
Employing finite-state machines in data integrity problems

ANDREY MALIKOV, VLADIMIR VORONKIN, NIKOLAY SHIRYAEV
Department of Applied Information Science

North-Caucasus Federal University
1, Pushkin Street, Stavropol
RUSSIAN FEDERATION

AMalikov@ncfu.ru

Abstract: This paper explores the issue of group integrity of tuple subsets regarding corporate integrity
constraints in relational databases. A solution may be found by applying the finite-state machine theory to
guarantee group integrity of data. We present a practical guide to coding such an automaton. After creating
SQL queries to manipulate data and control its integrity for real data domains, we study the issue of query
performance, determine the level of transaction isolation, and generate query plans.

Key-Words: database, integrity, finite-state machine, finite-state automaton, directed graph, SQL query

1 Problem formulation
The most common definition of a data model
includes a combination of three interrelated
components [1]:

1. The structural component that defines the
structural contents of objects used in the model.

2. The manipulation component, which
describes the operators that manipulate the model’s
objects.

3. The integrity component, which consists of
rules that guarantee data integrity.

In context of a relational data model, the
structural component defines a data object as an
a-nary relation built on a set of domains. Relations
contain unorganized sets of tuples, which are
identified with a primary key.

The manipulation part of the model consists of
relational calculus and relational algebra. The most
popular declarative language aid for data access is
the Structured Query Language – SQL.

The integrity component is vital for the
functioning of informational systems. Despite our
inability to fully match all qualities and properties of
real-life objects in our model, this component will
ensure that these properties are consistent and non-
contradictory.

There are three types of integrity rules in
relational databases:

1. Entity integrity – no primary key attribute of a
basic relation should have a NULL value.

2. Referential integrity – any value of a foreign
key in a relation must match the value of a primary
or candidate key in the parent relation or be
comprised solely of NULL values.

3. Corporate integrity constraints – additional
rules for data consistency defined by the data
domain.

The first two rules are already implemented in
relational DBMS quite effectively and efficiently.
Typically, these data integrity mechanisms focus on
correctness of singular tuples and data values.

Corporate integrity constraints may demand the
tuples be in some group consistency, while
remaining individually correct and strictly
correspond to the real-life object of the data domain,
for example:

1. The overall salary of employees in one
department must not exceed some limit and the
individual salaries of each employee must be in a
certain range.

2. Hiring and firing heads of departments
should only be performed in conjunction with hiring
or firing the inferior staff.

3. Managing complex objects (described by
more than one tuple) when you need to maintain a
chain of tuples, linked by binary relations of order.
For example, a table of traffic light colors should be
ordered like this: “red” then “yellow” then “green”.

There are some special cases when it comes to
organizing relations, such as managing temporal
data [2], hierarchical data [5,6] and the combination
of the two [3]. The mentioned cases bring structural
limitations to the model. That is why it is necessary
to maintain group integrity of tuples. Let us examine
each case closely:

1. Constraining temporal data, is when you need
to maintain the right chronological order. In this
case, every tuple corresponds to a state of an object
at a point in time; the subset of these tuples describe

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 287 Volume 14, 2017

the changes that the object undergoes during some
period of time. It is necessary, therefore, to make
sure that any pair of tuples is not in a temporal
contradiction, and that the full subset of tuples
creates a logically sound chain like: “state 1” before
“state 2” before “state 3” etc. As an example, let us
look at the stages a student goes through during
their study at a university: “enrolling at the
university” then “moving up a year” then “…” and
finally “graduating”.

2. Constraining hierarchical data is needed to
guarantee correct subordination of all objects. A
typical example is the chain of command in a
company from “head” to “deputy” to “assistant”.

3. Constraining temporal hierarchical data is
simply maintaing the chain of subordination
throughout the timeline.

Providing data integrity is relevant not only for
relational data models. The currently popular
NoSQL DBMS (such as MongoDB [7]) either does
not support the ACID transaction management
model or supports in only partially [10]. A database
designer interacts with simple-structure documents,
identifiable by a unique id (key-value model).
Interrelations between documents can be created
based on their nesting-levels or by using key
references, and that is why we are also considering
the issue of group integrity of documents.

We can create a binary relation for each of the
mentioned cases on the tuple-subset level, i.e. we
can compare any pair of tuples from the subset,
while the subset itself is ordered. This fact lets us
apply automata theory [11] to achieve integrity of
any subset of tuples. Introducing new mechanisms
of constraining data integrity deviates us from the
classical definition of a relation, because tuples stop
being completely independent.

2 Implementing the finite-state
machine in a relational database
Let us consider the realization of a finite state
machine to constrain group data integrity using the
Transact-SQL language in the MS SQL Server
DBMS.

The finite state machine is set as ()0, , , ,Q q FδΣ
[11] [12], where:

Q is the finite set of possible states of the
machine;
∑ is the alphabet of the automaton;

δ is a transition function, and : Q Qδ ×Σ→ ;
q0 is the start state;
F is the set of possible final states, F Q⊆ .

Let us examine the following example (without
giving up the generic nature of our model) - a finite
state machine of student statuses (fig. 1). The
program module that tracks the chronology of
students' movement is used in the information and
education hub at the North-Caucus Federal
University in Stavropol, Russia. Websites [8], [9]
provide specialized educational content for students
of over 500 schools and universities in the Stavropol
region as well as providing consistent data
processing of student movement for over 500 000
students.

The set of states consists of six elements Q={ 1 –
(enrolling); 2 – (moving up a year); 3 – (expulsion
due to graduation); 4 – (transfer from another
university); 5 – (transfer to another university); 6 –
(left to repeat the course)}. (1) and (4) are start
states and (3), (5) are final states. The alphabet ∑ in
our case, is a set of characters that matches the set of
possible stages Q. The automaton reads a word

()1 2, ,..., nw a a a= , ia ∈Σ – a time-sorted
sequence of states. The machine only accepts the
word w, if by the end of starting word the machine
ends up in an allowed state.

Fig. 1 The finite-state machine of student statuses

during their education

The transition matrix for the machine is
presented in table 1 below.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 288 Volume 14, 2017

Table 1 The transition matrix for the machine

Alphabet
Machine state

start 1 2 3 4 5 6

1 1

2 1 1 1 1

3 1 1 1 1

4 1

5 1 1 1 1

6 1 1 1 1

To implement a finite-state machine in a
relational database, one needs to create special
tables, in which the machine’s structure is coded by
at least one of the following means [4, 5, 6]:

1. The “parent-child” concept for coding the
graph’s adjacency matrix. The advantage of this
method is its versatility in modelling complex graph
structures. The weakness is lower query
performance compared to the “materialized path”
method. Another shortcoming is the difficulty of
restoring valid words via a declarative language.
However, this method is considered to be universal
and can be used to model any arbitrary finite-state
machine.

2. The materialized graph path concept. The
strengths of this method are data visualization,
which makes it easier to comprehend, because each
materialized path has a valid word attached to it, and
high performance handling graph models when
using index structures like B+tree. However, there
are two disadvantages to this method. The first is
rapid growth of relationship cardinality, which, in
the worst case, will grow exponentially, depending
on the properties of the machine. The second major
disadvantage is the inability to code cycles and
cyclical transitions – their presence would lead to a
word with infinite length. Nevertheless, this method
is the best alternative for modelling large machines
with no cycles.

3. The “ancestor-successor” concept for
coding the graph’s reachability matrix. This method
has all of the pros and cons of previously mentioned
methods.

3 Coding the machine in the parent-
child model
Let us examine the specificity of using a finite-state
machine that will check for data integrity and is
coded in the parent-child model. We will require
three tables:

1. The index-table of automaton states:
process (idPr int, name varchar(max)).

2. A table with the machine itself, two foreign
keys of which refer to process.idPr: automaton
(idPar int, idCh int). The pair (idPar int, idCh int) is
the primary key of the “automaton” table.
According to fig.1. the “automaton” table will have
20 entries; starting states are coded as (0,1) and
(0,4), final states – as (3,0) and (5,0). Here are the
contents of table “automaton” {(0,1), (1,5), (1,3),
(1,2), (1,6), (2,2), (2,3), (2,5), (2,6), (0,4), (4,2),
(4,6), (4,5), (4,3), (6,2), (6,6), (6,3), (6,5), (3,0),
(5,0)}.

3. A table of student movement. The foreign
key will refer to process.idPr: movement (idMov int,
idSchoolboy int, idPr int, dateMov date). Here,
idSchoolboy is the student’s id; dateMov is the date
of movement.

Table 2 contains an example of the “movement”
table for student idSchoolboy=1. Group integrity of
tuples is intact, because chronologically, the student
was first admitted to the university, and then moved
up a year.

Table 2 An example of the “movement” table

idMov idSchoolboy idPr dateMov

1 1 1 01.09.2014

2 1 2 01.07.2015

According to Table 2, an attempt at adding the
row (3, 1, 5, '01.09.2015') will result in success, but
trying to add (3, 1, 5, '01.06.2015') will end in
failure, because there would be a contradiction,
where the final state is between the intervening
ones.

Implementing a finite-state machine with this
model does not allow us to effectively restore the
list of acceptable words via a declarative language.
In the worst case, cyclical transitions will make this
list infinitely large (refer to fig.1.).

We will use two lemmas to judge the
acceptability of words, based on their fragments.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 289 Volume 14, 2017

Lemma 1 - Word fragment lemma
If (,)nP V E′ ′ is a path on graph (),G V E= of a

finite-state machine, V V′ ⊆ , E E′ ⊆ , iv V′ ′∈ ,

0..i n= ; and (,)mP V E′′ ′′ is a path on graph

(),G V E= of a finite-state machine V V′′′ ⊆ ,

E E′′′ ⊆ , iv V′′′ ′′′∈ , 1..i k= , so that ,
1) 1(,)nv v′ ′′′∃ , 1(,)nv v E′ ′′′ ∈ , or 0V ′ = ;

2) 1(,)kv v′′′ ′′∃ , 1(,)kv v E′′′ ′′ ∈ , or 0V ′′ = ;

then n k mP P P P= is an acceptable path on
graph G.

Consequence of lemma 1: a compound path
exists on a graph, if all component paths exist and
the condition of chronological order is met.

Lemma 2 - Lemma of the first fragment of an
expectable word:

If in lemma 1 0
nq P∈ , then P is the prefix of an

expectable word.
According to the lemmas, it is necessary and

sufficient to:
1. Check whether the new entry is allowed to

change from the old state into the new state or if it is
placed in the starting position.

2. In order to allow parallel processing of
transactions, including simultaneous access to the
same word, it is necessary to introduce the
following rule: transactions that manipulate data
(adding, editing and deleting) should block the
range of entry pairs, between which the manipulated
entry lies, according to binary ordering relationship.

Let us create a query to add a single tuple. This
will be a successful try (the initial state of the
“movement” table is presented in Table 2)

Query 1:
declare @idSchoolboy int, @dateMov dateTime,
 @idPr int
set @idSchoolboy=1
set @dateMov='01.09.2015'
set @idPr=5
set transaction isolation level serializable

insert into movement (idSchoolboy, dateMov, idPr)
select @idSchoolboy, @dateMov, @idPr
from automaton previousConnection,
 automaton nextConnection
where previousConnection.idCh=@idPr and
 previousConnection.idPar=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) and

 nextConnection.idPar=@idPr and
 nextConnection.idCh=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov>=@dateMov
 order by dateMov asc),
 case isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) when 0
 then (select top 1 idCh
 from automaton anyConnection
 where idPar=@idPr)
 else 0 end)

And now, and attempt at adding an entry, which
will fail the integrity check.

Query 2:
declare @idSchoolboy int, @dateMov dateTime,
 @idPr int
set @idSchoolboy=1
set @dateMov='01.06.2015'
set @idPr=5

set transaction isolation level serializable

insert into movement (idSchoolboy, dateMov, idPr)
select @idSchoolboy, @dateMov, @idPr
from automaton previousConnection,
 automaton nextConnection
where previousConnection.idCh=@idPr and
 previousConnection.idPar=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) and
 nextConnection.idPar=@idPr and
 nextConnection.idCh=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov>=@dateMov
 order by dateMov asc),
 case isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) when 0
 then (select top 1 idCh
 from automaton anyConnection
 where idPar=@idPr)
 else 0 end)

The main purpose of this SQL-query is to find

adjacent entries between which we are adding a new

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 290 Volume 14, 2017

item. If the machine allows the transition from a
previous state to the new one and from the new one
to the next one, then the operation will be
successful. The exceptions are trying to add a
starting or a final state. In the first case, we only
need to check if it is consistent with the following
states, and in the second – we only need to verify
consistency with states before it. If the algorithm
finds inconsistency, the operation fails.

The query consists of four parts:
1. Preparation of data to be added into the target

table:

insert into movement (idSchoolboy, dateMov, idPr)
select @idSchoolboy, @dateMov, @idPr

2. The table with data about the structure of the
automaton is opened under two pseudonyms to
search for states before and after the one in
question:

from automaton previousConnection,
 automaton nextConnection

3. Verifying that the previous sates are
acceptable or that the entry is in a starting state:

where previousConnection.idCh=@idPr and
 previousConnection.idPar=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) and

4. Verifying that the following sates are
acceptable or that the entry is in a final state. Also,
performing the consistency check for a case when
the entry we are adding is the very first one in the
group:

 nextConnection.idPar=@idPr and
 nextConnection.idCh=isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov>=@dateMov
 order by dateMov asc),
 case isnull((select top 1 idPr
 from movement b
 where b.idSchoolboy=@idSchoolboy and
 b.dateMov<=@dateMov
 order by dateMov desc),0) when 0
 then (select top 1 idCh
 from automaton anyConnection
 where idPar=@idPr)
 else 0 end)

4 The issue of query performance and
parallel transaction processing
Let us examine the issue of paralleling transactions
that alter the same word simultaneously and the
issue of implementing batch data loading
transactions.

When dealing with parallel transaction
processing, it is necessary to establish blocking
rules, which would deny access to joint characters
while the transaction of adding new characters is in
processing. Fig. 2. presents a case of parallel
processing of three transactions: tr1, tr2, and tr3,
each one trying to add one symbol to alter the word
‘abcde’. Transaction tr1 destroys the fragment ‘ab’
by creating a new one – ‘afb’. This leads to a
blocking of a range of entries with symbols ‘a’ and
‘b’. That is why any transaction that alters the
fragment ‘ab’ cannot be processed simultaneously
with tr1. Transaction tr2 must run after tr1 because
it will wait for the entry with ‘b’ to be unblocked.
Transactions tr1 and tr3 can be processed at the
same time, because they do not block shared entries.

a b c d e

f

tr1

g

tr2

h

tr3
Fig. 2 Parallel execution of transactions that alter

the same word

In the case of batch loading of data, where one

transaction attempts to add several symbols to a
word, it is important to note that new word
fragments are created with already existing symbols
as well as new ones. Fig.3. presents a situation,
where tr1 blocks the range of entries with symbols
‘a’, ‘b’, and ‘c’ by destroying fragment ‘abc’ and
creating a new one – ‘afgbhc’.

a b c d e

f

tr1

g h

Fig.3 Batch loading of several symbols into a word

To make sure that all transactions are executed

correctly, we will need a SERIALIZABLE level of
transaction isolation. It would block a range of keys
that meet the following conditions [13]:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 291 Volume 14, 2017

1. Instructions cannot read data that was just
altered by another transaction but not yet
formalized.

2. Other transactions cannot alter data that is
being read by the current transaction until it
finishes.

3. Other transactions cannot create new rows
with key values that are in the range of keys being
read by the instruction of the current transaction
until it finishes.

Analysis of queries (1, 2) shows ways of
improving performance of data processing
operations. Taking into account query predicates
and chosen fields, we will need to create the
following B+tree type indexes:

1. A clustered composite index with uniqueness
support - automaton.IX_idCh_idPar(idCh, idPar). It
will be used to search for previous states when we
know current ones and will ensure that the
composite primary key {idCh, idPar} is unique.

2. A non-clustered composite index
automaton.IX_idPar_idCh (idPar, idCh). It will be
used to search for following states when we know
the current ones.

3. A non-clustered compound index
movement.IX_idSchoolBoy_dateMov_idPr(idSchool
Boy, dateMov) with included column ipPr. It will be
used to search data by students and their movement
dates.

The relevant part of a query plan is shown in
Fig.4. It uses index searching to access data.
Analysis operators that check whether a new tuple is
consistent with previous sates are in box number
one, the ones checking consistency with the next
states are in box number two, and the ones checking
the newly added starting and final states are in box
three.

Now let us create a query to add a set of tuples
containing symbols, which will alter the initial word
(the initial state of the “movement” table is
presented in Table 2)

Query 3:
declare @movement_new table (idMov int,
 idSchoolboy int, dateMov dateTime, idPr int)
insert into @movement_new (idMov, idSchoolboy,
 dateMov, idPr) values (-1, 1, '01.10.2014', 1)
insert into @movement_new (idMov, idSchoolboy,
 dateMov, idPr) values (-2, 1, '01.10.2015', 2)
insert into @movement_new (idMov, idSchoolboy,
 dateMov, idPr) values (-3, 1, '01.11.2015', 3)
set transaction isolation level serializable;

begin transaction;
with movement_tmp (idMov, idSchoolboy,
 dateMov, idPr, isNew)

as
(select idMov, idSchoolboy, dateMov, idPr, 1
 from @movement_new
 union all
 select idMov, idSchoolboy, dateMov, idPr, 0
 from movement
 where idSchoolboy in (select distinct idSchoolboy
 from @movement_new))

insert into movement (idSchoolboy, dateMov, idPr)

select movement_tmp.idSchoolboy,
 movement_tmp.dateMov,
 movement_tmp.idPr
from automaton previousConnection,
 automaton nextConnection,
 movement_tmp
where movement_tmp.isNew=1 and
 previousConnection.idCh=movement_tmp.idPr and
 previousConnection.idPar=isnull((select top 1 idPr
 from movement_tmp b
 where b.idSchoolboy=
 movement_tmp.idSchoolboy and
 b.dateMov<=movement_tmp.dateMov and
 b.idMov<>movement_tmp.idMov
 order by dateMov desc),0) and
 nextConnection.idPar=movement_tmp.idPr and
 nextConnection.idCh=isnull((select top 1 idPr
 from movement_tmp b
 where b.idSchoolboy=
 movement_tmp.idSchoolboy and
 b.dateMov>=movement_tmp.dateMov and
 b.idMov<>movement_tmp.idMov
 order by dateMov asc),
 case isnull((select top 1 idPr
 from movement_tmp b
 where b.idSchoolboy=
 movement_tmp.idSchoolboy and
 b.dateMov<=movement_tmp.dateMov and
 b.idMov<>movement_tmp.idMov
 order by dateMov desc),0) when 0
 then (select top 1 idCh
 from automaton anyConnection
 where idPar=movement_tmp.idPr)
 else 0 end)

commit transaction;

This SQL-query is very similar to the one we

examined previously. There are several differences
between the query to add a single tuple and this one.
Firstly, we declare a table type variable to which we
add tuples with candidate-symbols to be added to a
word. The generalized table expression
movement_tmp contains a predicted result of the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 292 Volume 14, 2017

operation, which is further specified by the insert
command. We use movement_tmp.isNew as an
attribute for identifying candidate-symbols and
already existing characters. The result of insert is a
new word in the movement table – a word that was
altered only with new characters from
@movement_new which passed the automaton.

Operations of deletion and updating are
implemented similarly.

5 Coding a finite-state machine using
materialized paths
Let us look closely at using a finite-state machine, a
model of which utilizes materialized paths of a
graph in relational system. This case demands there
be no cycles, like in Fig.5. – a model of traffic light
configurations (either with two or three lights)

Fig.5 A finite-state machine of traffic light

configurations

We will need three tables in order to code this

machine in a relational database:
1. An index table of colors named color (idC int,

name varchar(max)). The table will contain { (1,
red), (2, yellow), (3, green) }.

2. A table with the machine itself, done in the
materialized path model. The key of the path
graphKey is primary for the relation. The clustered
B+tree type index is built on this key. Every byte of
it contains a value for each individual color of the

traffic light, coded from left to right: (idС int,
graphKey varchar(max)). According to Fig.5. the
automaion table will have four entries: {(1,’1’),
(2,’12’), (3,’13’), (3,’123’)}. Materialized path
values in final states are valid words; and values in
interim stages are word prefixes.

3. A traffic light table with a foreign key
referring to color.idC: trafficLight (idTL int, idC
int). In our case, idTL is an id of a traffic light and
(idTL, idC) is the primary key.

An example of the trafficLight table is given
below.

Table 3 – the traffiLight table

idTL idC

1 1

1 3

According to Table 3, attempting to add (1, 2)

will be successful, because it will create an
acceptable three-coloured traffic light idTL = 1 out
of an acceptable two-coloured light. Trying to add
(1, 3) will fail, because the system will realize that
we are trying to make a traffic light with two red
lights.

In this case, we already know all valid words and
prefixes. The integrity check will consist of just
creating a word and checking if it exists in the
automaton table. Adding new entries will be done
through a table type variable @light_new that holds
candidate-entries to be added to the trafficLight
table. Note that the system will react differently to
adding new entries than our previous example. The

Fig. 4 The relevant part of query plan to add a single tuple.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 293 Volume 14, 2017

parent-child method assumes that we can add
individual symbols that pass the machine, whereas
materialized paths allow characters to be added and
edited in groups - if all new symbols meet the
machines restrictions, then they all get in the word,
otherwise, if at least one character does not satisfy
the machine’s criteria, the entire operation is
declined.

Let us create a query to add a set of tuples as a
batch. These tuples contain characters that would
modify the existing word. Initial state of the
trafficLight table is given in Table 3.

Query 4:
declare @light_new table (idTL int, idC int)
insert into @light_new (idTL, idC) values (1, 2)
insert into @light_new (idTL, idC) values (2, 1)
insert into @light_new (idTL, idC) values (2, 3)

set transaction isolation level serializable;

begin transaction;

with trafficLight_tmp (idTL, idC)
as
(select idTL, idC
 from @light_new
union all
select a.idTL, a.idC
 from trafficLight a
 where a.idTL in (select distinct idTL
 from @light_new))

insert trafficLight
select tl_new.idTL, tl_new.idC
from @light_new tl_new,
 (select distinct idTL from trafficLight_tmp) tl,
 automaton au
where au.graphKey=
 (select top 1 (select convert(char(1),b.idC)
 from trafficLight_tmp b
 where b.idC<=a.idC and
 a.idTL=b.idTL
 order by 1 FOR xml path(''))
 from trafficLight_tmp a
 where a.idC=(select max(idC)
 from trafficLight_tmp b
 where a.idTL=b.idTL) and
 a.idTL=tl.idTL) and
 tl_new.idTL=tl.idTL

commit transaction;

In this case, an attempt at adding two traffic
lights will be successful, because we are creating a
valid tree-colored traffic light idTL = 1 out of a

valid two-colored light and adding a new two-
colored light idTL=2 with an acceptable set of
colors.

The main purpose of this SQL-query is to form
new words and prefixes out of candidate-symbols
and already existing characters, then search for this
word or prefix in the machine’s table. If it finds a
match, then it lets the symbols through; if not –
ignores them. The query consists of four parts:

1. Preparing data to be added into the target
table.

declare @light_new table (idTL int, idC int)
insert into @light_new (idTL, idC) values (1, 2)
insert into @light_new (idTL, idC) values (2, 1)
insert into @light_new (idTL, idC) values (2, 3)

2. Forming a generalized table expression with
an expected outcome of the operation.

with trafficLight_tmp (idTL, idC)
as
(select idTL, idC
 from @light_new
union all
select a.idTL, a.idC
 from trafficLight a
 where a.idTL in (select distinct idTL
 from @light_new))

3. Forming a word out of the expected result for
each object

 (select top 1 (select convert(char(1),b.idC)
 from trafficLight_tmp b
 where b.idC<=a.idC and
 a.idTL=b.idTL
 order by 1 FOR xml path(''))
 from trafficLight_tmp a
 where a.idC=(select max(idC)
 from trafficLight_tmp b
 where a.idTL=b.idTL) and
 a.idTL=tl.idTL)

4. If this word is one of the values of
automaton.graphKey, then all new symbols are
added into the target table

insert trafficLight
select tl_new.idTL, tl_new.idC
from @light_new tl_new,
 (select distinct idTL from trafficLight_tmp) tl,
 automaton au

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 294 Volume 14, 2017

Operations of deletion and updating are
implemented similarly.

6 Conclusion
This paper tackles the issue of providing data
integrity. Corporate integrity constraints often
demand tuples of certain relationships be consistent
and non-contradictory as a group. This paper
presents a new method of achieving integrity in
logically connected subsets of data in relational
databases using finite-state machines.

Implementation the automaton in flat tables can
be achieved using several models: ‘parent-child’,
‘ancestor-successor’ or with materialized paths on a
graph. The ‘parent-child’ model supports cycles in
graphs but requires recursive restoration of valid
words of the machine. This model works well when
we need to check, whether a word fragment is valid
for a given machine. In addition, it lets us add only
those symbols that are acceptable to the machine.
The ‘materialized paths on a graph’ model lets us
store and process valid words and prefixes more
clearly but does not support cycles. This model is
preferred for cases where symbols are added as a
group and when we need to verify that all new
symbols are acceptable.

We provide examples of data management
queries and integrity check queries using the
Transact SQL language in the MS SQL Server
DBMS. We looked at query performance, stated
index requirements, and determined the necessary
level of transaction isolation.

All models, data structures, and code presented
in this paper are used successfully in a number of
informational and educational outlets of the North-
Caucasus Federal University and schools in the
Stavropol Region, Russia (such as
http://eCampus.ncfu.ru, http://olymp.ncfu.ru).

References:
[1] Christopher J. Date, Relational Theory for
Computer Professionals (Theory in Practice),
O'Reilly Media, 2013.

[2] C.J. Date, Hugh Darwen, Nikos Lorentzos, Time
and Relational Theory: Temporal Databases in the
Relational Model and SQL, Morgan Kaufmann
Publishers Inc., 2014.
[3] Маликов, А.В. and Сугаков, М.И. and
Пархоменко Д.К. and Гулевский Ю.В.
“Темпоральное дерево и его использование при
концептуальном моделировании баз данных”,
Системы управления и информационные
технологии, Vol.2 No.40, 2010, pp. 99-104.
[4] Tropashko V., “Nested Intervals with Farey
Fractions”, Cornell University Library, 2004.
Available at: http://arxiv.org/html/cs/0401014.
[5] V. Tropashko, “Trees in SQL: Nested Sets and
Materialized Path”, Cornell University Library
2003. Available at:
https://communities.bmc.com/docs/DOC-9902.
[6] J. Celko, Joe Celko’s Trees and Hierarchies in
SQL for Smarties, Morgan Kaufmann Publishers
Inc. 2004.
[7] MongoDB, https://www.mongodb.org/
[8] Educational and informational hub of the North-
Caucasus Federal University
http://eCampus.ncfu.ru.
[9] Hub for university and school student
competitions, http://olymp.ncfu.ru.
[10] Tudorica, B.G. and Bucur, C., A comparison
between several NoSQL databases with comments
and notes, RoEduNet, 2011.
[11] T.Kam, T.Villa, R.K.Brayton, A. Sangiovanni-
Vincentelli Synthesis of Finite State Machines:
Functional Optimization, Kluwer Academic
Publishers, 2013.
[12] Howard Straubing, Finite Automata, Formal
Logic, and Circuit Complexity, Birkhauser Verlag,
1994.
[13] Joe Celko SQL for Smarties: Advanced SQL
Programming, Morgan Kaufmann Publishers Inc.
2010.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Andrey Malikov,

Vladimir Voronkin, Nikolay Shiryaev

E-ISSN: 2224-3402 295 Volume 14, 2017

