
A System of Functional Programming for Supporting of Cloud
Supercomputing

VICTOR KASYANOV, ELENA KASYANOVA

Institute of Informatics Systems
Novosibirsk State University

Novosibirsk, 630090
RUSSIA

kev@iis.nsk.su

Abstract: - In this paper, a cloud system being under development at the Institute of Informatics
Systems in Novosibirsk as a system of functional programming for supporting of cloud
supercomputing is considered. The system provides means to write and debug functional programs
regardless target architectures on low-cost devices as well as to translate them into optimized parallel
programs, appropriate to the target execution platforms, and then execute on high performance
parallel computers without extensive rewriting and debugging.

Key-Words: - Cloud supercomputing; functional programming; optimizing cross compilation, parallel
programming.

1 Introduction
Parallel computing is one of the main paradigms of
modern programming and covers an extremely wide
range of programming issues. In view of the much
more complex nature of parallel computations in
comparison with successive ones, the methods of
automating the development of parallel software,
based on applying the technique of formal models,
specifications and transformations of parallel
programs, are of great importance.

The fundamental problems of organizing parallel
computing are the following: the problem of
increasing the productivity and efficiency of using
multiprocessor and distributed computing systems
and the problem of increasing the level of
intellectualization of programming parallel systems.
They are not independent, because the organization
of high-performance computing in a multiprocessor
system of modern architecture is too complex for
attempts to solve it without the means of
intellectualization of programming in such a system.
The difficulty in solving the problems of
programming parallel systems is determined by the
fact that the issues of organizing interactions and
synchronizing parallel processes significantly
complicate the development of parallel algorithms
and programs in comparison with their traditional
(sequential) versions.

One of the most promising ways to solve these
problems jointly is the development of declarative

means of describing and implementing parallel
computations.

The first language of functional programming
was Lisp, developed in the late 1950s. by the
American scientist John McCarthy. Although the
language was widely known, due to its greater
expressiveness and elegance compared with
traditional languages, its applicability was limited
mainly to the tasks of artificial intelligence. A new
period of functional programming began with the
1978 Turing lecture of John Backus [1]. This new
understanding and wider acceptance of functional
programming was determined, first of all, by the
process begun in those years to move to the
consideration of the programming problem in its full
context, beginning with the specification of the
problem and the logical analysis of its solvability,
the byproduct of which is the program itself. The
emergence of computational systems with parallel
architectures further increased the importance of
functional programming, as it allows the user to free
himself from most of the parallel programming
problems inherent in imperative languages and to
entrust the compiler with the construction of a
program effectively executed on a computing
system of a particular parallel architecture. In
addition, many technical problems of system and
application programming become clear when
presenting their solutions in a functional style.

Therefore, it is no coincidence that the design
work in the field of designing new technical means

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 81 Volume 15, 2018

is now often carried out with the help of CAD-
systems, usually organized in a functional style. The
most complex new tasks of using computers in non-
traditional areas, as well as in linguistic, chemical,
biological, medical and other intellectualized
spheres of activity are often solved first on
functional or logical programming languages, and
these solutions are used as the base for finding
solutions at the level of standard imperative
languages. There is gradually increasing the number
of universities that choose functional programming
languages as a conceptual basis for teaching
computer science. All this makes us predict the
further spread of the functional approach, especially
in the intellectual and knowledge-intensive fields of
application of modern technology. However, the
successful development of the functional approach
to supercomputing raises a number of problems, the
study of which has been occupied by many teams in
recent years. The project described in this paper is
aimed at solving these problems, and within the
framework of the approach approved in the late 70's
in the languages VAL and BARS and successfully
developed in a number of DCF projects, Pythagoras,
COLAMO, etc., among which the SISAL language
[2], the first version of which refers to 1983.

The tendency of the development of
programming is that more and more diverse
processes of processing programs and data and are
increasingly supported by the machine. Most of
these processes for processing programs and data
are implemented in existing tools as text or
language, but are semantic. In them, as a rule, it is
required to preserve a certain invariant that is
definitely associated with the semantics of the
processed objects (for example, translation and
other functionally equivalent transformations of
programs preserve the function implemented by the
program). Therefore, without comprehensive study
and profound use of semantic transformations in
instrumental systems, it is impossible to achieve
either reliable or effective solution of the problems
of programming automation, to switch from
handicraft production of programs to technology
and mass production.

The transformational approach [3] treats
programming as a systematic application of the
fundamental processes of semantic processing of
programs that preserve a certain semantic invariant
of the program and make up “a sum of
technologies” in the aggregate. Transformational
methods are used as the main means for achieving
efficiency in the automation of programming by
translation methods, especially in connection with
the advent of computers of new architectures. They

are a promising direction in creating new, more
powerful means of automating the design of
effective and reliable programs.

Works on the theoretical substantiation of the
transformational approach to software development
are actively developing all over the world. At the
same time, researchers still have the task of
developing an “algebra of programs” that allows
manipulating program fragments within the formal
calculus of programs in order to automate the
construction of effective and reliable programs for
advanced computing systems. This very tempting
goal is unlikely to be achieved in the near future due
to the variety of programming languages and
specifications used, as well as the architecture of the
computing systems. However, if the functional level
for the initial specification is fixed, then the
development of methods and technologies for
transforming this specification into a correct and
efficient program for computers with different
architectures can be considered a realistic task.

In this paper, we describe the CSS (Cloud Sisal
System) system which is under development at
Institute of Informatics Systems in Novosibirsk as a
system of functional programming for supporting of
cloud supercomputing.

The rest of the paper is structured as follows.
Section 2 gives a general description of the CCS
system. Section 3 describes its input language
(Cloud Sisal). In Section 4 the Cloud Sisal compiler
of the SSC system is outlined. Section 5 is our
conclusion.

2 The CCS System
The CSS system is aimed to be a general-purpose
user interface for a wide range of parallel processing
platforms (See Fig. 1). The input language of the
CSS system is a functional language Cloud Sisal
that exposes implicit parallelism through data
dependence and guarantees determinate result. In
our conception, the cloud interface is intended to
give transparent ability to execute functional
programs on arbitrary environments. The JavaScript
client does not demand installation, and small
functional programs can be executed on client
devices (computers or smart phones). The V8 server
allows the language parser and some optimizations
to be used at both client and server sides.

SISAL (Steams and Iterations in a Single
Assignment Language) is developed as a functional
programming language, specifically oriented to
parallel processing and the replacement of the
Fortran language on supercomputers in scientific
computing [5], [6]. It is still early to speak about

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 82 Volume 15, 2018

real displacement, but SISAL as a parallel
programming language for scientific computing is
quite interesting itself and has already found its
application in dozens of organizations around the
world.

Fig. 1. Cloud service structure: 1, 2 and 3 – clients, 4 –

cloud access server, 5 – execution environment.

The SISAL model uses what is called an implicit
parallel model. This model places more control in
the hands of the compiler that actually encodes a
program into a particular machine language. The
details of parallel resource management are handled
by the reliably and portably by a compiler and
runtime system rather than by an error prone human
programmer. The language's functional semantics
guarantee determinate results across parallel and
sequential implementations - something that is
impossible for traditional languages like Fortran to
guarantee. Moreover, SISAL's implicit parallelism
makes it unnecessary to rewrite any code to move
from one computer to another. A SISAL program
that runs correctly on a PC is guaranteed to run
correctly on a high-speed parallel computer.

There are several implementations of SISAL
(version 1.2 [2]) for supercomputers, in particular
Denelcor HEP, Vax 11-780, Cray-1, Cray-X / MP,
work is under way to create a prototype optimizing
compiler from SISAL 1.2 in distributed programs
for calculators, hardware or software supporting
multithread computing, such as, for example,
TERA, *T, TAM and MIDC.

The Livermore National Laboratory and
Manchester University have developed an improved
version of the SISAL-90 language [7], which
increases the language's utility for scientific
programming. It includes language level support for
complex values, array and vector operations, higher
order functions, rectangular arrays, and an explicit
interface to other languages like Fortran and C.

The Sisal 3.2 language [8] integrates features of
Sisal 2.0 [9] and SISAL-90 versions and includes
language level support for module design, mixed
language programming, and preprocessing.

The Cloud Sisal language that has been designed
as the input language of the CSS system is based on
the Sisal 3.2 and increases the language's utility for
supporting of scientific computations and parallel
programming in clouds (See Section 3).

The CSS system is intended to provide means to
write and debug Cloud-Sisal-programs regardless
target architectures on low-cost devices as well as to
translate the Cloud-Sisal-programs into optimized
imperative parallel programs, appropriate to the
target execution platforms, and then to execute them
on supercomputers in clouds. The CSS system
includes for Cloud Sisal programs both an
interpreter and an optimizing cross-compiler. It
contains also some usual parts like syntax
highlighting, persistent storage for program code,
authorization and so on.

The CSS system uses three internal presentations
of source Cloud-Sisal-programs (See Section 4).
The first internal representation (IR1) is used by
both the interpreter and the compiler. IR1 is a
language of so-called hierarchical graphs [10] made
up simple and compositional nodes, edges, ports and
types. Nodes correspond to computations. Simple
nodes denote operations such as add or divide.
Compositional nodes represent compound
constructions such as structured expressions and
loops. Ports are nodes that are used for input values
and results of compound nodes. Edges show the
transmission of data between simple nodes and
ports; types are associated with the data transmitted
on edges. So, IR1-program represents data
dependencies, with control left implicit.

The interpreter is available on web via a browser.
It translates a source Cloud-Sisal-program to its
hierarchical graph representation (IR1-program) and
runs it without making actual low-level code. It is
useful because in this case a user can get any
debugging information both in text and in visual
form of hierarchical graphs.

The optimizing cross-compiler is intended to
convert a well-functioning (debugged) Cloud-Sisal-
program into optimized imperative parallel
programs, appropriate to the target execution
platforms (See Section 4).

The compiler generates also a GraphML-file
with a graph which represents data structures
handled by the compiler. GraphML (or Graph
Markup Language [11]) is at present de facto
standard language for describing graphs. GraphML
is XML sublanguage and allows describing directed,
undirected, mixed, hyper, and hierarchical graphs as
well as different attributes of their elements. It is
assumed that this file generated by the cross-
compiler can be used by a user for post-mortem

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 83 Volume 15, 2018

visualization with the help of the Visual Graph
system [12]. The Visual Graph system can be used
to read this graph from the GraphML-file, to
visualize it and to provide a user with different
navigation tools for its visual exploration to take the
most optimal decisions.

3 Cloud Sisal Language
A Cloud Sisal program consists of one or more
separately compilation units called modules. Each
module consists of definition and declaration files
and contains definition and declaration of
procedures (functions and operations), types and
contract definitions.

A Cloud Sisal module declaration contains
procedure declarations which are defined by the
corresponding module definition and are visible
outside it. It contains also externally visible
declarations and definitions of types and contracts.
A Cloud Sisal module declaration may specify the
name of a record or union type for public use, but
may prevent exportation of the components. It is
assumed that any function in any module may be the
starting point of program execution. At this
outermost level, all function parameters are values
obtained from the operating system level and all
function results are produced at that level.

Since Cloud-Sisal-compilers can translate Cloud-
Sisal-programs into the C programming language,
all Cloud Sisal function definitions have
corresponding C language equivalent definitions
which in turn have corresponding declaration in the
C language which allows program not written in
Cloud Sisal to have subsidiary parts written in the
Cloud Sisal language. Special foreign module
declarations declare the relationship between Cloud
Sisal and a set of subsidiary code written in other
languages. This allows Cloud Sisal program to
access libraries of already written code.

Data types of the Cloud Sisal language include
the usual scalar types (boolean, character, integer,
real, double), structured types (records and unions,
arrays and streams) and functions.

Structured types may have values of any type as
components; records and unions have heterogeneous
components and arrays and streams have
homogeneous components. The Cloud Sisal
language supports also user defined types with their
custom operations.

Function values may be parameters to functions
and the results of expression evaluation, so function
types may be declared by giving the types of all
parameters and results. Therefore the Cloud Sisal
language does not use a complete type inference

system wherein the types of all values are inferred
from their contexts. As a result complete compile-
time typing is possible for all Cloud-Sisal-programs.

A Cloud Sisal function is declared by describing
its name, the names and types of its formal
parameters, and types of its result values. The
function contents one or more expressions (a multi-
expression) whose types correspond to the result
types. Values are available to the expressions via
formal parameters, not through globally accessed
names. Higher-order function operations are part of
the Cloud Sisal language. Functions can be passed
to and returned from functions and be the values of
expressions.

Expressions are, of course, the heart of the Cloud
Sisal language. Syntax is designed to be as familiar
to more traditional procedural languages (like
Pascal) as possible. Conventional infix operations
combine scalar arithmetic values. The Cloud Sisal
language supports some type promotion
automatically and provides some predefined type
conversion functions. It is possible to assign the
value of any expression to a name and use the name
as shorthand for the expression throughout the scope
of the definition. This scoping is done with the let
construct.

All Cloud Sisal expressions, including whole
functions, programs and loops, evaluate to value
sets. In Cloud Sisal programs it is possible to use
three kinds of loops: post-conditional, pre-
conditional and “for all” (operation is applied to a
set). So-called reductions can be used to determine
returning values of loops. Keyword “returns” at the
end of a loop is followed by name and parameters of
a reduction. Reductions can be folding or generating
(some aggregation function or an array generator).
Conditional loops are sequential in general but
reduction allows them to be pipelined easier.

In the Cloud Sisal language “always finished
computations” semantics is used. It means that an
execution will not stop on any error and will return
resulting value even if an error occurs. Each Cloud
Sisal type has a distinguished value, “error”. Any
failed expression evaluation results in “error” of the
appropriate type. The “error” values propagate in a
well-defined way when they are operands in
computations. The “error” values can be tested for
and even explicitly assigned to signify other
anomalous conditions.

Cloud Sisal language was designed to describe
scientific computations so after analysis of features
of other languages with scientific orientation (such
as the Fortran language) it was decided to introduce
multidimensional arrays and arrays with fixed form
to the Cloud Sisal language as well as extended

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 84 Volume 15, 2018

means for their construction. Cloud Sisal has
comprehensive facilities for defining and
manipulating array values. An array generator
allows the definition of a multidimensional object
whose parts form a “tiling” of the overall structure.
Selections of arbitrary subarrays are provided
beyond the rectangular subsets available in some
other notations. Many infix operations for operating
element-by-element on array operands and a useful
set of functions on arrays are defined. A subarray
update facility allows safe alteration of array values.
Many applications can be expressible succinctly
with these features. Array generation, selection and
update may use vector subscripts to refer to
arbitrary, non geometric sections of arrays.

A stream is a sequence of values produced in
order by one expression evaluation and consumed in
the same order by one or more other expression
evaluations. Producers and consumers are usually
for expressions but short forms for simple streams
are also available. To expose the pipelined
parallelism that streams make possible, they must be
implemented non-strictly. That is consumer
expressions must be started whether or not the
producer expression has finished.

The Cloud Sisal includes support of functions
from programs and libraries written in C/C++ or
Fortran. It is based on a concept of so-called foreign
types. Foreign types in the Cloud Sisal language are
specified by their string representation on their
native programming language. Values of foreign
types are constructed via foreign operations and
functions that are written in a foreign programming
language and use a special interface to access values
of the Cloud Sisal types if necessary.

To increase level of its algorithmic abstractions,
the Cloud Sisal language was augmented by new
conceptions of parametric types, contracts and
generalized procedures (functions and operations).
A parametric type defines a set of types that allows
finer control compared to already existing typesets.
A contract is another form of abstraction that allows
binding a set of operations over types listed as
contract parameters to contract name. Contracts are
used in generalized procedures to specify what kind
of operations their parametric types are expected to
have.

It should be noted that a user-defined reductions
of the Sisal 90 language are functions of a very
special form that are used to transform loop values
into loop results and cannot be reused outside loops.
In the Cloud Sisal language user-defined reductions
are defined as a combination of several usual
functions thus allowing them to be reused. A
general form of reduction invocation in a loop return

statement looks as follows: “reduction name N (list
of initial values) of (list of loop values)” where
initial values of reduction must be loop constants
and reduction name N corresponds to following four
functions. The first function computes an initial
reduction state in a type T which is any type that can
hold a reduction internal state. The second function
recomputes the reduction state T using loop values
of the subsequent loop iteration. The next optionally
present function determines how some two
reduction states (obtained after parallel loop
execution) can be merged. This function can be
omitted if the reduction does not allow such things.
The last function computes reduction results from
its internal state.

The Cloud Sisal language supports also so-called
annotated programming and concretizing
transformations [13], [14] and specifies optimizing
annotations in a form of so-called pragma
statements. Every pragma statement is a formalized
comment that starts with dollar sign “$” and
describes an annotation being a predicate constraint
on admissible properties of a program fragment or
states of computations.

For example, every expression of Cloud-Sisal-
program can be prefixed by an annotation

“assert = Boolean expression”,
that can be checked for truth after the expression
evaluation during program debugging as well as can
be used in program optimizing and concretizing
transformations. This annotation can be also placed
before returns keyword in declaration of a procedure
and can be used to control results of this procedure
after every its invocation. Another example is an
annotation “parallel” which can be placed before
any case expression in the Cloud Sisal program
(analogous to a switch expression in the C
language). This annotation can be specified if it is
known that only one test can be true.

3 Optimizing Cross-Compiler
The general scheme of the cross-compiler of the
CSS system is shown in Fig. 2 The compiler
consists of two main parts (front-end and back-end
compilers), and the compilation can be completed
using the target machine's C++ or C# compiler.

The original Cloud Sisal program (“Source” in
the diagram) is fed to the input of the front-end
translator, which translates it into the first internal
representation (IR1). Further the graph IR1 is fed to
the input of the back-end part of the compiler.

The back-end part includes the following phases
(where optimization phases are optional):

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 85 Volume 15, 2018

• translation from IR1 to IR2 (“IR2 Gen” in
the diagram) which produces a semantically
equivalent program in IR2,

• IR2 optimization (“IR2 Opt” in the diagram)
which performs some optimizations and
concretizations on the annotated program to
produce a semantically equivalent, but faster
basic program,

• translation from IR2 to IR3 with generation
of parallel code (“IR3 Gen” in the diagram),

• IR3 optimization and IR3 level reduction
(“IR3 Opt” in the diagram) which performs
update-in-place analysis and restructures
some graphs to help identify at compile tune
those operations that can execute in-place
and to improve chances for in-place
operation at run time when analysis fails.

It performs also some machine-dependent
optimizations and defines the desired granularity of
parallelism based on an estimate of computational
cost and various parameters that tune analysis,
translation from IR3 into the code of the target
architecture (“CodeGen” in the diagram) which
generates C++ or C# code.

Fig. 2. The Cloud-Sisal-compiler and run-time support.

The IR-representation of a Cloud-Sisal-program
consists of a set of directed acyclic graphs IR1
corresponding to the functions of the source Cloud-
Sisal-program.

The IR-graph of a function is given by the triple
G = (N, P, E, Pin, Pout), where

• N is a set of nodes,
• P is a set of ports,
• E ⊆ P × P is a set of arcs,
• Pin ⊆ P is a set of input ports of the graph G,
• Pout⊆P is a set of output ports of the graph G.

Each node Ni∈N corresponds to two subsets of
ports from P: input ports Pi

in ⊆ P and output ports
Pi

out ⊆ P. The arc Ei=(P1, P2) ∈ E, if for some i and
j either P1 ∈ Pi

out and P2 ∈ Pj
in ∪ Pout or P1 ∈ Pin

and P2∈Pj
in ∪ Pout.

The nodes of graph IR1 specify operations, ports
specify arguments and results of operations, and
arcs specify information dependencies between
them. Thus, the graph IR1 specifies the flow of
computations. The graph IR1 is a hierarchical graph
[10], since the set of vertices of N includes nodes of
two types: simple and compositional. Compositional
nodes contain the child graphs IR1, the
dependencies between the ports of which are
expressed implicitly, and denote structured
constructions of the Cloud Sisal language, such as
conditional expressions and loops. Each arc of graph
IR1 is assigned the type of the value sent by it, if
IR1 specifies a strongly typed language. Fig. 4
shows1 the graph IR1 specifying the function “sort”
represented in Fig. 3.

function sort(A: array[integer]
 returns array[integer])
 if size(A) <= 1 then A
 //not necessary to order everything
 else let /* otherwise we return
 the result of the expression “let”,
 which associates names with arrays
 of values which are less, equel and
 lardge numbers of the number A[1]
 (numbers are selected from
 the array A) */
 Less := for a in A
 returns array of a
 when a < A[1] end for;
 Same := for a in A
 returns array of a
 when a = A[1] end for;
 More := for a in A
 returns array of a
 when a > A[1] end for
 /* the result of the expression
 is concatenation (||)
 of three arrays */
 in sort(Less)||Same||sort(More)
 end let end if
end function

Fig. 3. The Cloud-function “sort”.

1 The drawings of the IR1 graphs are generated automatically
by the internal representation of IR1, built by the front-end
compiler.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 86 Volume 15, 2018

In IR1, conditional expressions are defined by a
compositional node of Select, whose first graph is
the control. The control graph has one output of an
integer type, whose value determines which of the
graphs of the compositional node Select (starting
with the second graph) will be used to generate its
output values. Fig. 5 shows the contents of the
composite node Select represented in Fig. 4. Fig. 6,
7 and 8 depict the contents of the first, second and
third graphs of the compositional node Select,
respectively. The literal in the graph IR1 is given by
nodes without input ports and with one output port.
Since IR1 is described by a hierarchy of acyclic
graphs, the function calls in Fig. 8 are given by a
functional-type literal with a function name that
uniquely identifies its graph.

Select

Fig. 4. The graph of the function “sort”.

Fig. 5. The graph of the composite node Select.

In the IR1 graphs, cyclic expressions are
specified by the compositional nodes LoopPost,
LoopPre, and Forall, which specify loops with a
postcondition, precondition, and range, respectively.
These compositional nodes have a constant number
of graphs which describe the control of the loop, the
body of the loop, and its return clause. Fig. 9 shows
the contents of the composite Forall node in Fig. 8
(corresponding to the array “Same”). In Fig. 10 and
Fig. 11 shows the contents of the second (specifying
the generation of the range) and the fourth
(specifying the return proposition) graph of the

composite Forall node, respectively (the first and
third parts are empty).

Size

LessOrEqual

1

Fig. 6. The first graph of the node Select.

Fig. 7. The second graph of the node Select.

Call

ACatenate

ACatenate

Call

sort[array[integer]] sort[array[integer]]Forall

Forall

Forall

Fig. 8. The third graph of the node Select.

The internal representation of IR2 is based on
IR1. A graph IR2 for a Cloud Sisal function is an
object (G, VAR, συ, ≤β), where

• G = (N, P, E, Pin, Pout) is a graph IR1,
• VAR is a set of variables,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 87 Volume 15, 2018

• συ is a map E → VAR which specifies the
binding of variables to the arcs of the graph
G,

• ≤β is an order on N × N specifying the
execution sequence.

All vertices of the graph IR2 are ordered by the
relation ≤β, which is constructed from the data
stream. Namely, if there exists a path from node N1
to node N2, where N1 and N2 have the same nesting
level, then N1≤βN2. For nodes N1 and N2 that are
contained in the same composite node (such as
conditional expressions and loops), the relation of
the execution sequence is determined by the
semantics of the composite node. If N1 and N2 are
not contained in the same composite node and there
are no restrictions imposed by the rules of the
composite nodes, N1=βN2

2 is assumed.

Fig. 9. The graph of the composite node Forall.

Scatter

Fig. 10. The second graph of the node Forall.

For internal representations of IR2 (and IR3),
variable and type objects are defined. The type in
IR2 (and IR3) serves to represent the types of Sisal
language at the back-end level of the translator. A

2 The relation ≤β is used to fix the sequence in which the operators
represented by nodes of IR2 must be executed. If N1≤βN2 then the
computation of N1 must necessarily occur before calculating N2. If
N1=βN2 then it is possible to perform operations for these nodes in any
order, and so they can be executed in parallel.

type contains low-level information about the object
with which this type is associated (such as a
machine type representation and a memory class).

ReduceArray

1

Equal

1

AElement

Fig. 1. The fourth graph of the node Forall.

The variables describe objects of the Cloud Sisal
language at the level of IR2 and IR3. In the IR2
representation, the variables are associated with the
graph arcs (in IR3, they are the operands of the IR3
operations). Each variable has the following
properties: a unique identifier, a unique name, a type
and an optional Boolean variable that is responsible
for the “is error” property. Variables are divided
into scalars, arrays and records. Each group of
variables has some additional properties. Scalar
variables additionally have size in bytes. Array
variables additionally contain three auxiliary
variables: a variable that describes the array
element, the lower bound of the array, and its size.
A record variable contains a list of variables
describing the fields of this record.

The IR2 representation is built for the translated
module and is the set of IR2 graphs for the functions
contained in this module. Fig. 12 shows the
representation of the IR2 function of the following
Cloud Sisal function which calculates the sign of the
number:

function sign(N: integer
 returns integer)
 if N > 0 then 1 elseif N < 0
 then –1 else 0

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 88 Volume 15, 2018

 end if
end function

From the point of view of the structure, the graph
IR2 which is obtained immediately after translation
from IR1 to IR2 is isomorphic to the graph IR1, and
therefore, the actual creation of nodes and arcs of
the representation IR2 is trivial. After the graph is
created, the mapping συ is constructed via
annotating arcs of graph IR2 by variables. Arcs
coming from the same port are assigned the same
variable. Arcs coming from different ports have
different variables. This achieves the requirement
that the definition of each variable be unique. Later
(after the optimizations of the IR2 presentation), the
distribution of variables along the arcs of the graph
can change. The final step in the construction of the
IR2 presentation is the ordering of the vertices by
the priority-of-execution relation ≤β.

The IR3 representation is a mid-level imperative
representation of the program, consisting of
statements and expressions. It is a classical three-
address code representation with hierarchical
blocks. In the process of translation from IR2 to
IR3, an imperative program (a sequence of
operators) is actually constructed for the graph of
the IR2 calculation data flow, performing the
calculations given by this graph. For example, the
sign function can be represented as follows:

 0 entry "function sign[integer]"
(V_1(I32) returns V_3(I32)); {
 5 V_7(BOOL) = (0x0(I32) <
V_1(I32));
 6 V_11(BOOL) = (V_1(I32) <
0x0(I32));
 7 if (V_7(BOOL) == true(BOOL))
{
 11 V_3(I32) = 0x1(I32);
 } else {
 12 if (V_11(BOOL) ==
true(BOOL)) {
 17 V_3(I32) = - 0x1(I32);
 } else {
 19 V_3(I32) = 0x0(I32);
 }
 }
 20 return;
 }

The construction of IR3 from the graph IR2
involves generating a sequence of operators for each
node and placing the resulting fragment in the
general sequence of IR3 operators.

At present, the target platform for the cross-
compiler is the .NET platform. It is planned to
develop a code generator that translates the IR3

representation (see below) into the MSIL code,
which is the assembly language of the .NET virtual
machine. At the moment, the Cloud-Sisal-compiler
uses the IR3 internal representation translator in the
C# program as the code generator, which is then
translated into the MSIL code by the C# compiler. A
library has been developed that contains a C# class
system that provides support for the execution
period for Cloud-Sisal-programs. In addition, the
user can use these classes to provide interaction
between the Cloud Sisal program and the C# code
(for example, to organize I / O).

Fig. 2. The R2 presentation of the sign funtion.

4 Conclusion
The project of the CSS system for supporting of
functional and parallel programming is considered.

The CSS system is intended to provide means to
write and debug functional programs regardless
target architectures on low-cost devices as well as to
translate them into optimized parallel programs,
appropriate to the target execution platforms, and
then execute on high performance parallel
computers without extensive rewriting and
debugging.

The CSS system can open a real world of
supercomputers for a wide range of applied
programmers without requiring large investments in
new computer systems and allowing to unload
existing supercomputers from their inefficient use
for designing and debugging parallel programs.

Its application not only can make
supercomputers included in the network available to
a wide range of application programmers, but also
can increase the reliability of the parallel programs
being created, since it allows us to formulate
solutions of problems on an abstract level in a
declarative style and without binding to specific

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 89 Volume 15, 2018

computing resources, to check some correctness
properties of annotated functional programs by
using formal methods and to build efficient parallel
code by using compilers. Application of the
technology also improves the efficiency of
supercomputers by transferring the work of
programmers in designing and debugging programs
from expensive supercomputers to cheaper and
more conventional personal computers, and by
eliminating the need for a programmer to construct,
verify and debug a program for solving the same
problem each time anew when transferring the
program from one supercomputer to another is
needed.

The main segments of the market for the
application of the developed methods and system
are scientific application, the solution of national
economic problems and training of personnel.
Among the potential users of the system are a large
team of scientists, designers and engineers who are
involved in solving applied problems that impose
increased demands on information and computing
resources, as well as students and teachers studying
parallel programming. The existing tendencies to
increase the number of applied programmers
involved in solving increasingly complex problems,
and to the development of telecommunications
networks and supercomputing centers, not only do
not reduce, but substantially expand, the
requirements for programming systems of this type,
creating an expanding market for their mass
application.

At present, the CSS system consists of
experimental versions of web interface, interpreter,
graphic visualization/debugging subsystem,
optimizing cross-compiler and cluster runtime. The
current target platform for the Cloud-Sisal-compiler
is .NET. The compiler generates the C# code. It
allows the users to perform the experimental
execution of Cloud-Sisal-programs and examine the
effectiveness of optimizing transformations applied
by the compiler.

The work was partially supported by the Russian
Science Foundation (grant 18-11-00118).

References:
[1] J. Backus. Can programming be liberated from

the von Neumann style? Commun. ACM,
Vol.21, No.8, 1978, pp. 613–641.

[2] J. McGraw, S. Skedzielewski, S. Allan, et all.
SISAL - Streams and Iterations in a Single
Assignment Language, Language Reference
Manual: Version 1.2. Technical Report TR M-
146, University of California, Lawrence
Livermore Laboratory, March, 1985.

[3] A.P. Ershov. The Transformational Machine:
theme and Variations, Lecture Notes in
Computer Science, 1981, Vol. 118, pp. 16-32.

[4] V.N. Kasyanov, E.V. Kasyanova. Graph- and
cloud-based tools for computer science
education, Lecture Notes in Computer Science,
Vol. 9395, 2015, pp. 41 - 54.

[5] D.C. Cann. Retire Fortran?: a debate rekindled,
Commun. ACM, Vol. 34, No. 8, 1992, pp. 81–
89.

[6] J.-L. Gaudiot, T. DeBoni, J. Feo, et all. The
Sisal project: real world functional
programming, Lecture Notes in Computer
Science, Vol.1808, 2001, pp. 45–72.

[7] J.T.Feo, P.J. Piller, S.K. Skedzielewski, et all.
SISAL 90. In: Proceedings of High
Performance Functional Computing, Denver,
1995, pp. 35–47,

[8] V.N. Kasyanov. Sisal 3.2: functional language
for scientific parallel programming, Enterprise
Information Systems, Vol. 7, No. 2, 2013,
pp. 227-236.

[9] D.C. Cann, J.T. Feo, A.P.W. Böhm, et all: Sisal
Reference Manual: Language Version 2.0.
Tech. Rep. Lawrence Livermore National
Laboratory, UCRL-MA-109098, Livermore,
CA, 1991.

[10] V.N. Kasyanov. Methods and tools for
structural information visualization, WSEAS
Transactions on Computers, Vol. 12, No. 7,
2013, pp. 349–359.

[11] U. Brandes, M. Eiglsperger, J. Lerner, and
C. Pich. Graph Markup Language (GraphML),
In: Handbook of Graph Drawing and
Visualization. CRC Press, 2013, pp. 517–541.

[12] V.N. Kasyanov, T.A. Zolotuhin. Visual Graph
– a system for visualization of big size complex
structural information on the base of graph
models, Scientific Visualization, Vol. 7, No. 4,
2015, pp. 44 – 59. (In Russian).

[13] V.N. Kasyanov. Transformational approach to
program concretization, Theoretical Computer
Science, Vol. 90, No. 1, 1991, pp. 37-46.

[14] V.N. Kasyanov. A support tool for annotated
program manipulation, In: Proc. of Fifth
European Conf. on Software Maintenance and
Reengineering, IEEE Computer Society Press,
2001, pp. 85–94.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 90 Volume 15, 2018

