 2015.

[18] Z. Wu, S. Song, A. Khosla, L. Z. F. Yu, X. Tang
and J. Xiao, “3D ShapeNets: A Deep Repre-
sentation for Volumetric Shape Modeling”, Pro-
ceedings of 28th IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[19] S. Bai, X. Bai, Z. Zhou, Z. Zhang and L. J. Late-
cki, “GIFT: A Real-time and Scalable 3D Shape
Search Engine”, Proceedings of 29th IEEE Con-
ference on Computer Vision and Pattern Recog-
nition, 2016.

[20] S. Gupta, R. Girshick, P. Arbelaez and J. Malik,
“Learning Rich Features from RGB-D Images
for Object Detection and Segmentation”, Euro-
pean Conference on Computer Vision, 2014.

[21] Y. Bengio, “Practical Recommendations for
Gradient-Based Training of Deep Architec-
tures”, Neural Networks: Tricks of the Trade,
Springer, 2012, pp. 437-478.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 98 Volume 15, 2018



[22] L. Bottou, “Stochastic Gradient Descent
Tricks”, Neural Networks, Tricks of the Trade,
Reloaded, Srpinger, 2012, p. 430445.

[23] R. Schnabel, R. Wahl and R. Klein, “Effi-
cient RANSAC for Point-Cloud Shape Detec-
tion”, Computer Graphics Forum, 26(2), pp.
214-226 (2007).

[24] Roded Sharan and Trey Ideker, “Modeling
cellular machinery through biological network
comparison”, Nature Biotechnology, 24(4), pp.
427433 (2006)

[25] Ravi Kumar, Jasmine Novak, and Andrew
Tomkins, “Structure and evolution of online so-
cial networks”, Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2006

[26] R. C. Wilson, E. R. Hancock and B. Luo, “Pat-
tern vectors from algebraic graph theory”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 27(7), pp. 11121124 (2005).

[27] S. V. N. Vishwanathan, N. N. Schraudolph, R.
Kondor and K. M. Borgwardt, “Graph Kernels”,
Journal of Machine Learning, 11(1), pp. 1201-
1242 (2010).

[28] F. Chung, Spectral graph theory, American
Mathematical Society, 1997.

[29] M. Ferrer, F. Serratosa and A. Sanfeliu, “Synthe-
sis of median spectral graph”, Lecture Notes in
Computer Science, 3523(1), pp. 139146 (2005).

[30] D. White and R. C. Wilson, “Mixing Spec-
tral Representations of Graphs”, Proceedings
of the 18th International Conference on Pattern
Recognition, 2006.

[31] P. Zhu and R. C. Wilson, “Stability of the Eigen-
values of Graphs”, 11th International Confer-
ence, CAIP 2005, 2005.

[32] M. F. Demirci, Y. Osmanlioglu, A. Shokoufan-
deh and S. Dickinson, “Efficient many-to-many
feature matching under the l1 norm”, Journal
of Computer Vision and Image Understanding,
115(7), pp. 976-983 (2011).

[33] P. Riba, J. Llados, A. Fornes and A. Dutta,
“Large-scale Graph Indexing using Binary Em-
beddings of Node Contexts”, Proceedings of
the 10th IAPR-TC-15 International Workshop,
2015.

[34] Changchang Wu, “Towards Linear-time Incre-
mental Structure From Motion”, International
Conference on 3DTV, 2013

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Marton Szemenyei, Ferenc Vajda

E-ISSN: 2224-3402 99 Volume 15, 2018




