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Abstract: This paper explores the issue of group integrity of tuple subsets regarding corporate integrity 
constraints in relational databases. A solution may be found by applying the finite-state machine theory to 
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SQL queries to manipulate data and control its integrity for real data domains, we study the issue of query 
performance, determine the level of transaction isolation, and generate query plans. 
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1 Problem formulation 
The most common definition of a data model 
includes a combination of three interrelated 
components [1]: 

1. The structural component that defines the 
structural contents of objects used in the model. 

2. The manipulation component, which 
describes the operators that manipulate the model’s 
objects. 

3. The integrity component, which consists of 
rules that guarantee data integrity. 

In context of a relational data model, the 
structural component defines a data object as an 
a-nary relation built on a set of domains. Relations 
contain unorganized sets of tuples, which are 
identified with a primary key. 

The manipulation part of the model consists of 
relational calculus and relational algebra. The most 
popular declarative language aid for data access is 
the Structured Query Language – SQL. 

The integrity component is vital for the 
functioning of informational systems. Despite our 
inability to fully match all qualities and properties of 
real-life objects in our model, this component will 
ensure that these properties are consistent and non-
contradictory. 

There are three types of integrity rules in 
relational databases: 

1. Entity integrity – no primary key attribute of a 
basic relation should have a NULL value. 

2. Referential integrity – any value of a foreign 
key in a relation must match the value of a primary 
or candidate key in the parent relation or be 
comprised solely of NULL values.  

3. Corporate integrity constraints – additional 
rules for data consistency defined by the data 
domain.  

The first two rules are already implemented in 
relational DBMS quite effectively and efficiently. 
Typically, these data integrity mechanisms focus on 
correctness of singular tuples and data values. 

Corporate integrity constraints may demand the 
tuples be in some group consistency, while 
remaining individually correct and strictly 
correspond to the real-life object of the data domain, 
for example: 

1. The overall salary of employees in one 
department must not exceed some limit and the 
individual salaries of each employee must be in a 
certain range. 

2. Hiring and firing heads of departments 
should only be performed in conjunction with hiring 
or firing the inferior staff. 

3. Managing complex objects (described by 
more than one tuple) when you need to maintain a 
chain of tuples, linked by binary relations of order. 
For example, a table of traffic light colors should be 
ordered like this: “red” then “yellow” then “green”. 

There are some special cases when it comes to 
organizing relations, such as managing temporal 
data [2], hierarchical data [5,6] and the combination 
of the two [3]. The mentioned cases bring structural 
limitations to the model. That is why it is necessary 
to maintain group integrity of tuples. Let us examine 
each case closely: 

1. Constraining temporal data, is when you need 
to maintain the right chronological order. In this 
case, every tuple corresponds to a state of an object 
at a point in time; the subset of these tuples describe 
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the changes that the object undergoes during some 
period of time. It is necessary, therefore, to make 
sure that any pair of tuples is not in a temporal 
contradiction, and that the full subset of tuples 
creates a logically sound chain like: “state 1” before 
“state 2” before “state 3” etc. As an example, let us 
look at the stages a student goes through during 
their study at a university: “enrolling at the 
university” then “moving up a year” then “…” and 
finally “graduating”.  

2. Constraining hierarchical data is needed to 
guarantee correct subordination of all objects. A 
typical example is the chain of command in a 
company from “head” to “deputy” to “assistant”. 

3. Constraining temporal hierarchical data is 
simply maintaing the chain of subordination 
throughout the timeline.  

Providing data integrity is relevant not only for 
relational data models. The currently popular 
NoSQL DBMS (such as MongoDB [7]) either does 
not support the ACID transaction management 
model or supports in only partially [10]. A database 
designer interacts with simple-structure documents, 
identifiable by a unique id (key-value model). 
Interrelations between documents can be created 
based on their nesting-levels or by using key 
references, and that is why we are also considering 
the issue of group integrity of documents. 

We can create a binary relation for each of the 
mentioned cases on the tuple-subset level, i.e. we 
can compare any pair of tuples from the subset, 
while the subset itself is ordered. This fact lets us 
apply automata theory [11] to achieve integrity of 
any subset of tuples. Introducing new mechanisms 
of constraining data integrity deviates us from the 
classical definition of a relation, because tuples stop 
being completely independent. 
 
 
2 Implementing the finite-state 
machine in a relational database 
Let us consider the realization of a finite state 
machine to constrain group data integrity using the 
Transact-SQL language in the MS SQL Server 
DBMS. 

The finite state machine is set as ( )0, , , ,Q q FδΣ
[11] [12], where:  

Q is the finite set of possible states of the 
machine; 
∑ is the alphabet of the automaton; 

δ is a transition function, and : Q Qδ ×Σ→ ; 
q0 is the start state; 
F is the set of possible final states, F Q⊆ . 

Let us examine the following example (without 
giving up the generic nature of our model) - a finite 
state machine of student statuses (fig. 1). The 
program module that tracks the chronology of 
students' movement is used in the information and 
education hub at the North-Caucus Federal 
University in Stavropol, Russia. Websites [8], [9] 
provide specialized educational content for  students 
of over 500 schools and universities in the Stavropol 
region as well as providing consistent data 
processing of student movement for over 500 000 
students. 

The set of states consists of six elements Q={ 1 – 
(enrolling); 2 – (moving up a year); 3 – (expulsion 
due to graduation); 4 – (transfer from another 
university); 5 – (transfer to another university); 6 – 
(left to repeat the course)}. (1) and (4) are start 
states and (3), (5) are final states. The alphabet ∑ in 
our case, is a set of characters that matches the set of 
possible stages Q. The automaton reads a word 

( )1 2, ,..., nw a a a= , ia ∈Σ  – a time-sorted 
sequence of states. The machine only accepts the 
word w, if by the end of starting word the machine 
ends up in an allowed state.  

 

 
Fig. 1 The finite-state machine of student statuses 

during their education 
 

The transition matrix for the machine is 
presented in table 1 below.  
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Table 1 The transition matrix for the machine 

Alphabet 
Machine state 

start 1 2 3 4 5 6 

1 1       

2  1 1  1  1 

3  1 1  1  1 

4 1       

5  1 1  1  1 

6  1 1  1  1 
 

To implement a finite-state machine in a 
relational database, one needs to create special 
tables, in which the machine’s structure is coded by 
at least one of the following means [4, 5, 6]: 

1. The “parent-child” concept for coding the 
graph’s adjacency matrix. The advantage of this 
method is its versatility in modelling complex graph 
structures. The weakness is lower query 
performance compared to the “materialized path” 
method. Another shortcoming is the difficulty of 
restoring valid words via a declarative language. 
However, this method is considered to be universal 
and can be used to model any arbitrary finite-state 
machine.  

2. The materialized graph path concept. The 
strengths of this method are data visualization, 
which makes it easier to comprehend, because each 
materialized path has a valid word attached to it, and 
high performance handling graph models when 
using index structures like B+tree. However, there 
are two disadvantages to this method. The first is 
rapid growth of relationship cardinality, which, in 
the worst case, will grow exponentially, depending 
on the properties of the machine. The second major 
disadvantage is the inability to code cycles and 
cyclical transitions – their presence would lead to a 
word with infinite length. Nevertheless, this method 
is the best alternative for modelling large machines 
with no cycles. 

3. The “ancestor-successor” concept for 
coding the graph’s reachability matrix. This method 
has all of the pros and cons of previously mentioned 
methods. 
 
 

3 Coding the machine in the parent-
child model 
Let us examine the specificity of using a finite-state 
machine that will check for data integrity and is 
coded in the parent-child model. We will require 
three tables: 

1. The index-table of automaton states: 
process (idPr int, name varchar(max)). 

2. A table with the machine itself, two foreign 
keys of which refer to process.idPr: automaton 
(idPar int, idCh int). The pair (idPar int, idCh int) is 
the primary key of the “automaton” table. 
According to fig.1.  the “automaton” table will have 
20 entries; starting states are coded as (0,1) and 
(0,4), final states – as (3,0) and (5,0). Here are the 
contents of table “automaton” {(0,1), (1,5), (1,3), 
(1,2), (1,6), (2,2), (2,3), (2,5), (2,6), (0,4), (4,2), 
(4,6), (4,5), (4,3), (6,2), (6,6), (6,3), (6,5), (3,0), 
(5,0)}. 

3. A table of student movement. The foreign 
key will refer to process.idPr: movement (idMov int, 
idSchoolboy int, idPr int, dateMov date). Here, 
idSchoolboy is the student’s id; dateMov is the date 
of movement. 

Table 2 contains an example of the “movement” 
table for student idSchoolboy=1. Group integrity of 
tuples is intact, because chronologically, the student 
was first admitted to the university, and then moved 
up a year. 

 
Table 2 An example of the “movement” table 

idMov idSchoolboy idPr dateMov 

1 1 1 01.09.2014 

2 1 2 01.07.2015 
 

According to Table 2, an attempt at adding the 
row (3, 1, 5, '01.09.2015') will result in success, but 
trying to add (3, 1, 5, '01.06.2015') will end in 
failure, because there would be a contradiction, 
where the final state is between the intervening 
ones. 

Implementing a finite-state machine with this 
model does not allow us to effectively restore the 
list of acceptable words via a declarative language. 
In the worst case, cyclical transitions will make this 
list infinitely large (refer to fig.1.). 

We will use two lemmas to judge the 
acceptability of words, based on their fragments. 
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Lemma 1 - Word fragment lemma 
If ( , )nP V E′ ′  is a path on graph ( ),G V E=  of a 

finite-state machine, V V′ ⊆ , E E′ ⊆ , iv V′ ′∈ , 

0..i n= ; and ( , )mP V E′′ ′′  is a path on graph

( ),G V E=  of a finite-state machine V V′′′ ⊆ , 

E E′′′ ⊆ , iv V′′′ ′′′∈ , 1..i k= , so that ,  
1) 1( , )nv v′ ′′′∃ , 1( , )nv v E′ ′′′ ∈ , or 0V ′ = ;  

2) 1( , )kv v′′′ ′′∃ , 1( , )kv v E′′′ ′′ ∈ , or 0V ′′ = ;  

then n k mP P P P=    is an acceptable path on 
graph G. 

Consequence of lemma 1: a compound path 
exists on a graph, if all component paths exist and 
the condition of chronological order is met. 

Lemma 2 - Lemma of the first fragment of an 
expectable word: 

If in lemma 1 0
nq P∈ , then P is the prefix of an 

expectable word.  
According to the lemmas, it is necessary and 

sufficient to: 
1. Check whether the new entry is allowed to 

change from the old state into the new state or if it is 
placed in the starting position. 

2. In order to allow parallel processing of 
transactions, including simultaneous access to the 
same word, it is necessary to introduce the 
following rule: transactions that manipulate data 
(adding, editing and deleting) should block the 
range of entry pairs, between which the manipulated 
entry lies, according to binary ordering relationship. 

Let us create a query to add a single tuple. This 
will be a successful try (the initial state of the 
“movement” table is presented in Table 2) 

Query 1: 
declare @idSchoolboy int, @dateMov dateTime, 
            @idPr int 
set @idSchoolboy=1 
set @dateMov='01.09.2015' 
set @idPr=5 
set transaction isolation level serializable 
 
insert into movement (idSchoolboy, dateMov, idPr) 
select @idSchoolboy, @dateMov, @idPr 
from automaton previousConnection,  
         automaton nextConnection 
where previousConnection.idCh=@idPr and  
   previousConnection.idPar=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov<=@dateMov  
          order by dateMov desc),0) and 

   nextConnection.idPar=@idPr and  
   nextConnection.idCh=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov>=@dateMov  
          order by dateMov asc), 
          case isnull((select top 1 idPr  
                 from movement b  
                 where b.idSchoolboy=@idSchoolboy and 
                            b.dateMov<=@dateMov  
                 order by dateMov desc),0) when 0  
           then (select top 1 idCh  
                    from automaton anyConnection  
                    where idPar=@idPr)  
           else 0 end) 
 

And now, and attempt at adding an entry, which 
will fail the integrity check. 

Query 2: 
declare @idSchoolboy int, @dateMov dateTime, 
            @idPr int 
set @idSchoolboy=1 
set @dateMov='01.06.2015' 
set @idPr=5 
 
set transaction isolation level serializable 
 
insert into movement (idSchoolboy, dateMov, idPr) 
select @idSchoolboy, @dateMov, @idPr 
from automaton previousConnection,  
         automaton nextConnection 
where previousConnection.idCh=@idPr and  
   previousConnection.idPar=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov<=@dateMov  
          order by dateMov desc),0) and 
   nextConnection.idPar=@idPr and  
   nextConnection.idCh=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov>=@dateMov  
          order by dateMov asc), 
          case isnull((select top 1 idPr 
                 from movement b  
                 where b.idSchoolboy=@idSchoolboy and 
                            b.dateMov<=@dateMov  
                 order by dateMov desc),0) when 0  
          then (select top 1 idCh  
                   from automaton anyConnection  
                   where idPar=@idPr) 
          else 0 end) 

 
The main purpose of this SQL-query is to find 

adjacent entries between which we are adding a new 
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item. If the machine allows the transition from a 
previous state to the new one and from the new one 
to the next one, then the operation will be 
successful. The exceptions are trying to add a 
starting or a final state. In the first case, we only 
need to check if it is consistent with the following 
states, and in the second – we only need to verify 
consistency with states before it. If the algorithm 
finds inconsistency, the operation fails. 

The query consists of four parts: 
1. Preparation of data to be added into the target 

table: 
 
insert into movement (idSchoolboy, dateMov, idPr) 
select @idSchoolboy, @dateMov, @idPr 
 

2. The table with data about the structure of the 
automaton is opened under two pseudonyms to 
search for states before and after the one in 
question: 
 
from automaton previousConnection, 
         automaton nextConnection 
 

3. Verifying that the previous sates are 
acceptable or that the entry is in a starting state: 
 
where previousConnection.idCh=@idPr and  
   previousConnection.idPar=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov<=@dateMov  
          order by dateMov desc),0) and 
 

4. Verifying that the following sates are 
acceptable or that the entry is in a final state. Also, 
performing the consistency check for a case when 
the entry we are adding is the very first one in the 
group: 
 
   nextConnection.idPar=@idPr and  
   nextConnection.idCh=isnull((select top 1 idPr 
          from movement b  
          where b.idSchoolboy=@idSchoolboy and 
                     b.dateMov>=@dateMov  
          order by dateMov asc), 
          case isnull((select top 1 idPr  
                 from movement b  
                 where b.idSchoolboy=@idSchoolboy and 
                            b.dateMov<=@dateMov  
                 order by dateMov desc),0) when 0  
          then (select top 1 idCh  
                   from automaton anyConnection  
                   where idPar=@idPr) 
          else 0 end) 

4 The issue of query performance and 
parallel transaction processing 
Let us examine the issue of paralleling transactions 
that alter the same word simultaneously and the 
issue of implementing batch data loading 
transactions. 

When dealing with parallel transaction 
processing, it is necessary to establish blocking 
rules, which would deny access to joint characters 
while the transaction of adding new characters is in 
processing. Fig. 2. presents a case of parallel 
processing of three transactions: tr1, tr2, and tr3, 
each one trying to add one symbol to alter the word 
‘abcde’. Transaction tr1 destroys the fragment ‘ab’ 
by creating a new one – ‘afb’. This leads to a 
blocking of a range of entries with symbols ‘a’ and 
‘b’. That is why any transaction that alters the 
fragment ‘ab’ cannot be processed simultaneously 
with tr1. Transaction tr2 must run after tr1 because 
it will wait for the entry with ‘b’ to be unblocked. 
Transactions tr1 and tr3 can be processed at the 
same time, because they do not block shared entries. 

a b c d e

f

tr1

g

tr2

h

tr3  
Fig. 2 Parallel execution of transactions that alter 

the same word 
 
In the case of batch loading of data, where one 

transaction attempts to add several symbols to a 
word, it is important to note that new word 
fragments are created with already existing symbols 
as well as new ones. Fig.3. presents a situation, 
where tr1 blocks the range of entries with symbols 
‘a’, ‘b’, and ‘c’ by destroying fragment ‘abc’ and 
creating a new one – ‘afgbhc’. 

a b c d e

f

tr1

g h

 
Fig.3 Batch loading of several symbols into a word 

 
To make sure that all transactions are executed 

correctly, we will need a SERIALIZABLE level of 
transaction isolation. It would block a range of keys 
that meet the following conditions [13]: 
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1. Instructions cannot read data that was just 
altered by another transaction but not yet 
formalized. 

2. Other transactions cannot alter data that is 
being read by the current transaction until it 
finishes.  

3. Other transactions cannot create new rows 
with key values that are in the range of keys being 
read by the instruction of the current transaction 
until it finishes.  

Analysis of queries (1, 2) shows ways of 
improving performance of data processing 
operations.  Taking into account query predicates 
and chosen fields, we will need to create the 
following B+tree type indexes: 

1. A clustered composite index with uniqueness 
support - automaton.IX_idCh_idPar(idCh, idPar). It 
will be used to search for previous states when we 
know current ones and will ensure that the 
composite primary key {idCh, idPar} is unique. 

2. A non-clustered composite index 
automaton.IX_idPar_idCh (idPar, idCh). It will be 
used to search for following states when we know 
the current ones.  

3. A non-clustered compound index 
movement.IX_idSchoolBoy_dateMov_idPr(idSchool
Boy, dateMov) with included column ipPr. It will be 
used to search data by students and their movement 
dates. 

The relevant part of a query plan is shown in 
Fig.4. It uses index searching to access data. 
Analysis operators that check whether a new tuple is 
consistent with previous sates are in box number 
one, the ones checking consistency with the next 
states are in box number two, and the ones checking 
the newly added starting and final states are in box 
three. 

Now let us create a query to add a set of tuples 
containing symbols, which will alter the initial word 
(the initial state of the “movement” table is 
presented in Table 2) 

Query 3: 
declare @movement_new table (idMov int, 
          idSchoolboy int, dateMov dateTime, idPr int)  
insert into @movement_new (idMov, idSchoolboy, 
          dateMov, idPr) values (-1, 1, '01.10.2014', 1) 
insert into @movement_new (idMov, idSchoolboy, 
          dateMov, idPr) values (-2, 1, '01.10.2015', 2) 
insert into @movement_new (idMov, idSchoolboy, 
          dateMov, idPr) values (-3, 1, '01.11.2015', 3) 
set transaction isolation level serializable; 
 
begin transaction; 
with movement_tmp (idMov, idSchoolboy, 
                                   dateMov, idPr, isNew) 

as 
(select idMov, idSchoolboy, dateMov, idPr, 1 
   from @movement_new 
 union all 
 select idMov, idSchoolboy, dateMov, idPr, 0 
   from movement  
   where idSchoolboy in (select distinct idSchoolboy 
                                        from @movement_new)) 
 
insert into movement (idSchoolboy, dateMov, idPr) 
 
select movement_tmp.idSchoolboy, 
          movement_tmp.dateMov, 
          movement_tmp.idPr 
from automaton previousConnection,  
         automaton nextConnection,  
         movement_tmp 
where movement_tmp.isNew=1 and 
 previousConnection.idCh=movement_tmp.idPr and  
 previousConnection.idPar=isnull((select top 1 idPr 
    from movement_tmp b  
    where b.idSchoolboy= 
                              movement_tmp.idSchoolboy and 
               b.dateMov<=movement_tmp.dateMov and 
               b.idMov<>movement_tmp.idMov 
    order by dateMov desc),0) and 
 nextConnection.idPar=movement_tmp.idPr and  
 nextConnection.idCh=isnull((select top 1 idPr 
    from movement_tmp b  
    where b.idSchoolboy= 
                              movement_tmp.idSchoolboy and 
               b.dateMov>=movement_tmp.dateMov and 
               b.idMov<>movement_tmp.idMov  
    order by dateMov asc), 
    case isnull((select top 1 idPr 
      from movement_tmp b  
      where b.idSchoolboy= 
                              movement_tmp.idSchoolboy and 
               b.dateMov<=movement_tmp.dateMov and 
               b.idMov<>movement_tmp.idMov 
      order by dateMov desc),0) when 0  
    then (select top 1 idCh  
             from automaton anyConnection  
             where idPar=movement_tmp.idPr) 
    else 0 end) 
 
commit transaction; 

 
This SQL-query is very similar to the one we 

examined previously. There are several differences 
between the query to add a single tuple and this one. 
Firstly, we declare a table type variable to which we 
add tuples with candidate-symbols to be added to a 
word. The generalized table expression 
movement_tmp contains a predicted result of the 
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operation, which is further specified by the insert 
command. We use movement_tmp.isNew as an 
attribute for identifying candidate-symbols and 
already existing characters. The result of insert is a 
new word in the movement table – a word that was 
altered only with new characters from 
@movement_new  which passed the automaton.  

Operations of deletion and updating are 
implemented similarly. 

 
 

5 Coding a finite-state machine using 
materialized paths 
Let us look closely at using a finite-state machine, a 
model of which utilizes materialized paths of a 
graph in relational system. This case demands there 
be no cycles, like in Fig.5. – a model of traffic light 
configurations (either with two or three lights) 

  
Fig.5 A finite-state machine of traffic light 

configurations 
 
We will need three tables in order to code this 

machine in a relational database: 
1. An index table of colors named color (idC int, 

name varchar(max)). The table will contain { (1, 
red), (2, yellow), (3, green) }. 

2. A table with the machine itself, done in the 
materialized path model. The key of the path 
graphKey is primary for the relation. The clustered 
B+tree type index is built on this key. Every byte of 
it contains a value for each individual color of the 

traffic light, coded from left to right: (idС int, 
graphKey varchar(max)). According to Fig.5. the 
automaion table will have four entries: {(1,’1’), 
(2,’12’), (3,’13’), (3,’123’)}. Materialized path 
values in final states are valid words; and values in 
interim stages are word prefixes. 

3. A traffic light table with a foreign key 
referring to color.idC: trafficLight (idTL int, idC 
int). In our case, idTL is an id of a traffic light and 
(idTL, idC) is the primary key. 

An example of the trafficLight table is given 
below. 

 
Table 3 – the traffiLight table 

idTL idC 

1 1 

1 3 
 
According to Table 3, attempting to add (1, 2) 

will be successful, because it will create an 
acceptable three-coloured traffic light idTL = 1 out 
of an acceptable two-coloured light. Trying to add 
(1, 3) will fail, because the system will realize that 
we are trying to make a traffic light with two red 
lights. 

In this case, we already know all valid words and 
prefixes. The integrity check will consist of just 
creating a word and checking if it exists in the 
automaton table. Adding new entries will be done 
through a table type variable @light_new that holds 
candidate-entries to be added to the trafficLight 
table. Note that the system will react differently to 
adding new entries than our previous example. The 

 
Fig. 4 The relevant part of query plan to add a single tuple.  
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parent-child method assumes that we can add 
individual symbols that pass the machine, whereas 
materialized paths allow characters to be added and 
edited in groups - if all new symbols meet the 
machines restrictions, then they all get in the word, 
otherwise, if at least one character does not satisfy 
the machine’s criteria, the entire operation is 
declined.  

Let us create a query to add a set of tuples as a 
batch. These tuples contain characters that would 
modify the existing word. Initial state of the 
trafficLight table is given in Table 3. 

Query 4: 
declare @light_new table (idTL int, idC int)  
insert into @light_new (idTL, idC) values (1, 2) 
insert into @light_new (idTL, idC) values (2, 1) 
insert into @light_new (idTL, idC) values (2, 3) 
 
set transaction isolation level serializable; 
 
begin transaction; 
 
with trafficLight_tmp (idTL, idC) 
as 
(select idTL, idC 
  from @light_new 
union all 
select a.idTL, a.idC 
  from trafficLight a 
  where a.idTL in (select distinct idTL  
                              from @light_new)) 
 
insert trafficLight 
select tl_new.idTL, tl_new.idC 
from @light_new tl_new,  
        (select distinct idTL from trafficLight_tmp) tl, 
        automaton au 
where au.graphKey= 
        (select top 1 (select convert(char(1),b.idC) 
                              from trafficLight_tmp b  
                              where b.idC<=a.idC and  
                                         a.idTL=b.idTL  
                              order by 1 FOR xml path('')) 
         from trafficLight_tmp a 
         where a.idC=(select max(idC)  
                               from trafficLight_tmp b  
                               where a.idTL=b.idTL) and 
                   a.idTL=tl.idTL) and 
         tl_new.idTL=tl.idTL 
 
commit transaction; 
 

In this case, an attempt at adding two traffic 
lights will be successful, because we are creating a 
valid tree-colored traffic light idTL = 1 out of a 

valid two-colored light and adding a new two-
colored light idTL=2 with an acceptable set of 
colors. 

The main purpose of this SQL-query is to form 
new words and prefixes out of candidate-symbols 
and already existing characters, then search for this 
word or prefix in the machine’s table. If it finds a 
match, then it lets the symbols through; if not – 
ignores them. The query consists of four parts: 

1. Preparing data to be added into the target 
table. 

 
declare @light_new table (idTL int, idC int)  
insert into @light_new (idTL, idC) values (1, 2) 
insert into @light_new (idTL, idC) values (2, 1) 
insert into @light_new (idTL, idC) values (2, 3) 
 

2. Forming a generalized table expression with 
an expected outcome of the operation. 
 
with trafficLight_tmp (idTL, idC) 
as 
(select idTL, idC 
  from @light_new 
union all 
select a.idTL, a.idC 
  from trafficLight a 
  where a.idTL in (select distinct idTL  
                              from @light_new)) 
 

3. Forming a word out of the expected result for 
each object 
 
        (select top 1 (select convert(char(1),b.idC) 
                              from trafficLight_tmp b  
                              where b.idC<=a.idC and  
                                         a.idTL=b.idTL  
                              order by 1 FOR xml path('')) 
         from trafficLight_tmp a 
         where a.idC=(select max(idC)  
                               from trafficLight_tmp b  
                               where a.idTL=b.idTL) and 
                   a.idTL=tl.idTL) 
 

4. If this word is one of the values of 
automaton.graphKey, then all new symbols are 
added into the target table 

 
insert trafficLight 
select tl_new.idTL, tl_new.idC 
from @light_new tl_new,  
        (select distinct idTL from trafficLight_tmp) tl, 
        automaton au 
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Operations of deletion and updating are 
implemented similarly. 

 
 

6 Conclusion 
This paper tackles the issue of providing data 
integrity. Corporate integrity constraints often 
demand tuples of certain relationships be consistent 
and non-contradictory as a group. This paper 
presents a new method of achieving integrity in 
logically connected subsets of data in relational 
databases using finite-state machines.  

Implementation the automaton in flat tables can 
be achieved using several models: ‘parent-child’, 
‘ancestor-successor’ or with materialized paths on a 
graph. The ‘parent-child’ model supports cycles in 
graphs but requires recursive restoration of valid 
words of the machine. This model works well when 
we need to check, whether a word fragment is valid 
for a given machine. In addition, it lets us add only 
those symbols that are acceptable to the machine. 
The ‘materialized paths on a graph’ model lets us 
store and process valid words and prefixes more 
clearly but does not support cycles. This model is 
preferred for cases where symbols are added as a 
group and when we need to verify that all new 
symbols are acceptable. 

We provide examples of data management 
queries and integrity check queries using the 
Transact SQL language in the MS SQL Server 
DBMS. We looked at query performance, stated 
index requirements, and determined the necessary 
level of transaction isolation.  

All models, data structures, and code presented 
in this paper are used successfully in a number of 
informational and educational outlets of the North-
Caucasus Federal University and schools in the 
Stavropol Region, Russia (such as 
http://eCampus.ncfu.ru, http://olymp.ncfu.ru). 
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