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Abstract: In this paper, based on differential flatness theory, the motion control of a wheeled mobile robot is
studied. However, a flatness-based controller is designed to ensure the trajectory tracking. Secondly, this paper
deal about the complex chaotic behaviors which can appear in the dynamic trajectory of an mobile robot. Different
mathematical tools have been used such as flatness control technique and non linear chaotic system. Simulation
results for kinematic controller is presented to demonstrate the effectiveness of this approach.
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1 Introduction
The control of mobile robots has been the subject of
much research in recent years, due to increasingly fre-
quent use in dangerous or inaccessible environments
where human beings can hardly intervene. For au-
tonomous mobile robotics, path generation and execu-
tion is one of the most important tasks. Path planning
is the process of generating a sequence of trajectory
deriving from the assigned task to the mobile robot to
be able to perform it.

The general problem is reduced in most cases to
move the robot in a known or unknown environment
[1], while avoiding any fixed or mobile obstacles, to
carry out a prescribed task. It follows that it is neces-
sary to be able to define a strategy of movement (path
planning) [2], then to execute the prescribed displace-
ment.

The robot controller, which is a major component,
has received a lot of attention from researchers. This
is why it has a direct impact on their robustness and
could prevent their deployment and applicability in
several domains [3, 4]. Many control techniques have
been proposed for modern robots including the classi-
cal PID, feedback linearization [5, 6], inverse dynam-
ics, model predictive control [7], adaptive fuzzy-logic
control [8] etc.

Up to now, there has been no experimental work

that has treated the chaotic phenomena in the robot
trajector.y On the other hand, the interaction between
the theory of chaos and mobile robotics has been only
recently studied, as can be seen in [9], for the genera-
tion of the unpredictable trajectory for the robot. For
example, integration between a chaotic system and the
robot’s motion system, dynamic systems, is used to
impart chaotic behavior to a robot like the Arnold sys-
tem in [10]. An extension of this strategy, applying
various chaotic systems on integration with the kine-
matics model of robot, can be found in [11]. In [12],
the author proposed an open loop control approach to
produce unpredictable trajectories so that to control
the velocities of the robot’s wheels the state variables
of the Lorenz chaotic system are used.But there has
been no research work to solve the chaotic phenom-
ena problem that can appear in the robot trajectory.

In this context we propose to use a controller to
solve this problem and to facilitate the implementa-
tion of our work in a real mobile robot. One strat-
egy of nonlinear control gaining popularity among
researchers is the differential flatness based control
[13, 14]. It has been investigated to control the flex-
ible robots [15,16], the mobile robots [17], the under-
actuated planar robots [18], and so on. Differential
flatness is known to be well suited for the problem
of trajectory generation and tracking [19]. With this
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strategy, the trajectories (position, velocity and accel-
eration ) of a nonlinear system can be easily interpo-
lated by defining a smooth curve with initial and fi-
nal conditions. The control variables and state can be
reconstructed without having to integrate the system
equations [14]. Thus, we utilize the flatness control
method to solve the problem of path planning and the
chaotic phenomena , which can appear in the robot
trajectory, and we ensure that the mobile robot tracks
this trajectory.

This paper is organized as follows. In Section
2, we have explained the basic description model of
robot. Basic definition and control strategy of differ-
ential flatness theory is presented in section 3. We
have described the kinematic system and its flatness
property and we have proposed the control law to
solve the trajectory tracking problem. In Section 4, we
have presented the chaotic phenomena and the control
law to solve the trajectory problem. We have given the
concluding remarks in section 5.

2 Model description

The mobile robot considered in this work is a differen-
tial motion robot with two degrees of freedom, com-
posed by two independent active wheels, and a third
passive wheel (a kind of standard free-wheel). This
type of robot represents an important compromise be-
tween the simplicity of the control and the degrees of
freedom that allow the robot to accomplish the mobil-
ity requirements [20].

The robot structure is considered as a rigid body
operating on the horizontal plane(figure 1).Its kine-
matic model can be described as a differential system
comprising of two control parameters v and ω which
represent respectively the values of linear and angu-
lar speeds. The state equation of the wheeled mobile
robot is written as follows:

 ẋ(t)
ẏ(t)

θ̇(t)

 =

 cos θ(t) 0
sin θ(t) 0
0 1

( v(t)
ω(t)

)
(1)

where x and y are the position of the robot and θ is
the orientation angle of the robot. The robot displace-
ment control can be performed by supplying the lin-
ear and angular velocities of the body, v(t) and ω(t),
called control variables or input.

Figure 1: Geometry of the mobile robot on the Carte-
sian plane

3 Flatness control method
Flatness is a characteristic or property of a particular
system in which all solutions of the system can be pa-
rameterized by a finite number of functions and their
derivatives [21]. For the analysis and design of con-
trollers for nonlinear systems with this character, this
mathematical property is extensively used.

3.1 Flatness theory
Differential flatness is a property of control systems
Dynamics, Fliess et al. [22]. Differential flatness, pro-
vides a unified analysis framework for trajectory plan-
ning and control of nonlinear systems. This is particu-
larly useful for non-linear sub-actuated systems where
it is difficult to plan and analytically design possi-
ble trajectories. The necessary condition for a control
system to be differentially flat is that it must be con-
trolled.

From a control perspective, a good explanation of
differential flatness for any nonlinear systems of the
form,

ẋ = f (x, u) ;x ∈ Rn, u ∈ Rm (2)

the system can be stated to be differentially flat if and
only if there exists a finite set of independent vari-
ables, equal to the number of inputs, called flat outputs
y = [y1, ..., ym]T in such a way that :

y = y
(
x, u, u̇, ..., u(p)

).
(3)

x = x(y, ẏ, ÿ, ..., y(r)) (4)

u = u(y, ẏ, ÿ, ..., y(q)) (5)
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Moreover, for a flat system, there is an invert-
ible input and state transformations that can trans-
form non-linear systems into linear canonical forms
(controllable linear chain of integrators). An arbi-
trary trajectory for flat outputs corresponds to the orig-
inal state of the system of reference trajectories.This
makes planning possible in the flat output domain. In
addition, the linear feedback of the control can be de-
signed in the field of linear flat outputs by closing the
loop on errors in the flat outputs and their derivatives.

3.2 Flatness control strategy
The Control design and trajectory planning for flat
systems are relatively easy because the trajectory can
be defined in terms of flat outputs while the required
control input can be obtained using the flatness prop-
erty.

In order to prove how the kinematic model of
the mobile robot is differentially flat, we choose the
Cartesian position of the robot center (x, y) as the flat
outputs. To design a diffeomorphism between flat out-
puts and their derivatives and original states, the in-
put prolongation is utilized. Prolongation is a crucial
method used where the vector representing the state
is extended by some system parameters which is used
to describe a particular system as a differentially flat
system. A very common prolongation way means is
the input prolongation where the input also becomes
a state. This property is utilized in optimal trajectory
generation and tracking control laws.

Now, on performing one prolongation of v as an
additional state, we describe the prolonged systems
by: 

ẋ = v cos θ
ẏ = v sin θ
v̇ = Ū1

θ̇ = Ū2

(6)

Here, Ū1, Ū2 are the new inputs for the prolonged
system that satisfy:

Ū1 = v̇
Ū2 = ω

(7)

By choosing the flat outputs

Fo = [Fo1, Fo2]
T = [x, y]T (8)

All the inputs and the state variables can be ex-
pressed in terms of flat outputs and their derivatives.
With (x, y) = (Fo1, Fo2)

v =

√
Ḟ o1

2
+ Ḟ o2

2
, θ = arctan

(
Ḟ o2

Ḟ o1

)
, (9)

The inputs Ū1, Ū2 can be defined as follows:

Ū1 = v̇ =
Ḟ o1F̈ o1 + Ḟ o2F̈ o2√

Ḟ o1
2

+ Ḟ o2
2

(10)

Ū2 = θ̇ =
Ḟ o1F̈ o2 + F̈ o1Ḟ o2

Ḟ o1
2

+ Ḟ o2
2 (11)

By differentiating the flat outputs up to an in-
put appears, an invertible relation between inputs and
higher derivatives of the flat outputs can be equiva-
lently build from equation 10 and equation 11 as de-
scribed follows:(

F̈ o1
F̈ o2

)
= D

(
Ū1

Ū2

)
(12)

Where

D =

(
cos θ −v sin θ
sin θ v cos θ

)
(13)

the inputs are choosing as

(
Ū1

Ū2

)
= D−1V =

1

v

(
v cos θ v sin θ
− sin θ cos θ

)
V

(14)
Then equation 12 can be written as

F̈ o = V. (15)

The reference trajectory must allow the robot
to move, from an initial position with coordinates
(x, y) at time t=0 to a final position with coordinates
(xf, yf) at time t = 10 s, with minimum of energy
and also avoid some static circular obstacles. These
obstacles are defined by the following equation:

Obi = (x− xr)2 + (y − yr)2 −R (16)

Where xrandyr are the coordinates of the center of
the circle and r denotes the radius, i is the number of
obstacles.

The constraint which means that the mobile robot
avoids the obstacle is defined as follows:

Ob1(x, y) = (x− 2)2 + (y − 2)2 − 1 ≥
0 (27)

Ob2(x, y) = (x− 6)2 + (y − 3)2 − 1 ≥
0 (28)

Ob3(x, y) = (x− 8)2 + (y − 5)2 − 1 ≥
0 (29)

Ob4(x, y) = (x− 6)2 + (y − 6)2 − 1 ≥
0 (29)

Ob5(x, y) = (x− 2)2 + (y − 6)2 − 1 ≥
0 (29)
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To meet these objectives, the problem of refer-
ence trajectory generation is formulated as an opti-
mization problem in the following way:

min
√
ẋ2 + ẏ2 (17)

Obi ≥ 0 (18)

This problem of optimization is solved by the
most efficient method based on the flatness and the
B-spline function [23].

x(0) = 0 x(10) = 9
y(0) = 0 x(10) = 9
θ(0) = 0 θ(10) = 0
v(0) = 0 v(10) = 0

(19)

Figure 2: Simulation results of reference and real tra-
jectories of x position

Figure 3: Simulation results of reference and the real
trajectories of y position
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Figure 4: Simulation results of the control input U1

Figure 5: Simulation results of the control input U2
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Figure 6: Simulation results of optimal trajectory with
obstacle avoidance

In Figure 2and 3, we show that the flatness control
input defined by equation 10 and equation 11 permits
a good tracking of the desired trajectory for the mobile
Robot. Therefore, the flatness property is considered
as a powerful tool for path planning and tracking tra-
jectory. As depicted in Figure6, the mobile robot can
easily avoid the defined static obstacle.

4 Chaotic phenomena

Deterministic chaos has been employed for develop-
ing consumer electronic products and intelligent in-
dustrial systems.

4.1 Chaos theory
During the 20th century, three great revolutions oc-
curred: quantum mechanics, relativity and chaos. The
theory of chaos, also called dynamical systems theory,
is the study of unstable aperiodic behavior in deter-
ministic dynamical systems, which show a sensitive
dependence on initial conditions [24].

Chaos theory has been drawing a great deal of
attention in the scientific community for almost two
decades. Chaos is a very interesting phenomenon in
nonlinear dynamical systems, which has been inten-
sively studied during the last decades and used in sev-
eral possible commercial applications [25].

The Lorenz system has become one of paradigms
in the research of chaotic systems. Lorenz chaotic sys-
tem is utilized for the investigation. The dynamical
equations of Lorenz system is given as follows:


Ẋ1 = −10X1 + 10.X2

Ẋ2 = 28X1 −X2 −X1.X3

Ẋ3 = −8
3X3 +X1.X2

(20)

The implementation of this dynamic system is
presented in figure 7.

Figure 7: Lorenz chaotic system

4.2 Chaos analysis in mobile robot
The most applications of chaos in robotics are classi-
fied into two types: chaos synthesis and chaos analy-
sis ; chaos synthesis in robotics is defined as the ap-
plication of chaotic systems for motion planning of
autonomous robots and entails the generation of artifi-
cial chaos to make different mobile robots accomplish
specific tasks [26], whereas chaos analysis implies
the observation of chaotic behaviour in autonomous
robots. Therefore, controlling the chaotic behavior of
the mobile robot becomes a worthwhile endeavor.

In this subsection, based on Lorenz’s chaotic sys-
tem, we give chaotic behavior to the mobile robot.
Subsequently, we use the control technique based on
differential flatness to control this chaotic behavior in
order to allow the robot to complete its trajectory, de-
spite its behavior, and to achieve its objective.

By using the dynamic equation of Lorenz system
introduced in equation 20, we will find robot equation
of motion as follows:

Ẋ1 = −10X1 + 10.X2

Ẋ2 = 28X1 −X2 −X1.X3

Ẋ3 = −8
3X3 +X1.X2

ẋ = v cos(X1)
ẏ = v sin(X1)

(21)
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The proposed system described in equation 21
generates an unpredictable path by giving a chaotic
behavior of the mobile robot with two independent ac-
tive wheels.

Figure 8: Chaotic phenomena for mobile robot

As depicted in figure 8, the sensitivity to initial
conditions makes the trajectory of robot extremely un-
predictable. Then with this behavior the robot can not
reach its objective. So moving from an initial posi-
tion to an final position is almost impossible with this
behavior.

In this context, control over flatness may be a
good solution to solve this problem. We adopt the
technique used in Section 3 to restore the control of
the new kinematic system combined with the Lorenz
chaotic system. In this case, we choose θ = X1

Figure 9: Flatness control of x chaotic trajectory of
the mobile robot

Figure 10: Flatness control of y chaotic trajectory of
the mobile robot
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Figure 11: Flatness control of x-y chaotic trajectory
of the mobile robot with obstacle avoidance
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Figure 12: Flatness control of second chaotic trajec-
tory of the mobile robot

5 Discussion
The figures 2, 3, 4 and 5 shows the effectiveness of the
closed-loop flatness control which allows the mobile
robot to follow the desired reference trajectory prop-
erly. By ensuring a good tracking of the trajectory the
mobile robot can move by avoiding the static obstacles
with minimum of energy and by choosing the optimal
trajectory .

Figure 7 shows the behavior of the Lorenz chaotic
system in the cartesian plan.

In figures 9, 10 and 12 we present the good effete-
ness of chaotic trajectory tracking , and we ensure that
the robot reaches its desired trajectory as well. Even
more, as depicted in figure 11 we can show the robust-
ness of the control strategy with chaotic phenomena
and in presence of obstacles.

Next, some endeavours for uncovering the chaotic
behaviour of robots were presented. Chaos can be em-
ployed for analyzing robotics arms and chaos quanti-
fiers can be used for analyzing chaotic dynamics in
robot-environment interaction.

6 Conclusion
This article has described the path planning and the
flatness based tracking control of a wheeled mobile
robot. The flatness based approach to trajectory con-
trol and optimal trajectory tracking offers a fast al-
ternative to classical control for such robots. Having
determined the flat output of the mobile robot, trajec-
tory control was determined with reasonable accuracy.
Secondly, we have presented a chaotic phenomenon
tuned to the behavior of the autonomous mobile robot,
so we solved the problem related to this phenomenon
using the differential flatness method.

In recent years, the discovery of chaos has at-
tracted much interest among investigators. Determin-
istic chaos leads to a quantitative analysis, which is the
essence of science. Despite several efforts to find ev-
idence of chaotic dynamics in robotics, useful appli-
cations of deterministic chaos in robotics have rarely
been studied.
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