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Abstract: - In this paper, a cloud system being under development at the Institute of Informatics 
Systems in Novosibirsk as a system of functional programming for supporting of cloud 
supercomputing is considered. The system provides means to write and debug functional programs 
regardless target architectures on low-cost devices as well as to translate them into optimized parallel 
programs, appropriate to the target execution platforms, and then execute on high performance 
parallel computers without extensive rewriting and debugging. 
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1 Introduction 
Parallel computing is one of the main paradigms of 
modern programming and covers an extremely wide 
range of programming issues. In view of the much 
more complex nature of parallel computations in 
comparison with successive ones, the methods of 
automating the development of parallel software, 
based on applying the technique of formal models, 
specifications and transformations of parallel 
programs, are of great importance. 

The fundamental problems of organizing parallel 
computing are the following: the problem of 
increasing the productivity and efficiency of using 
multiprocessor and distributed computing systems 
and the problem of increasing the level of 
intellectualization of programming parallel systems. 
They are not independent, because the organization 
of high-performance computing in a multiprocessor 
system of modern architecture is too complex for 
attempts to solve it without the means of 
intellectualization of programming in such a system. 
The difficulty in solving the problems of 
programming parallel systems is determined by the 
fact that the issues of organizing interactions and 
synchronizing parallel processes significantly 
complicate the development of parallel algorithms 
and programs in comparison with their traditional 
(sequential) versions.  

One of the most promising ways to solve these 
problems jointly is the development of declarative 

means of describing and implementing parallel 
computations. 

The first language of functional programming 
was Lisp, developed in the late 1950s. by the 
American scientist John McCarthy. Although the 
language was widely known, due to its greater 
expressiveness and elegance compared with 
traditional languages, its applicability was limited 
mainly to the tasks of artificial intelligence. A new 
period of functional programming began with the 
1978 Turing lecture of John Backus [1]. This new 
understanding and wider acceptance of functional 
programming was determined, first of all, by the 
process begun in those years to move to the 
consideration of the programming problem in its full 
context, beginning with the specification of the 
problem and the logical analysis of its solvability, 
the byproduct of which is the program itself. The 
emergence of computational systems with parallel 
architectures further increased the importance of 
functional programming, as it allows the user to free 
himself from most of the parallel programming 
problems inherent in imperative languages and to 
entrust the compiler with the construction of a 
program effectively executed on a computing 
system of a particular parallel architecture. In 
addition, many technical problems of system and 
application programming become clear when 
presenting their solutions in a functional style. 

Therefore, it is no coincidence that the design 
work in the field of designing new technical means 
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is now often carried out with the help of CAD-
systems, usually organized in a functional style. The 
most complex new tasks of using computers in non-
traditional areas, as well as in linguistic, chemical, 
biological, medical and other intellectualized 
spheres of activity are often solved first on 
functional or logical programming languages, and 
these solutions are used as the base for finding 
solutions at the level of standard imperative 
languages. There is gradually increasing the number 
of universities that choose functional programming 
languages as a conceptual basis for teaching 
computer science. All this makes us predict the 
further spread of the functional approach, especially 
in the intellectual and knowledge-intensive fields of 
application of modern technology. However, the 
successful development of the functional approach 
to supercomputing raises a number of problems, the 
study of which has been occupied by many teams in 
recent years. The project described in this paper is 
aimed at solving these problems, and within the 
framework of the approach approved in the late 70's 
in the languages VAL and BARS and successfully 
developed in a number of DCF projects, Pythagoras, 
COLAMO, etc., among which the SISAL language 
[2], the first version of which refers to 1983. 

The tendency of the development of 
programming is that more and more diverse 
processes of processing programs and data and are 
increasingly supported by the machine. Most of 
these processes for processing programs and data 
are implemented in existing tools as text or 
language, but are semantic. In them, as a rule, it is 
required to preserve a certain invariant that is 
definitely associated with the semantics of the 
processed objects (for example, translation and 
other functionally equivalent transformations of 
programs preserve the function implemented by the 
program). Therefore, without comprehensive study 
and profound use of semantic transformations in 
instrumental systems, it is impossible to achieve 
either reliable or effective solution of the problems 
of programming automation, to switch from 
handicraft production of programs to technology 
and mass production. 

The transformational approach [3] treats 
programming as a systematic application of the 
fundamental processes of semantic processing of 
programs that preserve a certain semantic invariant 
of the program and make up “a sum of 
technologies” in the aggregate. Transformational 
methods are used as the main means for achieving 
efficiency in the automation of programming by 
translation methods, especially in connection with 
the advent of computers of new architectures. They 

are a promising direction in creating new, more 
powerful means of automating the design of 
effective and reliable programs. 

Works on the theoretical substantiation of the 
transformational approach to software development 
are actively developing all over the world. At the 
same time, researchers still have the task of 
developing an “algebra of programs” that allows 
manipulating program fragments within the formal 
calculus of programs in order to automate the 
construction of effective and reliable programs for 
advanced computing systems. This very tempting 
goal is unlikely to be achieved in the near future due 
to the variety of programming languages and 
specifications used, as well as the architecture of the 
computing systems. However, if the functional level 
for the initial specification is fixed, then the 
development of methods and technologies for 
transforming this specification into a correct and 
efficient program for computers with different 
architectures can be considered a realistic task.  

In this paper, we describe the CSS (Cloud Sisal 
System) system which is under development at 
Institute of Informatics Systems in Novosibirsk as a 
system of functional programming for supporting of 
cloud supercomputing.  

The rest of the paper is structured as follows. 
Section 2 gives a general description of the CCS 
system. Section 3 describes its input language 
(Cloud Sisal). In Section 4 the Cloud Sisal compiler 
of the SSC system is outlined. Section 5 is our 
conclusion. 
 
 
2 The CCS System 
The CSS system is aimed to be a general-purpose 
user interface for a wide range of parallel processing 
platforms (See Fig. 1). The input language of the 
CSS system is a functional language Cloud Sisal 
that exposes implicit parallelism through data 
dependence and guarantees determinate result. In 
our conception, the cloud interface is intended to 
give transparent ability to execute functional 
programs on arbitrary environments. The JavaScript 
client does not demand installation, and small 
functional programs can be executed on client 
devices (computers or smart phones). The V8 server 
allows the language parser and some optimizations 
to be used at both client and server sides.  

SISAL (Steams and Iterations in a Single 
Assignment Language) is developed as a functional 
programming language, specifically oriented to 
parallel processing and the replacement of the 
Fortran language on supercomputers in scientific 
computing [5], [6]. It is still early to speak about 
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real displacement, but SISAL as a parallel 
programming language for scientific computing is 
quite interesting itself and has already found its 
application in dozens of organizations around the 
world.  

 
Fig. 1. Cloud service structure: 1, 2 and 3 – clients, 4 – 

cloud access server, 5 – execution environment.  

The SISAL model uses what is called an implicit 
parallel model. This model places more control in 
the hands of the compiler that actually encodes a 
program into a particular machine language. The 
details of parallel resource management are handled 
by the reliably and portably by a compiler and 
runtime system rather than by an error prone human 
programmer. The language's functional semantics 
guarantee determinate results across parallel and 
sequential implementations - something that is 
impossible for traditional languages like Fortran to 
guarantee. Moreover, SISAL's implicit parallelism 
makes it unnecessary to rewrite any code to move 
from one computer to another. A SISAL program 
that runs correctly on a PC is guaranteed to run 
correctly on a high-speed parallel computer. 

There are several implementations of SISAL 
(version 1.2 [2]) for supercomputers, in particular 
Denelcor HEP, Vax 11-780, Cray-1, Cray-X / MP, 
work is under way to create a prototype optimizing 
compiler from SISAL 1.2 in distributed programs 
for calculators, hardware or software supporting 
multithread computing, such as, for example, 
TERA, *T, TAM and MIDC.  

The Livermore National Laboratory and 
Manchester University have developed an improved 
version of the SISAL-90 language [7], which 
increases the language's utility for scientific 
programming. It includes language level support for 
complex values, array and vector operations, higher 
order functions, rectangular arrays, and an explicit 
interface to other languages like Fortran and C.  

The Sisal 3.2 language [8] integrates features of 
Sisal 2.0 [9] and SISAL-90 versions and includes 
language level support for module design, mixed 
language programming, and preprocessing.  

The Cloud Sisal language that has been designed 
as the input language of the CSS system is based on 
the Sisal 3.2 and increases the language's utility for 
supporting of scientific computations and parallel 
programming in clouds (See Section 3). 

The CSS system is intended to provide means to 
write and debug Cloud-Sisal-programs regardless 
target architectures on low-cost devices as well as to 
translate the Cloud-Sisal-programs into optimized 
imperative parallel programs, appropriate to the 
target execution platforms, and then to execute them 
on supercomputers in clouds. The CSS system 
includes for Cloud Sisal programs both an 
interpreter and an optimizing cross-compiler. It 
contains also some usual parts like syntax 
highlighting, persistent storage for program code, 
authorization and so on. 

The CSS system uses three internal presentations 
of source Cloud-Sisal-programs (See Section 4). 
The first internal representation (IR1) is used by 
both the interpreter and the compiler. IR1 is a 
language of so-called hierarchical graphs [10] made 
up simple and compositional nodes, edges, ports and 
types. Nodes correspond to computations. Simple 
nodes denote operations such as add or divide. 
Compositional nodes represent compound 
constructions such as structured expressions and 
loops. Ports are nodes that are used for input values 
and results of compound nodes. Edges show the 
transmission of data between simple nodes and 
ports; types are associated with the data transmitted 
on edges. So, IR1-program represents data 
dependencies, with control left implicit. 

The interpreter is available on web via a browser. 
It translates a source Cloud-Sisal-program to its 
hierarchical graph representation (IR1-program) and 
runs it without making actual low-level code. It is 
useful because in this case a user can get any 
debugging information both in text and in visual 
form of hierarchical graphs.  

The optimizing cross-compiler is intended to 
convert a well-functioning (debugged) Cloud-Sisal-
program into optimized imperative parallel 
programs, appropriate to the target execution 
platforms (See Section 4).  

The compiler generates also a GraphML-file 
with a graph which represents data structures 
handled by the compiler. GraphML (or Graph 
Markup Language [11]) is at present de facto 
standard language for describing graphs. GraphML 
is XML sublanguage and allows describing directed, 
undirected, mixed, hyper, and hierarchical graphs as 
well as different attributes of their elements. It is 
assumed that this file generated by the cross-
compiler can be used by a user for post-mortem 
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visualization with the help of the Visual Graph 
system [12]. The Visual Graph system can be used 
to read this graph from the GraphML-file, to 
visualize it and to provide a user with different 
navigation tools for its visual exploration to take the 
most optimal decisions. 
 
 
3 Cloud Sisal Language 
A Cloud Sisal program consists of one or more 
separately compilation units called modules. Each 
module consists of definition and declaration files 
and contains definition and declaration of 
procedures (functions and operations), types and 
contract definitions.  

A Cloud Sisal module declaration contains 
procedure declarations which are defined by the 
corresponding module definition and are visible 
outside it. It contains also externally visible 
declarations and definitions of types and contracts. 
A Cloud Sisal module declaration may specify the 
name of a record or union type for public use, but 
may prevent exportation of the components. It is 
assumed that any function in any module may be the 
starting point of program execution. At this 
outermost level, all function parameters are values 
obtained from the operating system level and all 
function results are produced at that level. 

Since Cloud-Sisal-compilers can translate Cloud-
Sisal-programs into the C programming language, 
all Cloud Sisal function definitions have 
corresponding C language equivalent definitions 
which in turn have corresponding declaration in the 
C language which allows program not written in 
Cloud Sisal to have subsidiary parts written in the 
Cloud Sisal language. Special foreign module 
declarations declare the relationship between Cloud 
Sisal and a set of subsidiary code written in other 
languages. This allows Cloud Sisal program to 
access libraries of already written code. 

Data types of the Cloud Sisal language include 
the usual scalar types (boolean, character, integer, 
real, double), structured types (records and unions, 
arrays and streams) and functions.  

Structured types may have values of any type as 
components; records and unions have heterogeneous 
components and arrays and streams have 
homogeneous components. The Cloud Sisal 
language supports also user defined types with their 
custom operations. 

Function values may be parameters to functions 
and the results of expression evaluation, so function 
types may be declared by giving the types of all 
parameters and results. Therefore the Cloud Sisal 
language does not use a complete type inference 

system wherein the types of all values are inferred 
from their contexts. As a result complete compile-
time typing is possible for all Cloud-Sisal-programs.  

A Cloud Sisal function is declared by describing 
its name, the names and types of its formal 
parameters, and types of its result values. The 
function contents one or more expressions (a multi-
expression) whose types correspond to the result 
types. Values are available to the expressions via 
formal parameters, not through globally accessed 
names. Higher-order function operations are part of 
the Cloud Sisal language. Functions can be passed 
to and returned from functions and be the values of 
expressions. 

Expressions are, of course, the heart of the Cloud 
Sisal language. Syntax is designed to be as familiar 
to more traditional procedural languages (like 
Pascal) as possible. Conventional infix operations 
combine scalar arithmetic values. The Cloud Sisal 
language supports some type promotion 
automatically and provides some predefined type 
conversion functions. It is possible to assign the 
value of any expression to a name and use the name 
as shorthand for the expression throughout the scope 
of the definition. This scoping is done with the let 
construct. 

All Cloud Sisal expressions, including whole 
functions, programs and loops, evaluate to value 
sets. In Cloud Sisal programs it is possible to use 
three kinds of loops: post-conditional, pre-
conditional and “for all” (operation is applied to a 
set). So-called reductions can be used to determine 
returning values of loops. Keyword “returns” at the 
end of a loop is followed by name and parameters of 
a reduction. Reductions can be folding or generating 
(some aggregation function or an array generator). 
Conditional loops are sequential in general but 
reduction allows them to be pipelined easier. 

In the Cloud Sisal language “always finished 
computations” semantics is used. It means that an 
execution will not stop on any error and will return 
resulting value even if an error occurs. Each Cloud 
Sisal type has a distinguished value, “error”. Any 
failed expression evaluation results in “error” of the 
appropriate type. The “error” values propagate in a 
well-defined way when they are operands in 
computations. The “error” values can be tested for 
and even explicitly assigned to signify other 
anomalous conditions. 

Cloud Sisal language was designed to describe 
scientific computations so after analysis of features 
of other languages with scientific orientation (such 
as the Fortran language) it was decided to introduce 
multidimensional arrays and arrays with fixed form 
to the Cloud Sisal language as well as extended 
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means for their construction. Cloud Sisal has 
comprehensive facilities for defining and 
manipulating array values. An array generator 
allows the definition of a multidimensional object 
whose parts form a “tiling” of the overall structure. 
Selections of arbitrary subarrays are provided 
beyond the rectangular subsets available in some 
other notations. Many infix operations for operating 
element-by-element on array operands and a useful 
set of functions on arrays are defined. A subarray 
update facility allows safe alteration of array values. 
Many applications can be expressible succinctly 
with these features. Array generation, selection and 
update may use vector subscripts to refer to 
arbitrary, non geometric sections of arrays. 

A stream is a sequence of values produced in 
order by one expression evaluation and consumed in 
the same order by one or more other expression 
evaluations. Producers and consumers are usually 
for expressions but short forms for simple streams 
are also available. To expose the pipelined 
parallelism that streams make possible, they must be 
implemented non-strictly. That is consumer 
expressions must be started whether or not the 
producer expression has finished. 

The Cloud Sisal includes support of functions 
from programs and libraries written in C/C++ or 
Fortran. It is based on a concept of so-called foreign 
types. Foreign types in the Cloud Sisal language are 
specified by their string representation on their 
native programming language. Values of foreign 
types are constructed via foreign operations and 
functions that are written in a foreign programming 
language and use a special interface to access values 
of the Cloud Sisal types if necessary. 

To increase level of its algorithmic abstractions, 
the Cloud Sisal language was augmented by new 
conceptions of parametric types, contracts and 
generalized procedures (functions and operations). 
A parametric type defines a set of types that allows 
finer control compared to already existing typesets. 
A contract is another form of abstraction that allows 
binding a set of operations over types listed as 
contract parameters to contract name. Contracts are 
used in generalized procedures to specify what kind 
of operations their parametric types are expected to 
have. 

It should be noted that a user-defined reductions 
of the Sisal 90 language are functions of a very 
special form that are used to transform loop values 
into loop results and cannot be reused outside loops. 
In the Cloud Sisal language user-defined reductions 
are defined as a combination of several usual 
functions thus allowing them to be reused. A 
general form of reduction invocation in a loop return 

statement looks as follows: “reduction name N (list 
of initial values) of (list of loop values)” where 
initial values of reduction must be loop constants 
and reduction name N corresponds to following four 
functions. The first function computes an initial 
reduction state in a type T which is any type that can 
hold a reduction internal state. The second function 
recomputes the reduction state T using loop values 
of the subsequent loop iteration. The next optionally 
present function determines how some two 
reduction states (obtained after parallel loop 
execution) can be merged. This function can be 
omitted if the reduction does not allow such things. 
The last function computes reduction results from 
its internal state. 

The Cloud Sisal language supports also so-called 
annotated programming and concretizing 
transformations [13], [14] and specifies optimizing 
annotations in a form of so-called pragma 
statements. Every pragma statement is a formalized 
comment that starts with dollar sign “$” and 
describes an annotation being a predicate constraint 
on admissible properties of a program fragment or 
states of computations.  

For example, every expression of Cloud-Sisal-
program can be prefixed by an annotation  

“assert = Boolean expression”,  
that can be checked for truth after the expression 
evaluation during program debugging as well as can 
be used in program optimizing and concretizing 
transformations. This annotation can be also placed 
before returns keyword in declaration of a procedure 
and can be used to control results of this procedure 
after every its invocation. Another example is an 
annotation “parallel” which can be placed before 
any case expression in the Cloud Sisal program 
(analogous to a switch expression in the C 
language). This annotation can be specified if it is 
known that only one test can be true. 
 
 
3 Optimizing Cross-Compiler 
The general scheme of the cross-compiler of the 
CSS system is shown in Fig. 2 The compiler 
consists of two main parts (front-end and back-end 
compilers), and the compilation can be completed 
using the target machine's C++ or C# compiler. 

The original Cloud Sisal program (“Source” in 
the diagram) is fed to the input of the front-end 
translator, which translates it into the first internal 
representation (IR1). Further the graph IR1 is fed to 
the input of the back-end part of the compiler. 

The back-end part includes the following phases 
(where optimization phases are optional):  

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Victor Kasyanov, Elena Kasyanova

E-ISSN: 2224-3402 85 Volume 15, 2018



• translation from IR1 to IR2 (“IR2 Gen” in 
the diagram) which produces a semantically 
equivalent program in IR2,  

• IR2 optimization (“IR2 Opt” in the diagram) 
which performs some optimizations and 
concretizations on the annotated program to 
produce a semantically equivalent, but faster 
basic program,  

• translation from IR2 to IR3 with generation 
of parallel code (“IR3 Gen” in the diagram),  

• IR3 optimization and IR3 level reduction 
(“IR3 Opt” in the diagram) which performs 
update-in-place analysis and restructures 
some graphs to help identify at compile tune 
those operations that can execute in-place 
and to improve chances for in-place 
operation at run time when analysis fails.  

It performs also some machine-dependent 
optimizations and defines the desired granularity of 
parallelism based on an estimate of computational 
cost and various parameters that tune analysis, 
translation from IR3 into the code of the target 
architecture (“CodeGen” in the diagram) which 
generates C++ or C# code.  

 
Fig. 2. The Cloud-Sisal-compiler and run-time support. 

The IR-representation of a Cloud-Sisal-program 
consists of a set of directed acyclic graphs IR1 
corresponding to the functions of the source Cloud-
Sisal-program.  

The IR-graph of a function is given by the triple 
G = (N, P, E, Pin, Pout), where  

• N is a set of nodes,  
• P is a set of ports,  
• E ⊆ P × P is a set of arcs,  
• Pin ⊆ P is a set of input ports of the graph G,  
• Pout⊆P is a set of output ports of the graph G. 

Each node Ni∈N corresponds to two subsets of 
ports from P: input ports Pi

in ⊆ P and output ports 
Pi

out ⊆ P. The arc Ei=(P1, P2) ∈ E, if for some i and 
j either P1 ∈ Pi

out and P2 ∈ Pj
in ∪ Pout or P1 ∈ Pin 

and P2∈Pj
in ∪ Pout. 

The nodes of graph IR1 specify operations, ports 
specify arguments and results of operations, and 
arcs specify information dependencies between 
them. Thus, the graph IR1 specifies the flow of 
computations. The graph IR1 is a hierarchical graph 
[10], since the set of vertices of N includes nodes of 
two types: simple and compositional. Compositional 
nodes contain the child graphs IR1, the 
dependencies between the ports of which are 
expressed implicitly, and denote structured 
constructions of the Cloud Sisal language, such as 
conditional expressions and loops. Each arc of graph 
IR1 is assigned the type of the value sent by it, if 
IR1 specifies a strongly typed language. Fig. 4 
shows1 the graph IR1 specifying the function “sort” 
represented in Fig. 3. 

function sort(A: array[integer]  
              returns array[integer]) 
 if size(A) <= 1 then A  
   //not necessary to order everything 
 else let /* otherwise we return  
   the result of the expression “let”, 
   which associates names with arrays 
   of values which are less, equel and  
   lardge numbers of the number A[1]  
   (numbers are selected from  
   the array A) */ 
      Less := for a in A  
           returns array of a  
           when a < A[1] end for; 
      Same := for a in A  
           returns array of a  
           when a = A[1] end for; 
      More := for a in A  
           returns array of a  
           when a > A[1] end for 
      /* the result of the expression 
      is concatenation (||)  
      of three arrays */ 
    in sort(Less)||Same||sort(More) 
 end let end if 
end function 

Fig. 3. The Cloud-function “sort”. 

1 The drawings of the IR1 graphs are generated automatically 
by the internal representation of IR1, built by the front-end 
compiler. 
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In IR1, conditional expressions are defined by a 
compositional node of Select, whose first graph is 
the control. The control graph has one output of an 
integer type, whose value determines which of the 
graphs of the compositional node Select (starting 
with the second graph) will be used to generate its 
output values. Fig. 5 shows the contents of the 
composite node Select represented in Fig. 4. Fig. 6, 
7 and 8 depict the contents of the first, second and 
third graphs of the compositional node Select, 
respectively. The literal in the graph IR1 is given by 
nodes without input ports and with one output port. 
Since IR1 is described by a hierarchy of acyclic 
graphs, the function calls in Fig. 8 are given by a 
functional-type literal with a function name that 
uniquely identifies its graph. 

 

Select

 
Fig. 4. The graph of the function “sort”. 

 

 
Fig. 5. The graph of the composite node Select. 

In the IR1 graphs, cyclic expressions are 
specified by the compositional nodes LoopPost, 
LoopPre, and Forall, which specify loops with a 
postcondition, precondition, and range, respectively. 
These compositional nodes have a constant number 
of graphs which describe the control of the loop, the 
body of the loop, and its return clause. Fig. 9 shows 
the contents of the composite Forall node in Fig. 8 
(corresponding to the array “Same”). In Fig. 10 and 
Fig. 11 shows the contents of the second (specifying 
the generation of the range) and the fourth 
(specifying the return proposition) graph of the 

composite Forall node, respectively (the first and 
third parts are empty). 

 

Size

LessOrEqual

1

 
Fig. 6. The first graph of the node Select. 

 

 
Fig. 7. The second graph of the node Select. 

 

Call

ACatenate

ACatenate

Call

sort[array[integer]] sort[array[integer]]Forall

Forall

Forall

 
Fig. 8. The third graph of the node Select. 

The internal representation of IR2 is based on 
IR1. A graph IR2 for a Cloud Sisal function is an 
object (G, VAR, συ, ≤β), where  

• G = (N, P, E, Pin, Pout) is a graph IR1,  
• VAR is a set of variables,  
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• συ is a map E → VAR which specifies the 
binding of variables to the arcs of the graph 
G,  

• ≤β is an order on N × N specifying the 
execution sequence.  

All vertices of the graph IR2 are ordered by the 
relation ≤β, which is constructed from the data 
stream. Namely, if there exists a path from node N1 
to node N2, where N1 and N2 have the same nesting 
level, then N1≤βN2. For nodes N1 and N2 that are 
contained in the same composite node (such as 
conditional expressions and loops), the relation of 
the execution sequence is determined by the 
semantics of the composite node. If N1 and N2 are 
not contained in the same composite node and there 
are no restrictions imposed by the rules of the 
composite nodes, N1=βN2

2 is assumed. 
 

 
Fig. 9. The graph of the composite node Forall. 

 

Scatter

 

Fig. 10. The second graph of the node Forall. 

For internal representations of IR2 (and IR3), 
variable and type objects are defined. The type in 
IR2 (and IR3) serves to represent the types of Sisal 
language at the back-end level of the translator. A 

2 The relation ≤β is used to fix the sequence in which the operators 
represented by nodes of IR2 must be executed. If N1≤βN2 then the 
computation of N1 must necessarily occur before calculating N2. If 
N1=βN2 then it is possible to perform operations for these nodes in any 
order, and so they can be executed in parallel. 

type contains low-level information about the object 
with which this type is associated (such as a 
machine type representation and a memory class). 

 

ReduceArray

1

Equal

1

AElement

 
Fig. 1. The fourth graph of the node Forall. 

The variables describe objects of the Cloud Sisal 
language at the level of IR2 and IR3. In the IR2 
representation, the variables are associated with the 
graph arcs (in IR3, they are the operands of the IR3 
operations). Each variable has the following 
properties: a unique identifier, a unique name, a type 
and an optional Boolean variable that is responsible 
for the “is error” property. Variables are divided 
into scalars, arrays and records. Each group of 
variables has some additional properties. Scalar 
variables additionally have size in bytes. Array 
variables additionally contain three auxiliary 
variables: a variable that describes the array 
element, the lower bound of the array, and its size. 
A record variable contains a list of variables 
describing the fields of this record. 

The IR2 representation is built for the translated 
module and is the set of IR2 graphs for the functions 
contained in this module. Fig. 12 shows the 
representation of the IR2 function of the following 
Cloud Sisal function which calculates the sign of the 
number: 

function sign(N: integer  
              returns integer) 
   if N > 0 then 1 elseif N < 0  
      then –1 else 0  
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   end if 
end function 

From the point of view of the structure, the graph 
IR2 which is obtained immediately after translation 
from IR1 to IR2 is isomorphic to the graph IR1, and 
therefore, the actual creation of nodes and arcs of 
the representation IR2 is trivial. After the graph is 
created, the mapping συ is constructed via 
annotating arcs of graph IR2 by variables. Arcs 
coming from the same port are assigned the same 
variable. Arcs coming from different ports have 
different variables. This achieves the requirement 
that the definition of each variable be unique. Later 
(after the optimizations of the IR2 presentation), the 
distribution of variables along the arcs of the graph 
can change. The final step in the construction of the 
IR2 presentation is the ordering of the vertices by 
the priority-of-execution relation ≤β. 

The IR3 representation is a mid-level imperative 
representation of the program, consisting of 
statements and expressions. It is a classical three-
address code representation with hierarchical 
blocks. In the process of translation from IR2 to 
IR3, an imperative program (a sequence of 
operators) is actually constructed for the graph of 
the IR2 calculation data flow, performing the 
calculations given by this graph. For example, the 
sign function can be represented as follows: 

  0   entry "function sign[integer]" 
(V_1(I32)  returns V_3(I32)); { 
  5      V_7(BOOL) = (0x0(I32) < 
V_1(I32)); 
  6      V_11(BOOL) = (V_1(I32) < 
0x0(I32)); 
  7      if (V_7(BOOL) == true(BOOL)) 
{ 
 11         V_3(I32) = 0x1(I32); 
          } else { 
 12        if (V_11(BOOL) == 
true(BOOL)) { 
 17          V_3(I32) = - 0x1(I32); 
            } else { 
 19          V_3(I32) = 0x0(I32); 
            } 
          } 
 20      return; 
        } 

The construction of IR3 from the graph IR2 
involves generating a sequence of operators for each 
node and placing the resulting fragment in the 
general sequence of IR3 operators. 

At present, the target platform for the cross-
compiler is the .NET platform. It is planned to 
develop a code generator that translates the IR3 

representation (see below) into the MSIL code, 
which is the assembly language of the .NET virtual 
machine. At the moment, the Cloud-Sisal-compiler 
uses the IR3 internal representation translator in the 
C# program as the code generator, which is then 
translated into the MSIL code by the C# compiler. A 
library has been developed that contains a C# class 
system that provides support for the execution 
period for Cloud-Sisal-programs. In addition, the 
user can use these classes to provide interaction 
between the Cloud Sisal program and the C# code 
(for example, to organize I / O). 
 

 
Fig. 2. The R2 presentation of the sign funtion. 

 
 
4 Conclusion 
The project of the CSS system for supporting of 
functional and parallel programming is considered.  

The CSS system is intended to provide means to 
write and debug functional programs regardless 
target architectures on low-cost devices as well as to 
translate them into optimized parallel programs, 
appropriate to the target execution platforms, and 
then execute on high performance parallel 
computers without extensive rewriting and 
debugging.  

The CSS system can open a real world of 
supercomputers for a wide range of applied 
programmers without requiring large investments in 
new computer systems and allowing to unload 
existing supercomputers from their inefficient use 
for designing and debugging parallel programs. 

Its application not only can make 
supercomputers included in the network available to 
a wide range of application programmers, but also 
can increase the reliability of the parallel programs 
being created, since it allows us to formulate 
solutions of problems on an abstract level in a 
declarative style and without binding to specific 
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computing resources, to check some correctness 
properties of annotated functional programs by 
using formal methods and to build efficient parallel 
code by using compilers. Application of the 
technology also improves the efficiency of 
supercomputers by transferring the work of 
programmers in designing and debugging programs 
from expensive supercomputers to cheaper and 
more conventional personal computers, and by 
eliminating the need for a programmer to construct, 
verify and debug a program for solving the same 
problem each time anew when transferring the 
program from one supercomputer to another is 
needed. 

The main segments of the market for the 
application of the developed methods and system 
are scientific application, the solution of national 
economic problems and training of personnel. 
Among the potential users of the system are a large 
team of scientists, designers and engineers who are 
involved in solving applied problems that impose 
increased demands on information and computing 
resources, as well as students and teachers studying 
parallel programming. The existing tendencies to 
increase the number of applied programmers 
involved in solving increasingly complex problems, 
and to the development of telecommunications 
networks and supercomputing centers, not only do 
not reduce, but substantially expand, the 
requirements for programming systems of this type, 
creating an expanding market for their mass 
application. 

At present, the CSS system consists of 
experimental versions of web interface, interpreter, 
graphic visualization/debugging subsystem, 
optimizing cross-compiler and cluster runtime. The 
current target platform for the Cloud-Sisal-compiler 
is .NET. The compiler generates the C# code. It 
allows the users to perform the experimental 
execution of Cloud-Sisal-programs and examine the 
effectiveness of optimizing transformations applied 
by the compiler.  

The work was partially supported by the Russian 
Science Foundation (grant 18-11-00118). 
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