

Common Errors Related to Recursive Functions and Visual Debugger
Assistance

RAMI RASHKOVITS, LAVY ILANA

Information Systems, Max Stern Yezreel Valley College
ISRAEL

ramir@yvc.ac.il; ilanal@yvc.ac.il

Abstract: - Recursive Functions are one of the difficult concepts learned by computer science (cs) students, and
applying a correct recursive solution to a problem is even more difficult. The difficulty lies in the recursion
concept, in which the solution to a given problem is based on the solution of the same problem with smaller
size. Humans do not usually think in such a way, and they prefer to solve problem iteratively whenever
possible. However, many problems are better solved recursively in terms of simplicity and complexity, hence
developing recursive thinking is crucial for programmers. During their studies, students learn this issue using
metaphors such as the 'little man' or the 'top-down frames', but these metaphors are not very useful when
applying a recursive solution. In this paper we provide the students with an interactive tool in which recursive
solutions are visualized using frames, trees and graphs, and test the quality of their solutions using these tool,
compared with a control group in which the visualizer is not available. We planned an experiment with few
problems requiring recursive solutions, and observed the experiment group and the control group. The results
show that the tool indeed improves significantly the quality of the solutions of the students who used it.

Key-Words: - Problem Solving, Recursion, educational technology.

1 Introduction

Recursion has always been one of the most
difficult concepts to understand and apply by
computer science students. While typical algorithm
has straightforward and trackable steps to follow, a
recursion algorithm is built in a way that in order to
solve a problem, one has to solve the same smaller-
scale problem up until the problem becomes very
simple that a solution can be provided without
further calls to smaller problems. Once the solution
to the simple problem is return, it is possible to
solve the higher-scale problem which in turn enable
the solving of higher-scale problem and so on until
the original problem can be solved. The recursive
algorithm is much less intuitive, and the reader has
difficulties to track its steps [1,2]. Recursive
solutions are essential in the field of computer
science, and many times a problem can be solved
only using such an algorithm (i.e., Hanoi towers),
and therefore understanding well the concepts
involved, and being able to plan and apply correctly
recursive algorithm is an obvious goal of
introductory course in computer science.

In order to overcome the above difficulties, few
metaphors were developed to assist the learner to
understand the execution of recursive algorithms,
among them are the little-man metaphor [3], and the

frame model [4]. These visual metaphors
demonstrate the advance process of a recursive
function by illustrating the recursive call as a
package delivered forth and back from one little
man to the next one in the chain (e.g., little-man
model) or as series of frames each located inside a
larger one. Indeed, these metaphors were found to
be quite effective in explaining the way linear
recursive functions behave. However, not all
recursive algorithms are linear (i.e., form a simple
chain of recursive calls), and there are many multi-
dimensional recursive algorithms which form
complex non-linear chains of recursive calls. Since
the above models are linear, they cannot be adapted
to more complex forms of recursion (e.g., Inorder
tree traversal).

In this study we developed an interactive
software tool that enhances the understanding of
recursion concepts (linear and non-linear) by
tracking the recursive calls visually, running them
step by step, tracking variables and return values of
each call, and continue running until the algorithm
stops. In addition, we examined the tool's
effectiveness as perceived by the students who
participated in the research.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 158 Volume 14, 2017

mailto:ramir@yvc.ac.il

2 Background
Recursive functions can be linear or multi-

dimensional. The most common recursive functions
are linear ones, in which the function makes a single
call to itself each time it runs. The factorial function
appears in Figure 1 is a good example of such a
function. In some cases, as shown in Figure 1, the
recursive call is the last command in the functions
(called tail recursion). In other cases, as shown in
Figure 2 (reversing an integer number) there are
more commands to be executed after the recursive
call returns with or without a value. A double
recursion is shown in Figure 3 (calculating a
Fibonacci number), in which multiple recursive
calls are made. A more complex form of recursion is
indirect recursion, in which a function f does not
call itself, but rather call another function g, which
in turn calls yet another function k, that calls f again.
Such a mutual recursion is shown in Figures 4 and
5, where two functions is_odd() and is_even() that
are mutually call each other.

Fig. 1. Tail Linear Recursion

Fig. 2. Non-Tail Linear Recursion

Fig. 3. Double Recursion

Fig. 4. Mutual Recursion (part 1)

Fig. 5. Mutual Recursion (part 2)

The little-man metaphor [3] and the frames model
[4] are effective when tail linear recursion is
discussed. The factorial algorithm is demonstrated
with the little-man metaphor in Figure 6, and with
the frame metaphor in Figure 7 for the input value
n=4. As shown, the learner sees an illustration of
the recursion, and able to track its steps. However,
given more complex linear recursions (e.g., non-
tail), multi-dimensional recursions (e.g., double,
multi), not to mention indirect recursion (e.g.,
mutual), these models would not promote the
learner with understanding of the functions'
behavior.

Fig. 6. Little Man Model

Fig. 7. Frame Model

3 Related work

Various teaching strategies were suggested and
recommended in the literature as to recursion
algorithms, starting with recurrence relations from

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 159 Volume 14, 2017

the theory of mathematical inductions [5,6], through
concur-and-divide methods [7], and even algebraic
substitution techniques [8]. However, experiments
have shown that concrete conceptual models assist
learner better than abstract ones [9]. The use of
visualization technology in class has made a great
impact on learners, and promoted significantly the
understanding of recursion concepts [10]. Sa & Hsin
[11] have developed RGraph, a tool that visualizes a
recursive function calls, forth and back. A tutorial
on recursion exploration based on RGraph was
developed and used to teach recursion with initial
encouraging results about better understanding [12].
However, RGraph is currently a tool with a few pre-
defined problems, all of them are linear. It does not
enable the learner to run and explore user-defined
recursive functions, neither it supports the
visualization and understanding of more complex
recursive functions (e.g., multi-dimensional and/or
indirect recursions).

4 The Study
A new and novel tool was developed, aiming to
provide learners and developers with an interactive
environment for the exploration of recursive
functions of all kinds. After the completion of the
development process, we plan to examine its
effectiveness as regard to the understanding and
implementation of recursion concepts in problem
solving as perceived by both the students and the
teaching staff. Then, we plan to build a tutorial,
which is based on the implementation of the tool in
introductory computer science course and advanced
data structures and algorithms courses.

4.1 The tool
The tool operates in a similar fashion to software
development environment (e.g., Eclipse, Visual
Studio). The user writes a recursive function/s (See
Figure 8), and run it using the tool, while providing
the necessary initial inputs. Once the function has
been compiled successfully (using background
processes) the user will be able to control its
running, in a similar fashion to typical debugging.
The user is able to trace the program step-by-step,
back and forth, and explore its variables. In addition
to standard debugging, the user will be provided
with the opportunity to track the function calls
visually.
Each recursive call will open new icon on the screen
with all the information relevant to the exploration
of this call: parameters and the current state of the
call, the value returned, the line of code that was
executed and the recursion depth.

Fig. 8. Environment

Fig. 9. Frames

In Figure 9 we can see the result of running the
factorial function with n=5. The first (lowest) frame
refers to the main method, calling the fact() function
on line 3, the frame above refers to the first call to
fact(), with n=5 as a parameter. The subsequent
frames refer to the successive calls to fact() till the
last call to fact() with n=1 (base case). The user can
track the recursion, and whenever a new recursive
call is made a frame with all the necessary
information required (i.e., current line, parameter
value, calling functions).
The above frames can address linear recursion when
each function calls itself at most once. However, for
more complex recursions such as double or mutual
recursions, the linear representations of the frames
as shown in Figure 9 might not be sufficient. For
these kind of recursion, we provide a more
sophisticated visualizer, in which the hierarchical
structure of the recursion is revealed.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 160 Volume 14, 2017

Fig. 10. Tree-like structure

In Figure 10 we see the result of running the
Fibonacci function (shown in Figure 3). In this
function, two recursive calls are made from each
function calls. A tree-like structure is more
trackable, as shown in figure 10. Each node
represents a function call, with the value of the
parameter inside, and the return value below.
Another way to track the recursion is available via
graph-like representation, as shown in Figure 11, in
which calls to similar copies (a function call with
identical parameter values) are shown as incoming
edges, enabling the user to better track the
complexity of her recursion.

Fig. 11. Graph-like structure

The tool was developed in a web-based
environment. It provides the user with information
about the number of recursive calls, enabling her to
estimate the complexity of the recursive function.
The output is presented graphically, plotting the
recursive calls for each input size. The output is
shown gradually, not all at once. This way the user
can explore the code along with the output nodes,
tracking thoroughly the recursion.
For instance, if the user run the Fibonacci function
(see Figure 3) with initial input of n=5, the diagram

will plot for every recursive call the number of
recursive calls derived: for n=0 and n=1 the number
of calls is zero, for n=2 it is two, for n=3 it is three,
for n=4 it is five, and last for n=5 it is eight.
Actually, in this example, as the input size rise, the
number of derived recursive calls grows
exponentially, and the user is able to view this
complexity via the graphical diagram.
The visualization process start with analysis of the
input function, embedding breaking commands
inside the function that enables the debugging
operations, tracking and saving the current call's
state, and managing the whole running of the
recursive function.

4.2 Environment and population
We tested the tool in the course "data structures and
algorithms". The study subjects were Information
Systems (IS) students in their second year of studies
in a regional academic college. 78 students
participated in the courses, divided into two lecture-
groups.

4.3 Data collection and analysis tools
As regards to the examination of the tool's
effectiveness, we used an empirical comparative
study in which two groups were involved. The
students were divided into two equal-size groups.
The experimental group study recursion using the
tool, while the control group study recursion using
classical methods (e.g., frame model, little-man
model) and a standard IDE. Both groups were
presented with the recursion problems presented in
figures 1-3. The experiment group were presented
with the tool we developed, and the students could
run the solutions using the debugger, while
exploring the solutions using the visualization
shown in figures 9-11.
After studying the recursion concepts, all students
from both groups were given a series of problems
that require recursive solutions. We expected that
students who learned recursion using the proposed
tool will be able to perform better than the students
from the control group given that they were
permitted to use the tool while solving the given
problems. During the solutions we were observing
the students to see whether and how they use the
tool, and we asked them to report on their use while
solving each of the given problems.
When we checked the solutions, we divided them
into the following four categories: correct solutions,
faulty base cases, faulty recursive call, and faulty
return command. Solutions to problems that work
perfectly on any legal input were classified as

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 161 Volume 14, 2017

correct ones. Solutions with base case other than
expected, even partially correct, were classified as
faulty base case. Solutions that had problems with
the recursive call (e.g., incorrect parameters) were
classified as faulty recursive call. Solutions with
errors in the return command (e.g., return too early)
were classified as faulty return command.
After checking the solutions, we also made
observations and interviews with selected
participants, in order to gain better understanding of
the tool advantages and shortcomings. With these
essential feedbacks, we intend to further improve
the tool and add desired functionality.

4.4 The problems
The students were provided with the following three
problems:
(1) Calculate recursively the sum of the first n

integers, n is given as a parameter. For instance
sum(5) = 5+4+3+2+1 = 15. Assume non-
negative n.

(2) Reverse a string recursively. For instance,
reverse("hello") = "olleh". Assume non-empty
string.

(3) Given the formula given in Figure 12, calculate
recursively how many combinations there are
when choosing k elements out of a set of n
elements. Assume non-negative k and n.

The three problems above were given with
increasing difficulty, addressing tail recursion, non-
tail recursion, and double recursion, respectively.

Fig. 12. K out of N formula

The correct solutions for these problems are given in
figures 13-15.

Fig. 13. Problem 1 solution

Both groups, were allowed to use the regular IDE
(Eclipse Neon) to write and test their solutions. The
experiment group was provided also with a link to a
web page in which the tool presented above was

implemented. They were told that if they want they
can use the tool while developing solutions to the
given problems. They were given 60 minutes to
address the problem, and were instructed not to
consult with each other. Also, in order to prevent
cheating, we took all cellular phones, and blocked
all network communication except the debugger
web page.

Fig. 14. Problem 2 solution

Fig. 15. Problem 3 solution

4.5 Results
In this section we first present summative results,
comparing the experimental and the control group
achievements. Then we present common errors
performed by the study participants, and how the
tool provides them with assistance.

4.5.1 Summative Results
A summary of the results is shown in Table 1. As
expected, most of the participants were able to
provide a correct solution to the first problem. Since
it was very simple, one could address the problem
without using a debugger. As to the second problem,
we observe a decrease in the number of the students
who provided correct solutions. This is also
expected as the solution is not so simple, and it
requires an understanding of the recursion structure.
In the third problem we see an increase in the
number of correct solutions, probably because this
problem was provided with a formula, which can be
translated easily to a recursive method. When
comparing the results of the experiment group and
the control group we observe that the experiment
group outperformed the control group in all three
problems. We also see that the as the problem gets

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 162 Volume 14, 2017

harder, the difference is more notable. While in the
first problem there is a difference of 2% in the
number of correct answers, in the second problem
there was a difference of 17%, and in the third
problem 25% difference. The participants of the
experiment group indeed used the tool extensively.
All of them were using the tool to solve the second
and third problems, while only 52% of them have
used it also with the first problem. As to the control
group, only 3 out of 38 sketched some kind of frame
model or little man model to monitor their solutions.

Table 1: Percentage of correct answers
Problem Experiment group Control group

1 85% 83%
2 62% 45%
3 77% 51%

The percentages of errors according to these types
are presented in table 2. As shown, in the
experiment group the percentages of errors referring
to base cases, and return commands is lower than
the control group, while the percentages of recursion
calls category is higher in the experiment group.

Table 2: Percentage of errors' types
Error Experiment group Control group
Base case 19% 34%
Method
call

58% 45%

Return 25% 21%

4.5.2 Common Errors
As to the first problem, the most common error was
a faulty recursive call neglecting the addition of n to
the returned value, as shown in Figure 16.

Fig. 16. Problem 1 – faulty return

Students from the experiment group who used the
interactive debugger could follow frames (Fig. 9)
the tree-like structure (Fig. 10) and observe the
return values underneath the nodes, identify the bug,
and fix it. Students from the control group could
only notice the problem if they tested their solution
using the standard IDE, but did not had any clues
regarding the bug's source.

The second common error related to the first
problem was a missing base case, as shown in
Figure 17.

Fig. 17. Problem 1 – missing base case

Students from the experiment group who used the
interactive debugger could observe the message that
the debugger cannot run the recursion since it is too
deep. Students from the control group could also
observe the 'Stack Overflow Error' raised by the
IDE, and fix the problem. The third common error
related to the first problem was a faulty base case, as
shown in Figure 18.

Fig. 18. Problem 1 – faulty base case

Students from the experiment group who used the
interactive debugger could track the frames or the
tree and see that only one call was performed before
the recursion stopped with faulty results. Students
from the control group could only observe a faulty
result, however, they could not see the fact that only
one call to sum() was made.

The solution to the second problem was a bit more
complicated than the one to the first problem. It
involves decomposition and assembly of the input
string each call. Many participants failed to provide
a proper solution, some of them provided iterative
one as shown in Figure 19, and then tried to convert
it into recursive one demonstrated in Figure 20.

Fig. 19. Problem 2 – Iterative Solution

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 163 Volume 14, 2017

Fig. 20. Problem 2 – Recursive Solution

Among all the students who provided a recursive
solution similar to the one shown in Figure 20, only
few succeeded to complete a correct version. All
other students made various mistakes while
converting the iterative solution to a recursive one.
Some of them did not add i as a parameter to the
method, some other made concatenation errors.

The solution to the third problem was a bit more
complicated than the one to the second problem,
since it includes two recursive calls. Many of the
students who provided faulty solution did not
understand that the recursive function must have
both k and n as parameters, and neglected one of
them. Some others could not figure out what the
base case should look like, and provided a faulty
one. some others forgot to indicate a base case or
provided a faulty one, and some others made
mistakes while invoking the recursive call referring
to the parameters sent.

4.5.3 Tool assistance
We were watching the students while they solved
the problem, and specifically we tracked the
experiment group to see if and how they use the
interactive debugger. As we expected, almost all of
them indeed used the tool to run their solutions and
test them for correctness. The first problem was
simpler than the other two, therefore merely half of
them did not use the interactive debugger at all.
Among those who did use the tool, almost everyone
was satisfied with the 'Frames Visualization' (See
Figure 9) and only few tried to run it with the more
complex visualization modes. Some of them noted
that their implementation is faulty while watching
the frames and immediately fixed the code until run
correctly. As to the second and third problems, all
the students in the experiment group used the tool.
In the second problem most of them used the

'Frames visualization' while few also tried the 'Tree
Visualization' (See Figure 10) although it did not
add much more information. However, while
solving the third problem, many of the students have
used both 'Tree Visualization' and 'Graph
Visualization' (See Figure 11) to test their solutions.
Among the ones who provided correct solution to
the second and third problems, there were many
who ran the above models many times, until getting
to the correct version. The visual feedback assisted
them to identify their errors (faulty base case, faulty
recursive call, etc.) and fix them before handing
over the solutions. The students from the experiment
group who did not provide a correct solution to the
second and third problems also used the tool to
explore their solutions, but nevertheless they were
not able to fix the errors completely. Many of these
students did not design a proper function, and as a
result the visualization did not help the, much. For
instance, if the function designed to address the
second problem did not include i as a parameter, the
debugger will not highlight the problem. Same for
the third problem, when the function has only one
parameter for k or n. The tool assists only solutions
who are 'close enough' to the correct solution. If the
student did not get the idea of the required
recursion, and as a result design a faulty function
(i.e., faulty signature), then the tool cannot assist.

As to the control group, they merely used the
metaphors of the 'Little Man' (See Figure 6) or the
'Frame Model' (See Figure 7) while solving the
given problem. Most of them ran their solutions in
the IDE and tested the final result shown on screen.
If it was correct the moved on, otherwise they fixed
the code accordingly. While fixing the code some of
them used the IDE's built-in debugger who can track
the recursion via step-by-step commands enabling
tracking the parameters values on each call.
However, such a method requires focusing on the
debugging process, remembering the values of
previous calls, and complex track of returning
values. Although possible, it takes much more time
to follow a solution in this way, and we see that the
success percentages of the control group are
significantly lower than those of the experiment
group.

4.6 Interviews
After the completion of the assignment described
above, we conducted interviews with five students
from the experiment group, that were observed
while making intensive use of the tool. We asked
them to describe the benefits it provided them. We

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 164 Volume 14, 2017

also asked about their criticism on the tool and
asked for suggestions to improve it.
In what follows we provide few excerpts given by
the interviewees.

4.6.1 Benefits the tool provides

" The tool made for me a visualization of the
recursive process. Without it, it is more difficult
for me to follow the development of the
recursion and the logic involved. "

" What I loved in the tool is the ability to track
the hierarchy of the recursion calls, and to
follow the return values. That was very helpful.
"

" The tool helped me find an infinite recursion I
made by mistake. It just didn't run… It took me
only a while until I noticed the error. "

"I used the graph-like visualizations when I
solved the third problem. I think that the
solution I gave was correct but not very
efficient. Many nodes had plenty of incoming
edges. I tried to think of a better solution but I
ran out of time. "

"running the recursion in a step-by-step
manner, forward and back, while watching all
the recursion calls on screen, including the
calls that were already ended, was of a great
value. "

4.6.1 Improvement suggestions

"I would like to have these abilities in the
regular IDE I'm using. It can help a lot when
solving recursion problems. "

" I would like to add a conditional breakpoint,
so I will be able to stop the running and watch
the current state visually upon the case I want
to explore. Now I have to run it step-by step. "

" You should consider hover-event over the
nodes, so that if one passes over a node, the
relevant line of code will be painted. "

" I would add statistics to each node, for
instance how long did it take from the start
until return, how many calls with the same
values occurred, and alike. "

4.7 Discussion
The results presented in section 4.5 support our
assumption that a visualizer tool can effectively

improve the understanding of students concerning
recursion concepts. The results show that if
visualization is used, the results are better and there
are fewer errors. Moreover, the results show that
regarding to base cases and return parts of the
recursion, fewer mistakes are made by the students,
as the visualizer make it more easy to capture such
errors. The fact that only 3 participants from the
control group have tried to draw the recursion call's
hierarchy indicate that in the absence of a
visualization tool, the student will not make an extra
effort to visualize the solution, and accordingly the
number of faulty solutions grow.
From the participants' excerpts we learn that indeed
the tool was helpful. Recursion is an abstract
concept, and many students find it very difficult to
understand. Visualization has always been [13] a
mean to improve the understanding of complex
concepts, including recursion algorithms. It assists
the user to track the calls, the logic behind the
recursion, the convergence towards the base cases,
and the process of returning from the recursive calls.
It even helps one who cares about the complexity of
the algorithm (depends on the number of repeating
calls).

Based on the students' suggestions for the tool
improvements, we plan to make few changes to
make the tool even better, and then we intend to
build a tutorial on recursion teaching, based on the
tool and its exploration capabilities. The tutorial will
include complete lessons that can assist educators
with the instruction of all related issues including
linear and tail recursion, double and multi-
dimensional recursion, direct and indirect recursion,
recursive calls, base condition, running a recursion
forth and back etc. We believe that using our tutorial
will contribute to the understanding and the ability
to apply recursive solution among students and
learners, and we also believe that such a tool can be
valuable as well to practitioners in the industry
when testing and debugging complex recursive
algorithms in various fields (e.g., computational
biology, machine learning, enterprise systems etc.)

5 Conclusions
To address students' difficulties to implement
recursive algorithms in problem solving relating to
programming, we developed an interactive tool that
enable to run and debug recursive functions and
track them visually. The tool enables tracking of
user-defined, direct and indirect, linear and multi-
dimensional recursive functions. We tested the tool
empirically, and our findings support our
assumption that a visual debugger for recursive

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 165 Volume 14, 2017

algorithms might assist in understanding better
recursion and promote higher-quality solutions with
fewer errors.
In the future, we plan to expand the tool further with
features related to multi-thread recursion and test it
in additional academic institutes, as well as in the
industry.

References:
[1] Gal-Ezer, J., & Harel, D. 1998. "What (else)

should CS educators know?". Communications
of the ACM, (41:9), pp. 77-84.

[2] Dann, W., Cooper, S., & Pausch, R. 2001.
"Using visualization to teach novices
recursion". ACM SIGCSE Bulletin, (33:3), pp.
109-112.

[3] Harvy, B. (1985). Computer science Logo
style. Volume 1: Intermediate programming.
MIT Press.

[4] Roberts, E. 2006. Thinking recursively with
Java. Hoboken, NJ: John Wiley.

[5] Ford, G. 1984."An implementation-
independent approach to teaching recursion".
ACM SIGCSE Bulletin, (16:1). pp. 213–216.

[6] Wilcocks, D., and Sanders, I. 1994. "Animating
recursion as an aid to instruction". Computers
& Education (23:3) pp. 221-226.

[7] Ginat, D., and Shifroni, E. 1999. "Teaching
recursion in a procedural environment—how
much should we emphasize the computing
model?". ACM SIGCSE Bulletin (31:1), pp.
127-131.

[8] Lewis, C. M. 2014. "Exploring variation in
students' correct traces of linear recursion". In
Proceedings of the tenth annual conference on
International computing education research. pp.
67-74. ACM.

[9] Wu, C. C., Dale, N. B., & Bethel, L. J. 1998.
"Conceptual models and cognitive learning
styles in teaching recursion". In ACM SIGCSE
Bulletin (30:1), pp. 292-296.

[10] Hundhausen, C. D., Douglas, S. A., and Stasko,
J. T. 2002. "A meta-study of algorithm
visualization effectiveness". Journal of Visual
Languages & Computing, (13:3), pp. 259-290.

[11] Sa, L., & Hsin, W. J. 2010. "Traceable
Recursion with Graphical Illustration for
Novice Programmers". InSight: A Journal of
Scholarly Teaching (5), pp. 54-62.

[12] AlZoubi, O., Fossati, D., Di Eugenio, B.,
Green, N., Alizadeh, M., and Harsley, R. 2015.
"A Hybrid Model for Teaching Recursion". In
Proceedings of the 16th Annual Conference on

Information Technology Education. pp. 65-70.
ACM.

[13] Dann, W., Cooper, S., & Pausch, R. 2001.
Using visualization to teach novices recursion.
ACM SIGCSE Bulletin, 33(3), 109-112.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Rami Rashkovits, Lavy Ilana

E-ISSN: 2224-3402 166 Volume 14, 2017

