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Abstract: - There are strong needs for both mobile and temporal properties in process algebras designed to specify and 
analyze distributed mobile real-time systems (DMRS). However there are some limitations in those algebras to 
specify both movements and temporalness at the same time, such as, Timed pi-Calculus and d-Calculus, as follows: 1) 
Timed pi-Calculus cannot specify both the execution time of action and movements directly, and 2) d-Calculus can 
specify only a simple pattern of temporal conditions, that is, the lower and upper bounds of the execution time. In 
order to solve these limitations, this paper proposes dT-Calculus with expressive power of movements of processes 
with a number of temporal conditions. dT-Calculus extended the basic temporal properties of synchronous process 
movements of d-Calculus into more specific temporal properties in order to specify and analyze the temporal property 
of DMRS more effectively: ready time, execution time, waiting time, deadline, etc. In order to simulate the proposed 
process movement with temporal properties, the SAVE tool has been developed on the ADOxx Meta-Modeling 
Platform and demonstrates efficiency and effectiveness of the proposed approach with an EMS example. 
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1 Introduction  
There are a number of process algebras to specify and 
analyze the requirements of distributed mobile real-time 
systems (DMRS). Different from other systems, DMRS 
requires both mobile and temporal requirements to be 
specified and analyzed [1]: Mobility allows various types 
of inter-process relations to be specified and analyzed; 
Temporalness does the temporal conditions for the inter-
process relations to be specified and analyzed. However 
there were limitations in the existing process algebras to 
represent both mobile and temporal properties together at 
the same specification and analysis. This paper proposes 
a new process algebra, called dT-Calculus, which can 
express effectively both mobile and temporal properties 
of processes in DMRS, in order to specify and analyze 
the mobile and temporal requirements of DMRS. 

Among the existing process algebras, Timed pi-
Calculus [2] and d-Calculus[3] can be classified as the 
ones that can represent both mobile and temporal 
properties of DMRS. The main characteristics of the 
properties can be summarized as follows: 

1) Timed pi-Calculus: The existing pi-Calculus [4] 
expresses process movements indirectly by using 
the notion of value passing. Timed pi-Calculus is 
the timed  v ersion of pi-Calculus, which allows 
time-stamp and clock be passed additionally 
during value passing: the termporal requirements 
of the process movements can be specified. 

2) d-Calculus: This is a process algebra that can 
express direct process movements into or out of 
other processes by using the 4 t ypes of 
synchronous movements with simple temporal 
conditions: a bound of  the minimum and 
maximum limits. It naturally allows process 
nesting by the resulting inclusion relations among 
processes. 

The above algebras are designed to specify the mobile 
and temporal requirements of process movements, but 
there are some limitations to specify the requirements 
fully, considering different temporal properties of the 
requirements: 

1) Timed pi-Calculus: It allows various types of 
temporal requirements to be specified, but the 
actual execution time of action itself and type of 
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movements are not possible to specify in the 
requirements. 

2) d-Calculus: It allows various types of temporal 
requirements to be specified, but only simple type 
of temporal requirements for process movements 
is possible. For example, a temporal bound of the 
minimum and maximum limits. It results in limited 
specification of the temporal requirements of the 
movements as well as analysis of the requirements. 

In order to overcome these limitations, this paper 
proposes a process algebra, namely, dT-Calculus, which 
is the timed version of d-Calculus, extended for more 
specific temporal specification and analysis of the 
requirements. dT-Calculus allows the temporal properties 
of the actions of the DMRS processes to be expressed as 
follows: 

• Ready time: The time needed before execution of 
action. 

• Timeout: The maximum waiting time up to the 
actual execution of action is possible, after the 
execution of the action is ready with the ready 
time. 

• Execution Time: The actual execution time of an 
action or a process. 

• Deadline: The time that the execution of action is 
to be terminated. 

• Period: Periodic repetition of an action or a 
process. 

These specific temporal properties allow various 
types of temporal requirements of process movements 
over the DMRS environment to be specified and 
analyzed, without modifying any types of the process 
movements from d-Calculus. 

This paper is organized as follows. Section 2 
introduces some of the existing process algebras with 
temporal properties. Section 3 introduces the basic 
algebra for dT-Calculus, that is, d-Calculus. Section 4 
describes syntax and semantics of dT-Calculus, focusing 
on its temporal properties. Section 5 demonstrates 
usability of dT-Calculus with a simple example. Section 
6 shows some comparison dT-Calculus with other 
process algebras. Section 7 introduces a tool, called 
SAVE, which is developed, on the ADOxx Meta-
Modeling Platform, to specify and analyze the temporal 
requirements of the process movements with dT-Calculus. 
Finally conclusions will be made and some of future 
researches will be discussed. 

2 Related Research 
One of the best known process algebra to specify and 
analyze the temporal property is Timed pi-Calculus. It is 
an timed version of pi-Calculus designed of Milner [4], 

adding the temporal property for process movements. Fig. 
1 shows the syntax of Timed pi-Calculus.  

In the send and receive actions, ct  and c  represent 
time-stamp and clock used for creating of the time-stamp, 
respectively. Further, δ  and γ  represent temporal 
restriction condition and clock reset, respectively. The 
process specification with temporal restriction condition 
is to be used as follows: 

( 2) , , . 'cP c x y t c P= <  

It implies that, in 2 time units after clock c is reset, name 
y can be transmitted through channel x in ct . 

The notion of clock in Timed pi-Calculus is based on 
local clock concept, which allows various kinds of 
temporal restriction conditions. For example,  

( 5)( 3) ( , , ). 'z zQ e d t x z t d Q= > − ≤  

It specifies two temporal conditions with clock: ( 5)e >  
represents a condition for a local clock e, and ( 3)zd t− ≤  
represents a t emporal condition related to a r eceiving 
message. d  and zt  are times on the clock for the 
receiving message and its time-stamp, but, since the 
clock ticks continuously, ( 3)zd t− ≤  implies the temporal 
condition that the message should be transmitted in 3 
time units. 

The mobile property of Timed pi-Calculus is 
represented indirectly by changing the state of channel 
connection among processes through passing the 
connecting channel names. For example,  

. ' | ( ). ' | ' | '{ / } |yx P y z Q R P Q x z R
τ
→  

As shown in Fig. 2, it represents the state of P and R, 
connected by x, to be changed to the state of  Q and R, 
newly connected by x, after passing the name x to Q by P 
through the channel y. Obviously the connection between 
of P and R is invalid since there is no x in P. 
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Fig. 1 Syntax of Timed pi-Calculus 

 
Fig. 2 Movement in Timed pi-Calculus 

3 Previous Research 
d-Calculus is the process algebra developed to specify 
and analyze the process movements directly on 
geographical space. There are  four types of movements 
in d-Calculus and all of them are synchronously defined. 

3.1 Syntax 
The syntax of d-Calculus is shown in Fig. 3 and is 

defined as follows: 
1) Action: Actions performed by a process. 
2) Priority: The priority of the process P 

represented by a natural number 0n ≥ . The 
higher number represents the higher priority. 
Exceptionally, 0 represents the highest priority. 

3) Nesting: P contains Q. The internal process is 
controlled by its external process. If the internal 
process has a higher priority than that of its 
external, it can move out of its external without 
the permission of the external. 

4) Channel: A channel r of P to communicate with 
other processes. t implies the time needed for the 
communication through the channel. 

5) Choice: Only one of P and Q will be selected 
nondeterministically for execution.  

6) Parallel: Both P and Q are running concurrently. 
7) Exception: Execution of P, but F in case of 

violation of the deadline t. 
8) Sequence: P follows after the action A. 

9) Empty: No action. 
10) Send/Receive: Communication between 

processes, exchaning a message by a channel r. t 
represents the deadline of the communication. 

11) Request: Requests for movement. t, p and k 
represent deadline, priority and key, respectively. 

12) Permission: Permissions for movement. t 
represents deadline. 

13) Create process: Creation of a new internal 
process. The new process cannot have a higher 
priority than its creator.. 

14) Kill process: Termination of other processes. 
The terminator should have the higher priority 
than that of the terminatee. 

15) Exit process: Termination of its own process. 
All internal processes will be terminated at the 
same time.  

 
Fig. 3 Syntax of d-Calculus 

Generally all the movements are synchronous. In 
order for a process to move in or out of another process, 
the moving process (mover) needs a permission from the 
target process. Reversely, in order for a process to be 
moved in or out of another process forcefully, the 
moving process needs a permission from the being-
moved process (movee). 

By means of the strict method of synchrony, the 
movements of processes can be controlled, and further 
the security and safety of DMRS can be guaranteed by 
pre-cautiously preventing insecure or unsafe movements. 
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3.2 Mobility 
As stated, the process movement in d-Calculus occurs 

synchronously between the requesting process and the 
permission process. It implies that the movement cannot 
be allowed without the permission. It prevents any 
unplanned movement from occurring unexpectedly, and 
clarifies control of the movement explicitly. There are 
four types of such movements in d-Calculus as follows: 

• in: A process moves into another process directly. 
• out: A process moves out of another process 

directly. 
• get: A process makes another process move into 

itself. 
• put: A process makes another process move out of 

itself. 
The types of movements can be pictorial depicted as 

shown in Fig. 4. 

 
Fig. 4 Pictorial View of d-Calculus Movements 

4 dT-Calculus 
dT-Calculus is the process algebra developed to specify 
and analyze the process movements of DMRS with 
temporal restrictions directly on geographical space. In 
order to represent precise temporal properties explicitly, 
it extended the basic temporal property of the movements 
in d-Calculus to the different types of temporal properties 
for period and sporadic actions or processes, with the 
additional syntax and semantics accordingly. 

4.1 Time Properties 
There are five temporal properties in dT-Calculus: 

ready time, timeout, execution time, deadline, and period. 
The first 4 properties are used to specify the temporal 
properties of sporadic actions or processes, and the last 
one is used to specify the temporal properties of periodic 
actions and processes inclusively. The definition of each 
properties are as follows: 

1) Ready time: It represents the waiting time for an 
action. At the point of the action in a process, 
the process has to wait for ready time before 
executing the action. No other or synchronous 
actions are possible during ready time. 

2) Timeout: It represents the maximum waiting 
time for the actual execution of an action to be 
started after the action is ready for execution. If 
the waiting time in ready time is over and the 
partner for its synchronous action is not ready, 
the action cannot be executed. If the partner is 
ready for the action in timeout, the action can be 
executed. If not, the action will be in the state of 
timeout, the process will be in some fault state 
unless some proper handling action is not 
specified. 

3) Execution Time: The time needed to execute an 
action. In case that the action can be performed 
in timeout after ready time, the action will be 
executed in execution time and be terminated. 
And then the next action will be available. 

4) Deadline: The termination time for the 
execution of an action. All actions must be 
terminated in deadline. Deadline starts as ready 
time does. If the action is terminated in deadline, 
the process will be in some fault state. In order 
to prevent the process from being in the fault 
state, an exceptional handling must be specified 
accordingly. 

5) Period: The duration of period for the execution 
of an action or process in repetition. The action 
will repeat itself after period of executing the 
action or process. This is an additional temporal 
property to specify the periodic action or 
process, different from the previous four 
temporal properties. The periodic action or 
process can be put into some fault state due to 
failure to timeout and deadline. 

All actions and processes are defined or specified 
with these temporal properties. However the properties 
cannot be applied to some actions and processes. For 
example, empty action, no-time action, timed process, etc. 
Fig. 5 shows a pictorial representation of the relations 
among the temporal properties. 
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Fig. 5 Relations among Temporal Properties 

4.2 Syntax 
The syntax of dT-Calculus is shown in Fig. 6, and is 

defined as follows: 

1) Action: Actions performed by a process. 
2) Timed action: The execution of an action with 

temporal restrictions. The temporal properties  
of [r,to,e,d] represent ready time, timeout, 
execution time, and deadline, respectively. p and 
n are properties for a periodic action or process: 
p for period and n for the number of repetition. 

3) Timed process: Process with temporal 
properties. 

4) Priority: The priority of the process P 
represented by a natural number 0n ≥ . The 
higher number represents the higher priority. 
Exceptionally, 0 represents the highest priority. 

5) Nesting: P contains Q. The internal process is 
controlled by its external process. If the internal 
process has a higher priority than that of its 
external, it can move out of its external without 
the permission of the external. 

6) Channel: A channel r of P to communicate with 
other processes. t implies the time needed for the 
communication through the channel. 

7) Choice: Only one of P and Q will be selected 
non-deterministically for execution.  

8) Parallel: Both P and Q are running concurrently. 
9) Exception: P will be executed. But F will be 

executed in case that P is out of timeout or 
deadline. 

10) Sequence: P follows after action A. 
11) Empty: No action. 
12) Send/Receive: Communication between 

processes, exchanging a message by a channel r. 
13) Request: Requests for movement. p and k 

represent priority and key, respectively. 
14) Permission: Permissions for movement.  

15) Create process: Creation of a n ew internal 
process. The new process cannot have a higher 
priority than its creator. 

16) Kill process: Termination of other processes. 
The terminator should have the higher priority 
than that of the terminatee. 

17) Exit process: Termination of its own process. 
All internal processes will be terminated at the 
same time.  

The biggest difference of dT-Calculus with d-
Calculus is the notion of timed action and processes. In d-
Calculus, the temporal property is simplely defined with t 
in action or process: the boundary of the lower and upper 
time limits. However, in dT-Calculus, the property is 
divided into more specific properties, as described. In 
addition, the exceptions caused by the violation of the 
temporal properties are more specifically divided into the 
one by deadline and the one by timeout. 

Consequently the separate notions for temporal 
properties for action and process in d-Calculus can be 
represented in one single notion and form of the 
properties in dT-Calculus. 

If there is no temporal properties to be specified in an 
action, it will be considered to be [0,-,1,-] by default. 
That it, there is no waiting time so that the action can be 
executed immediately, and infinite waiting for the 
synchronous co-action is possible without timeout and 
deadline. 

 
Fig. 6 Syntax of dT-Calculus 
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4.3 Semantics 
The semantics of dT-Calculus for the temporal 

properties in action and process are defined as transition 
rules as show in Table 1. 

Tick-Time 

R 1
[ , , , ] [ 1, , , 1]

( 1)
r to e d r to e d

r
A A − −

−
≥

→
 

Tick-Time 

TO 1
[0, , , ] [0, 1, , 1]

( 1)
to e d to e d

to
A A − −

−
≥

→
 

Tick-Time 

End 1
[0, ,0, ] ' 'to dA A A

−
→

 

Tick-Time 

SyncE 

1

1 1 1 2 2 2

1

1 1 1 2 2 2

( )

1 2
[0, , , ] [0, , , ]

( )
[0, , 1, 1] [0, , 1, 1]

| ' '' | ''' ( 1 1)
| '

| '
to e d to e d

to e d to e d

A A A A e e
A A

A A

τ δ

τ δ

∨ ∧

∨ ∧
− − − −

→
≥ ∧ ≥

→





 

Tick-Time 

AsyncE 1
[0, , , ] [0, , 1, 1]to e d to e dA A − −

−
→

 

Tick-Time 

P 1
[ , , , ] [ , , , 1]r to e d r to e dP P −

−
→

 

Timeout 
1

[0,0, , ] \e dA P P
−
→

 

Deadline 
1

[ , , ,0] \r to eA P P
−
→

 

Period , , 1
[ , , , ] [ , , , ]

( 1)
pp n p n

r to e d r to e d

n
A A −

−
>

→

 

Period 

End ,1
[ , , , ] ' 'pp
r to e dA A A

−

⋅ →

 

Table 1 Temporal Semantics of dT-Calculus 
Each rules in the table are  defined as follows: 

1) Tick-Time R: The rule for ready time of an 
action. As time passes in ready time, the values 
of r and d decrease accordingly. 

2) Tick-Time TO: The rule for timeout of an action. 
The action, not executing, but in waiting, 
decreases its timeout time accordingly as time 
passes.  

3) Tick-Time End: The rule for termination of an 
action. After the execution of the action started 
and the value of e becomes 0, the next action can 
start. 

4) Tick-Time SyncE: The rule for execution of an 
action. When an action and its partner co-action 
are execetued synchronously, the values of e and 
d decrease accordingly as time passes. 

5) Tick-Time AsyncE: The rule for execution time 
of an asynchronous action. In case of 
asynchronous action, there is no need for 
timeout: it goes into its own execution 
immediately just after ready time; the values of e 
and d decrease accordingly as time passes. 

6) Tick-Time P: The rule for passage of time in 
process. Since the temporal property for a 
process uses only deadline in its temporal 
requirements, the value of e decreases 
accordingly as time passes. 

7) Timeout: The rule for timeout to occur. When 
the value of to becomes 0, its timeout error will 
occur. However, when an exception for the 
timeout defines, its exception handling will be 
activated accordinlgy. 

8) Deadline: The rule for violation of deadline. 
When the value of d becomes 0, i ts deadline 
error will occur. However, when an exception 
for the deadline defines, its exception handling 
will be activated accordinlgy. 

9) Period: The rule for execution of a periodic 
action. The action will be executed again after 
the period passes, and the value of n will be 
decremented by 1. 

10) Period End: The rule for termination of a 
periodic action. In case that the value of n is 1, 
no action will be repeated after the period passed 
over. 

P P P+ =  Choice(1) 

P Q Q P+ = +  Choice(2) 

( ) ( )P Q R P Q R+ + = + +  Choice(3) 

P P∅ =  Parallel(1) 

P Q Q P=   Parallel(2) 

( ) ( )P Q R P Q R=     Parallel(3) 

[ ]P P∅ =  Nesting(1) 

[ ] [ ] [ ]R P R Q R P Q+ = +  Nesting(2) 

( ) ( ) ( )P Q R P Q P R+ = +    Distributive(1) 

1 2 1 2( )a a P a P a P+ = +    Distributive(2) 

[ , , , ] [ , , , ]r to e d dP P− − −=  Timed Process 

[0, ,1, ]A A − −=  Non-time Action 

[ , , , ] [ , , , ]r to e d e− − −∅ = ∅  Empty 

Table 2 Laws of dT-Calculus 
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4.4 Laws 
The laws in dT-Calculus are shown in Table 2. The 

laws represent the notion and restrictions of dT-Calculus 
as follows:  

1) Choice: Identity, commutativity and 
associativity laws for the Choice operation. 

2) Parallel: Identity, commutativity and 
associativity laws for the Parallel operation. 

3) Nesting: An inclusion relation for the Empty 
action, and a Choice operation relation for 
included processes. 

4) Distributive: Distributive(1) for the distributive 
law of Parallel over Choice; Distributive(2) for 
the distributive law of Choice over Sequence. 
Note that their opposite cases are not allowed. 
That is, Choice over Parallel; Sequence over 
Choice. 

5) Timed Process: Only applicable temporal 
property for a process is deadline. 

6) Non-time Action: The action with no temporal 
properties is same as the one with the temporal 
properties of [0,-,1,-]. 

7) Empty: Only applicable temporal property for 
the Empty action is execution time. 

4.5 Characteristics 
The temporal properties are directly specified to each 

action and process in dT-Calculus. The specification of 
the temporal specification of both actions and processes 
allows the temporal requirements for both actions in a 
processes and the process itself to be specified and 
analyzed at the same time.  

The introduction of the periodic temporal property has 
many advantages than other process algebras in 
specification of different types of repeating processes. 
Generally, the starting time of each synchronous action 
depends on the ready time of its partner action so that the 
same actions may require different total execution or 
termination time of their synchronous actions. That is, 
there is some problem of not being able to specify 
explicitly and precisely the temporal properties of 
periodic actions in the following form: 

[ , , , ] [ , , , ] [ , , , ] ...e e eA A A− − − − − − − − −⋅∅ ⋅ ⋅∅ ⋅ ⋅∅ ⋅  

It was intended to specify the above periodic actions with 
empty actions, but the empty actions with fixed execution 
time were not appropriate because their interaction times 
for synchronization can be different from each other. 
However, there is an advantage that there is no need to 
consider such time for synchronous interactions, if the 
periodic temporal property is used. The specification of 

the periodic requirements becomes very simple since the 
next execution of an action will be performed after 
elapsing the periodic temporal duration without 
calculating the temporal length left over up to the next re-
execution of the action after the immediate execution of 
the action. 

Meta-Model Icon 

 

Process  

Channel  

Movement  

Table 3 Graphical Representation of ITL 

4.6 Graphical representation 
dT-Calculus specification for systems can be 

represented by both text and graph. Generally the 
graphical representation has an advantage of better 
understanding and comprehension of the systems over 
the textual representation. In dT-Calculus, there are two 
types of the graphical representation as follows: 

1) ITL (In-the-Large): A system view showing its 
processes, inclusion relations and channels 
among the processes, and their interactions in 
time. The notation for the ITL view is defined in 
Table 3. 

2) ITS (In-the-Small): A process view showing its 
actions and their dependencies of sequences, 
choices, etc. The notation for the ITS view is 
defined in Table 4. 

Meta-Model 

 
Icon 

Process 
Lane  Start  End  

Other 
Process  

Exit  Choice  Parallel  Send  
Receive  Empty  In R  Out R  
Get R  Put R  In P  Out P  
Get P  Put P  Sequence  
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Table 4 Graphical Representation of ITS 

5 Example 
This section describes the specification of analysis of 
DMRS in dT-Calculus with an Emergency Medical 
Systems (EMS) example. 

EMS is the system where, in case of traffic and 
automotive accidents, the drivers of the automotive or 
patients from the accidents are transported to proper 
medical institutes under control of the 911 rescue 
systems contacted by the driver or patients, or some 
smart devices of them. 

5.1 Specification 
As shown in Fig. 7 i n dT-Calculus, the EMS in the 

example operates as follows: 

1) At the time of a car accident, the driver of the 
car acknowledges the accident. 

2) The driver attemps to move out of the car. 
3) If the driver does, s/he calls 911 and informs of 

the accident. If not, the smart device connected 
with the smart car acknowledges the situation 
and sends an emergency signal to 911 of  the 
accident. 

4) At the call, either from the driver or the device, 
911 selects appropriate ambulance from 911 for 
proper treatment. 

5) Once the ambulance arrives at the scene of the 
accident, the medic takes the driver or patient on 
the ambulance. 

6) The ambulance performs the first treatment on 
the driver or patient and transports him/her to 
the near hospital. 

7) After arriving at the hospital, the ambulance 
takes the driver or patient off at the hospital and 
informs 911 o f accomplishment of the 
transportation. 

8) The driver or patient is being treated in the 
hospital. 

 
Fig. 7 EMS Example in dT-Calculus 

Fig. 7 shows the EMS example in dT-Calculus, 
specified based on the above operations. In the specified, 
the following action has been declared in the Car process 
to detect the case of the driver not moving out of the car 
autonomously: 

[0,5,1,7]:: ... \ ( ( )...Car Drv out CE call=  

It implies that, if the action is not completed in the 5 
time units of [0,5,1,7], the car is to call 911 automatically 
by means of exceptional handling of the case. In the 
specification of Fig. 6, the call from the car, ( )CE call , 
always occurs after the call from the driver, ( )DE call , by 
the operations. Therefore, the calls from the car and 
driver are designed to handle separately in the Amb1 and 
Amb2 processes by setting the timeout for receiving the 
calls in the process. 

Amb1 in 911 and Amb2 out of 911 have different 
characteristics. Amb2 arrives at the scene earlier, it takes 
more time to open the doors of the car. Therefore, 
depending on the status of the patient, the transportation 
times by Amb1 and Amb2 are different. 
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Fig. 8 ITL View of EMS System 

 
Fig. 9 ITS View of EMS System 

 

5.2 Graphical representation 
The textual specification in dT-Calculus can be 

represented graphically in two views: in-the-large (ITL) 
and in-the-small (ITS). The ITL view can be considered 
as System View consisting of processes interacting 
together with communication and movements. The ITL 
view can be considered as Process View with the detailed 

actions. Fig. 8 and 9 show the ITL and ITS views of the 
EMS example, respectively. 

5.3 Analysis for Specification 
Before execution or simulation of the EMS example, it 
is possible to calculate the expected minimum execution 
times of Amb1 and Amb2 in order to find some errors 
from their specification. If the expected minimum 
execution time of Amb1 or Amb2 is larger than its 
deadline, it can be obviously known, before its actual 
execution or simulation, that the violation of its deadline 
will be occurred. 

There are two possible cases in the example: 1) The 
case that the driver is able to move out of his/her car by 
himself/herself; 2) The case that the driver is not able to 
move out of his/her car by himself/herself. 

The expected minimum execution times for Amb1 can 
be obtained as follows: 

1) Case 1: The execution time for all the actions 
except the first communication with 911 is 1 
unit time, the expected minimum execution time 
will be calculated to be 20 time units from 
1+5+1+1+10+1+1. 

2) Case 2: In order to perform the execution of 
Amb1 for Case 2, a timeout or deadline error 
must be occurred on the [0,5,1,7]1( 1)EA Lv  action. 
However the sum of ready time, timeout and 
execution time is less than its deadline. 
Therefore its deadline error does not occur. 
Consequently the expected minimum execution 
time on its timeout error will be 26 time units 
from 5+1+5+1+1+1+10+1+1. 

The expected minimum execution times for Amb2 can 
be obtained similarly by the same manner as follows: 

1) Case 1: The execution time for all the actions 
except the communication with 911 is 1 un it 
time, the expected minimum execution time will 
be calculated to be 18 time units from 
1+3+1+1+10+1+1. 

2) Case 2: In order to perform the execution of 
Amb1 for Case 2, a timeout or deadline error 
must be occurred on the [0,5,1,7]1( 1)EA Lv  action. 
However the sum of ready time, timeout and 
execution time is less than its deadline. 
Therefore its deadline error does not occur. 
Consequently the expected minimum execution 
time on its timeout error will be 30 time units 
from 5+1+3+7+1+1+10+1+1. 
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From the analysis of the times, it is possible to argue 
that there is no error which can be found in the 
specification be execution, since both the expected 
minimum execution times for both Amb1 and Amb2 are 
less than 40. In addition, it is possible to predict that 
Amb2 consumes less time that Amb2 for Case 1, a nd 
that Amb1 consumes less time that Amb1 for Case 2. 

In real execution or simulation, it is possible for some 
delays to occur to some actions due to synchronization 
with their partners. Therefore it is necessary to analyze 
the results of the real execution or simulation for the 
EMS example in order to get the real execution times. 

 
Fig. 10 Execution path of EMS System 

5.4 Execution 
As shown in Fig. 10, there are total 16 paths: 4 normal 

execution paths and 12 abnormal paths. The abnormal 
ones are due to improper selection of the branches at the 
choice statements. For example, it is the case that 911 
sent a signal to Amb1 and moved  to the scene, but the 
patient waits for Amb2. 

For the normal execution paths, it is possible to 
perform analysis of their temporal properties.  

Firstly, the case that the patient moves out of the car 
safely first is as follows: 

1) T1: An accident occurs and the driver moves out 
of the car safely by himself or herself. 

2) T2: The driver moves out of the car. 
3) T3: The driver calls 911. 

4) T4: 911 calls its ambulance to go to the place 
where the accident occurred.  

Here the time to arrive at the scene by the ambulance 
is different, depending on which ambulance is chosen to 
handle the situation by 911. Therefore, the time that the 
ambulance arrives at the scene is defined as t: 

5) T4+t: The ambulance moves out of 911 and 
arrives at the place. 

6) T5+t: The driver hops on the ambulance. 
7) T6+t: The medic in Ambulance performs the 

first aid treatment for the driver. 
8) T16+t: The ambulance arrives at a hospital. 
9) T17+t: The medic helps the driver to move into 

the hospital. 
10) T18+t: A doctor in the hospital treats the driver 

and the ambulance sends 911 a m essage of 
completing its mission. 

Amb1 consumes total 23 unit times, since t=5;  Amb2 
does total 21 unit time, since t=3. 

Secondly, the case that the patient does not move out 
of the car safely is as follows: 

3) T1: An accident occurs and the driver is 
unconscious. 

4) T6: The car acknowledges that the driver cannot 
move out of the car after the accident. 

5) T7: The car sends 911 a message of the accident. 
6) T8: 911 calls its ambulance to go to the place 

where the accident occurred. 

Similar to the first case, here the time to arrive at the 
scene by the ambulance is different, depending on which 
ambulance is chosen to handle the situation by 911. The 
time that the ambulance arrives at the scene is defined as 
t: 

7) T8+t: The ambulance moves out of 911 and 
arrives at the place. 

Here the time to open the doors of the car is 
difference. Therefore the time is defined as d. 

8) T8+t+d: The medic opens the driver-side door of 
the car. 

9) T9+t+d: The medic moves the driver out of the 
car. 

10) T10+t+d: The medic moves the driver into the 
ambulance. 

11) T11+t+d: The medic performs the first aid 
treatment for the driver. 

12) T21+t+d: The ambulance arrives at a hospital. 
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13) T22+t+d: The medic moves the driver into the 
hospital. 

14) T23+t+d: A doctor in the hospital treats the 
driver and the ambulance sends 911 a message 
of completing its mission. 

For Amb1, t=5, d=1; for Amb2 t=3, d=7. Therefore 
Amb1 consumes 29 unit times; Amb2 consumes 33 unit 
times. The results of the execution are summarized in 
Table 5. 

 Case 1: Driver moves 
out of the car 

Case 2: Driver is 
unconscious 

Amb1 23 time unit 29 time unit 
Amb2 21 time unit 33 time unit 

Table 5 Results of the Example 
 

As the results of the execution, it is known that the 
deadlines for the Amb1 and Amb2 processes are 
satisfied. In addition, it is possible to determine which 
ambulance to send for treatment depending on the status 
of the patient. In case that the patient moves out of the 
car autonomously, Amb2 is better since it arrives earlier 
than Amb1. However in case that the patient is not able 
to do so, Amb1 is better since it opens the doors faster 
even though it arrives little late. 

6 Comparative Analysis 
Timed pi-Calculus is a process algebra that is designed 
to specify and analyze smart mobile services. Timed pi-
Calculus is the timed version of pi-Calculus, which 
allows time-stamp and clock be passed additionally 
during value passing: the temporal requirements of the 
process movements can be specified. However there is a 
limitation that the execution time of an action cannot be 
specified directly on the action. Further it is difficult to 
analyze the execution time, the deadline, and others of 
an action, since such temporal properties are represented 
by the passing time-stamp and clock. Similarly the 
movement in the algebra is inappropriate to represent a 
real movement of a process since it is represented by 
value passing. Consequently such indirect representation 
of a movement may result in distortion of the patterns of 
real movements since the representation reduces the 
scope of the possible movements in expression. 

d-Calculus is a p rocess algebra that is designed to 
express direct process movements into or out of other 
processes both autonomously and heteronomously. It 
allows various types of mobile requirements to be 
specified, but only simple type of temporal requirements 
for process movements is possible: A temporal bound of 
the minimum and maximum limits. It results in limited 

specification of the temporal requirements of the 
movements as well as limited analysis of the 
requirements. In addition, specification can be 
represented in both text and graph in order to increase 
visibility of the specification as well as 
comprehensibility. However there are limitations in 
specification of temporal properties: The execution time 
is only possible for an action; Deadline is specified only 
by exception. It implies that only simple temporal 
specification is possible, but complex temporal 
specification for the smart EMS example is not possible. 

However, dT-Calculus overcomes these limitations 
of these algebras. Since it is an extension version of d-
Calculus, it can utilize all different types of direct 
movements of processes. Besides, it is possible to 
specify complex temporal requirements of processes by 
supplying a variety of additional temporal properties. 
Further, the analysis of the temporal properties is 
relatively easy since the properties are directly specified 
on actions and processes. And it is possible to specify 
exceptional handling to solve errors or faults caused by 
any violation of timeout and deadline. 

 

Fig.11 Architecture of SAVE 

7 SAVE 
In order to demonstrate the feasibility of the approach in 
the paper, a tool, called SAVE (Specification, Analysis, 
Verification and Evaluation), has been developed on the 
ADOxx Meta-Modeling Platform. There are three basic 
models defined in SAVE: Specification, Execution and 
Simulation. Fig. 11 shows the architecture of SAVE. 

The first step to use SAVE for analysis is to specify 
systems in dT-Calculus. There are two specification 
models in SAVE, as shown in Fig. 12 and 13 for the 
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EMS example: ITL (In-The-Large) and ITS (In-The-
Small).  

 

Fig. 12 ITL Model in SAVE 

 

Fig. 13 ITS Model in SAVE 

 

Fig. 5 Execution Model in SAVE 

 

Fig. 6 Simulation Model in SAVE 

From specification, the execution model can be 
automatically generated by the execution model 
generator. The execution model reveals all possible 
execution paths and determines whether each path is of 
normal or deadlock. Fig. 14 shows the execution model 
for the EMS example. 

After generating an execution model, the simulation 
model for each execution path is automatically 
generated. The simulation model is represented in GTS 
(Geo-Temporal Space), where all the execution and 
movements resulted in the path are described in the 
model in detail. Based on the simulation model, it is 
possible to analyze and verify the temporal requirements 
of DMRS, using GTS Logic [7]. Fig. 15 shows the 
simulation model for the first path of the EMS example 
in Fig. 14. 

8 Conclusion and Future research 
This paper proposed a new process algebra, called dT-
Calculus, for mobile and temporal specification and 
analysis of Distributed Mobile Real-time Systems. The 
algebra extended d-Calculus for specification and 
analysis of a v ariety of different types of temporal 
properties at the direct movement actions and the mobile 
processes. Further a tool, called SAVE, has been 
developed to demonstrate the feasibility of the approach 
with the algebra.  

Presently in the paper, the process algebra for 
specification and analysis is proposed. In the future 
research, the different types of verification methods are 
developed to demonstrate the usability of dT-Calculus, 
including SAVE with a verification model. 
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