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Abstract: Dictating program control-flow transfers to be within a reference control-flow graph (CFG) can make 
a sound software protection. Control flow confinement (CFC) is to ensure the program execution to follow the 
reference of a control flow graph (CFG) obtained via profiled execution traces with various input data sets. 
CFC allows only the tested and expected control flows in program execution. This paper gauges the prospect of 
the CFC in practice by investigating how many unique control flow transfer instances there are in the execution 
profiles of various applications including popular sever programs and embedded routines. The profiled 
execution traces with various input data sets show that the number of unique control flow transfer instances are 
surprisingly low, which suggest that confining the program control flow within the set of the unique control 
flow transfers is feasible in practice. With the CFC, software behavior would be within the expected behavior 
space, avoiding unexpected mis-behavior, which leads to more dependable and secure environment for IoT 
(Internet of Things) and CPS (Cyber Physical System). 
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1 Introduction 
Program control flow described in the program 
dictates its behavior. To have the software behavior 
dependable and trustworthy, it is critical to secure 
the program control flow data. Software faults and 
attacks cause unwanted control flow transfers in 
program execution. Confining program control flow 
to ensure that the program execution follows the 
tested and validated control flow transfers makes a 
sound principle for developing dependable and 
trustworthy system. Its premise is that an 
unexpected control transfer is not allowed to 
warrant the software behavior to be as expected. 
Considering the emerging popularity of Internet of 
Things (IoT) and Cyber Physical Systems (CPS), it 
is of a paramount importance to have the systems 
and devices behave as expected in the design. 

Control flow confinement (CFC), ensuring the 
program execution to follow the reference of a 
control flow graph (CFG) obtained via profiled 
execution traces with various input data sets, can 
make a powerful basis for developing software 
protection. Unlike the control flow integrity (CFI) 
that is based only on the CFG generated statically 
[1], CFC is based on only the tested and expected 
control flows in program execution. The static CFG 
is bound to be conservative, leaving a room for 
unintended control transfers included in the CFG, 

and not able to handle dynamically linked functions 
properly. Also, the implicit nature of the control 
flows adds ambiguity to the static CFG.  

This paper studies the characteristics of the 
program control flow data that define control flow 
transfer instances. One particular question is how 
many unique control flow transfer instances are in 
the program execution. To represent a program 
control flow, one needs the source and the 
destination, preferably also the path to reach the 
source, of each control flow transfer instance. Since 
they together represent each control transfer 
instance uniquely, it can be considered a program 
behavior signature. If the number of the unique 
control flow transfer instances is modest in real 
programs, CFC can make a desirable software 
protection in practice.  

The experimental results reported in this paper 
are from the complete running of real and full-scale 
applications under a live operating system. Bochs 
[2], a full-system Intel Pentium emulator, was used 
for our profiling study. All the programs were 
compiled and targeted to dynamically linked x86 
binaries, and ran under Redhat Linux OS over 
Bochs. The Linux kernel was modified, so that the 
hardware emulator became aware of process 
information. All the instructions from the same 
application image, not just one “representative” 
process/thread, were profiled. Therefore, more 
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accurate and complete control flow information 
were collected, even for the multi-threaded 
applications. The behavior of the dynamically 
linked library code were observed as well.  

Our experiments were with the four popular 
server programs – apache, sshd, ftpd, and telnetd, 
along with the four embedded routines – rawc, 
dither, dijks, and toast from the MiBench [16]. We 
executed each program with various input data sets 
and also for daily use to cover diverse execution 
paths in the programs. The results show that the 
number of the unique control flow transfer instances 
are surprisingly low. 

The rest of this paper is organized as follows. 
Section 2 describes the background and the 
motivation of our study. Section 3 explains our 
choice of the objects for representing control flow 
transfer instances. Section 4 presents the 
experimental results from the profiling of the server 
programs and embedded routines, and Section 5 
describes the detection of unexpected control flow 
transfers with CFC along with its limits and 
effectiveness. Section 6 presents the conclusion. 
 
2 Background and Motivation 
2.1 Control Flow Transfer and Branches 
At the machine instruction level, high-level 
descriptions of control flow transfers are ultimately 
translated into direct branches and indirect branches 
for the code binary. The target address of a direct 
branch is wired in the instruction bits, and points to 
a single location. The direction of direct branches 
may be compromised, but the target address cannot 
be changed. Conversely, an indirect branch reads its 
target from a memory location or a register. Such 
target addresses are generated dynamically at 
runtime. With the contents of the register for 
indirect branches originated from the memory, an 
attacker can manage to compromise the control data 
in memory for the target addresses, by exploiting 
program’s vulnerabilities such as buffer overflow. 
For example, the target could be replaced with the 
starting address of a foreign code previously 
injected or an impossible target address, not 
following the legitimate execution paths. 

Most common indirect branches, in terms of 
frequency, are the return instructions that read the 
target addresses saved in the stack. The target of a 
return is always in the runtime stack, and the 
location of the target is known before the return 
instruction uses it. This makes the return target the 
most exploited one in software attacks. Many 
solutions were proposed to protect the return 
address: from a separate protected copy of the 
runtime stack, so called “shadow stack”, in software 

[13] or hardware [18], to either guard the return 
address location [9], or encrypt/hide the return 
address value [17], [23]. However, fewer works 
have been undertaken on indirect calls and indirect 
jumps, called non-return indirect branches in this 
paper. The major sources of the non-return indirect 
branches are the uses of function pointers, 
operations on jump tables in high-level language, 
non-local jump for library calls, and virtual function 
mechanisms. An indirect branch, either a return or a 
non-return indirect branch, provides a desirable 
point for validating the program control flow.   
 
2.2 Validating Control Flow 
The CFGs adopted in the existing control flow 
validation schemes for software protection have 
three issues we are concerned about: (1). They are 
from a static analysis, having rooms for unintended 
control flows included in the CFG due to the 
conservative nature of the static analysis; (2). They 
are for software based control flow transfer 
validation, incurring a significant performance 
overhead.; (3). They convey little context 
information for a particular control transfer instance, 
allowing the attackers to mount an attack with the 
legitimate control transfers per the CFG. To 
alleviate the issues, CFC is based on the CFG in 
terms of control flow information from the testing 
and pilot run of the program during its development. 
Unlike the static CFG, the CFG generated from the 
program execution profiles allows that the CFC 
warrants the tested and expected program behavior. 
 
3 Representing Control Flow 
Various control flow related objects, from the 
branch target address to the complete execution 
paths or their combination, can represent each 
control flow transfer instance at indirect branch 
instruction level. Depending on the scope of the 
chosen objects, the protection efficacy and overhead 
can be different. This section considers the objects 
for more accurate and precise control flow 
representation but at the same time for little 
overhead.  

A natural object to validate is the target address 
or the target program counter value (TPC) of each 
indirect branch instance. Such a validation can 
prevent the control flow from jumping to the 
implanted code and/or impossible target address. 
However, an unexpected control flow transfer might 
utilize a legitimate target. For example, performing 
malicious operations via code reuse attacks such as 
return-to-libc attacks or return oriented 
programming can be done with legitimate target 
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addresses. TPC alone is not sufficient enough to 
represent each control flow transfer instance 

A more concrete way for representing a control 
flow transfer is to couple the TPC with its legitimate 
branch location, i.e., the PC value of the 
corresponding branch instruction (BPC). As shown 
in Fig. 1, the pair TPC||BPC can be utilized to detect 
most control flow compromises including code 
reuse attacks (CRAs).  

Although validating both the branch location and 
its target address is a popular approach [1], [19], one 
critical issue is that it samples the program control 
flow only at isolated program execution points, i.e. 
at the indirect branches, without considering its 
context [24]. Consequently, it could miss some 
elaborate attacks that alter the control flow but still 
branch from a legitimate indirect branch site to a 
legitimate target.  

To have a context information for a control 
transfer instance, we include the execution path, 
besides the indirect branch and its target, into the 
objects being monitored; only if the pair BPC||TPC 
of an indirect branch and the execution path that 
leads to the branch have been validated, is the 
program allowed to make the control flow transfer. 
We define the execution path of an indirect branch 
as the sequence of direction outcomes of the 
preceding conditional branches to the indirect 
branch, and denote it as EP (execution path). The set 
of the PATs, {PAT = (BPC||TPC||EP)}, extracted 
from the program makes up the CFG.  

 
4 Experiments 
4.1 Profiling for Control Flow Data 
We envision the CFG of the PATs comes as a part 
of software installation; the software development 
process generated the CFG of the PATs with various 
test input data sets. However, without such a 
provision of providing the CFG in reality, for our 
work in this paper we have profiled the programs 
with various input data sets via synthetic input data 
sets. MiDataSets [14] provides 20 different input 
data sets that are selected to test most control flow 
paths in MiBench embedded routines [16]. Four 
embedded benchmarks from MiBench have been 
experimented with. To extract the legitimate PATs 
for the CFG, we had repeated the profiling until the 
number of PATs of BPC||TPC||EP converges. 

We define the number of conditional branch 
outcomes included in the execution path of an 
indirect branch as the EP length. A longer EP 
certainly improves the detection accuracy, and 
provides a stronger protection, as long as the branch 
directions captured in the EP are correlated. 

However, it comes at the cost of larger storage 
overhead, as well as slower validation. An 
excessively long EP may also include unrelated 
branches, which may provide the opportunity for 
false positive patterns. Therefore, we must trade the 
EP length off the overall efficiency. We have 
profiled the indirect branch’s PC and the target PC 
(BPC||TPC) as completely as possible, and tested 
the convergence of PATs with various EP lengths. 
The goal is to have the “truncated” execution path 
be as short as possible, while still informative 
enough to reflect the program behavior accurately. 
Our study suggests that the EP of a short length 
would be sufficient. 

One complication arises in any scheme for 
generating CFG is how to handle dynamically 
linked functions. There can be control flow transfers 
between the executable and the entry address of a 
function in dynamic libraries, called executable 
library jumps. Another type of relevant jumps 
occurs within the library code, called internal jumps. 
Previous solutions either limit their validation on the 
static linked functions [1], [19], or track only the 
internal jumps within the same library, ignoring the 
executable library jumps [11]. We address this issue 
of dynamically linked targets, by seeking help from 
the linker and loader. A target address for the 
indirect library call could be resolved with only two 
values. One is the entrance address of the linker, 
which is always fixed for a given runtime system. 
The other is the actual address patched by the linker 
at runtime, which is always fixed in each run. When 
constructing a PAT of BPC||TPC||EP for an indirect 
branch for a library call, the TPC can be initialized 
as the entrance address of the linker for executable 
library jumps (e.g. PLT0 in PLT). When the linker 

 

Fig. 1. CFG of the (TPC, BPC) pairs for code reuse 
attack detection: if a code reuse attack follows the 
control flow transfer sequence of ①->②->③->④ 
by compromising the return addresses (② and ④), 
it will be detected as ② and ④ are not in the CFG. 
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or loader resolves the address at runtime, it patches 
both the function pointer table (e.g. GOT) for 
dynamic linking, and the TPC in the corresponding 
signature. For the internal jumps, we adopt a similar 
method adopted in [11], [25] to track the offset, 
rather than the absolute address, for the TPC. Thus, 
a later compromise of function pointers related to 
the dynamically linked libraries can be detected.  

 
4.2 Profiling Results 
Fig. 2 shows the experimental result of profiling of 
four embedded benchmarks, rawc, dither, toast, and 
dijks, from MiBench [16] with the 20 different input 
datasets from MiDataSets [14]. It shows the number 
of PATs and its convergence pace, with respect to 
the EP length from zero (only BPC||TPC) to 15, i.e. 
up to 15 conditional branches prior to each indirect 
branch instance, 

We also did profiling of popular server programs. 
The four popular server programs we experimented 
are apache, ftpd, sshd, and telnetd. The apache 
server hosted the static html files, several popular 
large files for download (50MB each), and 
contained the CGI (common gateway interface) 
programs in C, perl and php. It had run as a “field” 
web server for about two weeks, receiving 
approximately 1500 hits per day. Synthetic input 
scripts were employed to exercise ftpd, sshd, and 
telnetd. Fig. 3 shows the profiling results. 

The resultant trends have shown that the number 
of the PATs is modest and limited, and it converges 
after a reasonable amount of profiling time over 
different EP lengths. When more than ten branch 
outcomes are included in EP, the distance between 
two adjacent curves becomes larger. This probably 
means that the additional path information is less 
informative, and is unlikely to be relevant to the 
indirect branches, as it might add random noise. 
Moreover, these curves have a greater slope, 
indicating a slower convergence speed. With the EP 
length less than 10, the number of PATs, i.e., the 
number of unique control flow transfer instances, is 
less than a few thousands, suggesting the control 
validation of CFC is feasible in practice. 

Our experimental results clearly show that the 
number of PATs does not grow 2c (c=the number of 
conditional branches prior to a control flow transfer 
instance). The growth of the PATs in our 
experiments were actually sublinear. In theory, the 
execution path increases 2c. This suggests that the 
static CFG has in general a room for including the 
control flow transfers not intended in the program 
(see Fig. 5). 

 
We also profiled the number of the conditional 

branches that appear between two consecutively 
executed indirect branches at run-time to determine 
the optimized EP length. We measured the 
accumulative distribution of the number of 
conditional branches that are dynamically executed 
between two indirect branches.  Fig.4 shows that for 
ftpd EP length of three covers 80% the cases while 
EP length of seven covers 90% of the cases. To 
achieve the same coverage, the lengths should be six 
and ten for apache, respectively. sshd and telnetd 
have longer execution path between two 
consecutively executed indirect branches. For 
example, with EP length of eight, it can cover about 
70% of the cases for sshd. Typically the direct 

 
Fig. 2. Convergence of the PATs for embedded 
applications. It shows the number of the PATs for 
rawc, dither, toast, and dijks, with the 20 different 
input dataset. Each diagram also shows the results 
with different EP length from 0 to 15. The vertical 
axis is for the number of the PATs and the 
horizontal axis is for the number (in millions) of 
indirect branch instances encountered. 
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branches that are closer to the indirect branches are 
more important since closer branches have more 
correlations while remoter branch outcomes are less 
relevant and likely to add random noise to the 
execution path information. Based on the 
experiments shown, six to eight might be reasonable 
EP lengths as they have 60% to 80% coverage over 
the whole execution paths between any two indirect 
branches. With an EP length of eight, BPC||TPC||EP 
has a similar converging speed as the cases with a 
shorter execution path, while the total number of the 
signature still remains moderate. 

 

 
Fig. 3 Convergence of the PATs for server 
applications. It shows the number of PATs for 
apache, sshd, ftpd, and telnetd with respect to the 
number of the indirect branches that have been 
executed. Each diagram also shows the results with 
different EP length. 

 

 Fig. 4. Accumulative distribution of the number of 
conditional branches between two consecutively 
executed indirect branches, for server applications. 
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 Fig. 5. The number of unique control transfer 
instances, i.e., PATs with different EP lengths (4, 6, 
and 8 bits) for server applications. The number of 
the PATs grows slowly in sublinear fashion with 
respect to the EP lengths. 

Fig.5 shows the total number of PATs with 
different EP lengths from the server applications. 
Note that the number of the PATs grows slowly 
with respect to the EP lengths not in exponential 
rate but in sublinear fashion. One can see the modest 
figures to check each control flow transfer: with a 
bit vector representing all the BPC||TPC||EP, CFC 
can check each control transfer quickly by accessing 
the bit vector with the index based on the bit pattern 
of BPC||TPC||EP. Nevertheless, one should note that 
the EP length is a design option and its value 
depends not only on the protection scope but also 
upon the cost one can tolerate to collect and to store 
the legitimate BPC||TPC||EPs. The protection 
efficacy does not always improve proportional to the 
EP lengths. 
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5 Control Flow Confinement 
There have been numerous software and hardware 
proposals to constrain control flow transfers for 
secure program execution. Most schemes involve 
identifying, encrypting, and/or tracking the control 
data [4], [8], [9], [17], [18]. However, it is not 
always possible to distinguish and track the 
interested control data accurately, especially for the 
non-return indirect branches. Non-control-data 
attacks [7], [21] to compromise the conditional 
branch decisions to alter the control flow implicitly 
without compromising the control data. Also, the 
code reuse attacks can reinterpret the code binaries 
in memory and rearrange the sequence of the 
binaries to perform arbitrary functionality [3], [4], 
[5], [6], [10], [15], [20], [22]. 

 
SSHD do_authentication() 
{   int authenticated = 0; 
 
  while( !authenticated) { 
L1: type = packet_read(); //vulnerable 
   
switch (type) { 
     case SSH_CMSG_AUTH_PASSWORD: 
L2: if (auth_password(user, passwd)) 
     authenticated = 1; 
   
   case .. 
  } 
 
L3: if (authenticated) break; 
  } 
  do_authenticated (pw);   
} 

Fig. 6. An example of non-control data attack from 
a real-world application [7]: A vulnerability in 
packet_read() at L1 can be exploited, to overwrite 
the variable of “authenticated” from 0 to 1.  

 
The CFC scheme per the CFG of the PATs, 

{PAT=(BPC||TPC||EP)}, is effective against a wide 
range of control data compromises. First, it is able 
to detect the control data attacks that introduce a 
foreign code in the runtime stack or the heap, 
because the target addresses (TPC) are checked. 
Checking the branch location (BPC) prevents an 
adversary from compromising an indirect branch 
and redirecting the control flow to the existing code 
binary as in the code reuse attacks. Including the 
path information (EP) is a general protection 
measure to validate the dynamic execution path, 
based on the correlations among branch instructions, 
providing context information for a given indirect 
branch instance. As mentioned in [12], library calls 

or system calls in many cases are indispensable for 
an adversary to introduce malicious operations; and 
a considerable number of realistic run-time systems 
do invoke library calls through the indirect 
branches, using a system function pointer table, 
such as PLT (procedure linkage table) and GOT 
(global offset table). Thus, checking the execution 
path before the indirect branches helps to thwart the 
attacks. 

With the EP included for representing each 
control flow transfer, CFC can detect the non-
control data attack compromising the control flow 
implicitly. Consider the example shown in Fig. 6. It 
is a non-control data attack to bypass the 
authentication by compromising the variable 
“authenticated” that has no direct implication to the 
control flow [7]: packet_read() at L1 is exploited to 
overwrite the variable “authenticated” from 0 to 1. 
So, even with an unauthorized access, i.e., the 
conditional at L2 is false, the access is granted as 
authenticated. For the example code, no static CFG 
can represent the fact that the two conditional 
branches at L2 and L3 can take the same direction 
only: if the first conditional at L2 is true then the 
second conditional at L3 is also true. With the triplet 
PAT=BPC||TPC||EP (with 2-bit or larger EP), the 
attack will be detected; a legitimate PAT in the CFG 
cannot have the EP ending with “01” or “10” for the 
call do_authenticated. Static CFGs fail in this aspect 
because they convey no context information 
regarding a specific control transfer instance. Even a 
recent context sensitive CFI implementation [24] is 
not able to handle the non-control data attack. 

CFI has been considered an effective way of 
preventing the code reuse attacks (CRAs). However, 
recent studies show that CRAs can evade the 
existing CFI schemes [4], [5], [10], [15], [24]. A 
CRA based on the ROP or its variants will mount 
the attack by linking the gadgets, each of which is a 
short consecutive portion of a function residing in 
memory and ends with an indirect branch 
instruction. The gadgets are linked via the indirect 
branch instructions including the calls and returns 
by compromising their target addresses. The CFI 
and the CFC both will detect the attack as long as 
the control transfers linking the gadgets are not in 
the CFGs . 

However, CRAs are possible by exploiting the 
legitimate branch addresses and their proper 
corresponding target addresses [8]. Consider the 
example in Fig. 7: Instead of following the intended 
control transfer sequence of ①->②->③->④, ROP 
can generate a loop structure of ①->②->③->②. 
Note that the control flow transfer from BPCA to 
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TPC1 following the call A of ③ is a legitimate 
control flow for the existing CFGs. With each 
control flow transfer instance represented 
independently in the CFG, there is no context 
information to distinguish the returns of ② and ④, 
and the attack can evade the protection [5], [24]. 

 

call A

…

call A

TPC1

TPC2

Function_A

ret

…
…

BPCA

①
②

③

④

 
Fig. 7. Loop structure via a compromised but 
legitimate control flow [5]: Instead of following the 
intended control transfer sequence of ①->②->③-
>④, return-only programming can generate a loop 
structure of ①->②->③->②. Note that the control 
flow transfer from BPCA to TPC1 following the call 
A of ③ is a legitimate control flow per the CFG. 
 

The problem of associating call-return properly 
by tracking the relative order of the returns and calls 
can be done by utilizing the shadow stack, which 
has been suggested for CFI implementations [1], [5]. 
But the overhead of maintaining the shadow stack is 
nontrivial [18] due to the issue of “stack explosion” 
[25] and other issues such as the calls without 
returns and the context switching. Providing the 
context information on fine grain control transfer 
events has been known to incur serious performance 
overhead [25]. Providing the context information 
accurately over the whole scope of program 
execution is difficult to achieve in practice and 
incurs a serious overhead [11], [19], [25]. Our 
control flow representation of the PATs , without a 
shadow stack, does not provide protection from the 
ROP attack of creating the loop structure in the 
example code in Fig. 7. The EP in the PAT does not 
help on distinguishing the instances of the same 
indirect branch if they follow the same execution 
paths. However, the EP helps in general to provide a 
tighter protection from the CRAs by restricting the 
attacker’s freedom to choose the gadgets. One may 
want to enhance the PAT with the information 
regarding the relative order of the indirect branches 
[24], which is available in a limited scope in the 
LBR (last branch record) for the Intel Pentium for 
the debugging. 

Most CFG representations we are aware of suffer 
from the lack of fully accurate context information: 
for example, how many calls a recursive structure 
will make is hard, if not impossible, to represent in 
any form of CFG. Mimicry attack exploits such 
imprecise context representation [26]. A CRA that 
utilizes only the control flow transfers legitimate per 
the CFG but with a different sequence of the 
transfers from the uncompromised original program 
can evade the protection. Unless we have a CFG 
that represents the program control flows accurately 
and precisely for the whole scope of the program 
execution, it seems wise to avoid a room for the 
attacks to evade the protection.  
 
6 Conclusion 
Control flow confinement (CFC) ensures that the 
program execution avoids unexpected control flow 
transfers, because CFC is based on “dynamic” CFG 
generated from the execution traces of test input 
data during program development. Each control 
transfer instance is defined in terms of the three 
information pieces, specifically the program counter 
value for an indirect branch’s instance (BPC), its 
target address (TPC), and the execution path 
preceding it (EP). The CFG in terms of the program 
attribute triplets – PAT=(BPC||TPC||EP) is a fine 
grain context sensitive CFG with no unintended 
control flow information included.  

Our experiments of the four popular server 
programs and the embedded programs from the 
Mibench were with various input data sets to cover 
most execution scenarios. The experimental results 
clearly show that the number of the PATs does not 
grow 2c (c=the number of conditional branches prior 
to a control flow transfer instance). In theory, the 
number of the execution paths increases at the rate 
of 2c, and the static CFGs always assume in that 
way for the sake of conservative flow analysis. This 
suggests that the static CFGs have in general a room 
for including the control flow transfers not intended 
in the program. With the trend of more use of IoT 
and CPS, it is critical to confine software behavior 
within the known expected behavior space. Our 
CFC per the dynamic CFG can warrant software 
behavior within the tested and proven space. The 
number of the PATs for the dynamic CFG 
converges over the executions with the different 
input data sets and is found to be modest for all the 
programs experimented, which suggest that the CFC 
is feasible in practice. 
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