
Control Flow Confinement: An Empirical Prospect

YONGSUK LEE, GYUNGHO LEE
Department of Computer Science and Engineering

Korea University
145 Anam-ro, Seongbuk-gu, Seoul

SOUTH KOREA
duchi@korea.ac.kr, ghlee@korea.ac.kr

Abstract: Dictating program control-flow transfers to be within a reference control-flow graph (CFG) can make
a sound software protection. Control flow confinement (CFC) is to ensure the program execution to follow the
reference of a control flow graph (CFG) obtained via profiled execution traces with various input data sets.
CFC allows only the tested and expected control flows in program execution. This paper gauges the prospect of
the CFC in practice by investigating how many unique control flow transfer instances there are in the execution
profiles of various applications including popular sever programs and embedded routines. The profiled
execution traces with various input data sets show that the number of unique control flow transfer instances are
surprisingly low, which suggest that confining the program control flow within the set of the unique control
flow transfers is feasible in practice. With the CFC, software behavior would be within the expected behavior
space, avoiding unexpected mis-behavior, which leads to more dependable and secure environment for IoT
(Internet of Things) and CPS (Cyber Physical System).

Key-Words: Cyber Physical Systems, Dependability, Internet of Things, Software Security

1 Introduction
Program control flow described in the program
dictates its behavior. To have the software behavior
dependable and trustworthy, it is critical to secure
the program control flow data. Software faults and
attacks cause unwanted control flow transfers in
program execution. Confining program control flow
to ensure that the program execution follows the
tested and validated control flow transfers makes a
sound principle for developing dependable and
trustworthy system. Its premise is that an
unexpected control transfer is not allowed to
warrant the software behavior to be as expected.
Considering the emerging popularity of Internet of
Things (IoT) and Cyber Physical Systems (CPS), it
is of a paramount importance to have the systems
and devices behave as expected in the design.

Control flow confinement (CFC), ensuring the
program execution to follow the reference of a
control flow graph (CFG) obtained via profiled
execution traces with various input data sets, can
make a powerful basis for developing software
protection. Unlike the control flow integrity (CFI)
that is based only on the CFG generated statically
[1], CFC is based on only the tested and expected
control flows in program execution. The static CFG
is bound to be conservative, leaving a room for
unintended control transfers included in the CFG,

and not able to handle dynamically linked functions
properly. Also, the implicit nature of the control
flows adds ambiguity to the static CFG.

This paper studies the characteristics of the
program control flow data that define control flow
transfer instances. One particular question is how
many unique control flow transfer instances are in
the program execution. To represent a program
control flow, one needs the source and the
destination, preferably also the path to reach the
source, of each control flow transfer instance. Since
they together represent each control transfer
instance uniquely, it can be considered a program
behavior signature. If the number of the unique
control flow transfer instances is modest in real
programs, CFC can make a desirable software
protection in practice.

The experimental results reported in this paper
are from the complete running of real and full-scale
applications under a live operating system. Bochs
[2], a full-system Intel Pentium emulator, was used
for our profiling study. All the programs were
compiled and targeted to dynamically linked x86
binaries, and ran under Redhat Linux OS over
Bochs. The Linux kernel was modified, so that the
hardware emulator became aware of process
information. All the instructions from the same
application image, not just one “representative”
process/thread, were profiled. Therefore, more

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 40 Volume 14, 2017

accurate and complete control flow information
were collected, even for the multi-threaded
applications. The behavior of the dynamically
linked library code were observed as well.

Our experiments were with the four popular
server programs – apache, sshd, ftpd, and telnetd,
along with the four embedded routines – rawc,
dither, dijks, and toast from the MiBench [16]. We
executed each program with various input data sets
and also for daily use to cover diverse execution
paths in the programs. The results show that the
number of the unique control flow transfer instances
are surprisingly low.

The rest of this paper is organized as follows.
Section 2 describes the background and the
motivation of our study. Section 3 explains our
choice of the objects for representing control flow
transfer instances. Section 4 presents the
experimental results from the profiling of the server
programs and embedded routines, and Section 5
describes the detection of unexpected control flow
transfers with CFC along with its limits and
effectiveness. Section 6 presents the conclusion.

2 Background and Motivation
2.1 Control Flow Transfer and Branches
At the machine instruction level, high-level
descriptions of control flow transfers are ultimately
translated into direct branches and indirect branches
for the code binary. The target address of a direct
branch is wired in the instruction bits, and points to
a single location. The direction of direct branches
may be compromised, but the target address cannot
be changed. Conversely, an indirect branch reads its
target from a memory location or a register. Such
target addresses are generated dynamically at
runtime. With the contents of the register for
indirect branches originated from the memory, an
attacker can manage to compromise the control data
in memory for the target addresses, by exploiting
program’s vulnerabilities such as buffer overflow.
For example, the target could be replaced with the
starting address of a foreign code previously
injected or an impossible target address, not
following the legitimate execution paths.

Most common indirect branches, in terms of
frequency, are the return instructions that read the
target addresses saved in the stack. The target of a
return is always in the runtime stack, and the
location of the target is known before the return
instruction uses it. This makes the return target the
most exploited one in software attacks. Many
solutions were proposed to protect the return
address: from a separate protected copy of the
runtime stack, so called “shadow stack”, in software

[13] or hardware [18], to either guard the return
address location [9], or encrypt/hide the return
address value [17], [23]. However, fewer works
have been undertaken on indirect calls and indirect
jumps, called non-return indirect branches in this
paper. The major sources of the non-return indirect
branches are the uses of function pointers,
operations on jump tables in high-level language,
non-local jump for library calls, and virtual function
mechanisms. An indirect branch, either a return or a
non-return indirect branch, provides a desirable
point for validating the program control flow.

2.2 Validating Control Flow
The CFGs adopted in the existing control flow
validation schemes for software protection have
three issues we are concerned about: (1). They are
from a static analysis, having rooms for unintended
control flows included in the CFG due to the
conservative nature of the static analysis; (2). They
are for software based control flow transfer
validation, incurring a significant performance
overhead.; (3). They convey little context
information for a particular control transfer instance,
allowing the attackers to mount an attack with the
legitimate control transfers per the CFG. To
alleviate the issues, CFC is based on the CFG in
terms of control flow information from the testing
and pilot run of the program during its development.
Unlike the static CFG, the CFG generated from the
program execution profiles allows that the CFC
warrants the tested and expected program behavior.

3 Representing Control Flow
Various control flow related objects, from the
branch target address to the complete execution
paths or their combination, can represent each
control flow transfer instance at indirect branch
instruction level. Depending on the scope of the
chosen objects, the protection efficacy and overhead
can be different. This section considers the objects
for more accurate and precise control flow
representation but at the same time for little
overhead.

A natural object to validate is the target address
or the target program counter value (TPC) of each
indirect branch instance. Such a validation can
prevent the control flow from jumping to the
implanted code and/or impossible target address.
However, an unexpected control flow transfer might
utilize a legitimate target. For example, performing
malicious operations via code reuse attacks such as
return-to-libc attacks or return oriented
programming can be done with legitimate target

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 41 Volume 14, 2017

addresses. TPC alone is not sufficient enough to
represent each control flow transfer instance

A more concrete way for representing a control
flow transfer is to couple the TPC with its legitimate
branch location, i.e., the PC value of the
corresponding branch instruction (BPC). As shown
in Fig. 1, the pair TPC||BPC can be utilized to detect
most control flow compromises including code
reuse attacks (CRAs).

Although validating both the branch location and
its target address is a popular approach [1], [19], one
critical issue is that it samples the program control
flow only at isolated program execution points, i.e.
at the indirect branches, without considering its
context [24]. Consequently, it could miss some
elaborate attacks that alter the control flow but still
branch from a legitimate indirect branch site to a
legitimate target.

To have a context information for a control
transfer instance, we include the execution path,
besides the indirect branch and its target, into the
objects being monitored; only if the pair BPC||TPC
of an indirect branch and the execution path that
leads to the branch have been validated, is the
program allowed to make the control flow transfer.
We define the execution path of an indirect branch
as the sequence of direction outcomes of the
preceding conditional branches to the indirect
branch, and denote it as EP (execution path). The set
of the PATs, {PAT = (BPC||TPC||EP)}, extracted
from the program makes up the CFG.

4 Experiments
4.1 Profiling for Control Flow Data
We envision the CFG of the PATs comes as a part
of software installation; the software development
process generated the CFG of the PATs with various
test input data sets. However, without such a
provision of providing the CFG in reality, for our
work in this paper we have profiled the programs
with various input data sets via synthetic input data
sets. MiDataSets [14] provides 20 different input
data sets that are selected to test most control flow
paths in MiBench embedded routines [16]. Four
embedded benchmarks from MiBench have been
experimented with. To extract the legitimate PATs
for the CFG, we had repeated the profiling until the
number of PATs of BPC||TPC||EP converges.

We define the number of conditional branch
outcomes included in the execution path of an
indirect branch as the EP length. A longer EP
certainly improves the detection accuracy, and
provides a stronger protection, as long as the branch
directions captured in the EP are correlated.

However, it comes at the cost of larger storage
overhead, as well as slower validation. An
excessively long EP may also include unrelated
branches, which may provide the opportunity for
false positive patterns. Therefore, we must trade the
EP length off the overall efficiency. We have
profiled the indirect branch’s PC and the target PC
(BPC||TPC) as completely as possible, and tested
the convergence of PATs with various EP lengths.
The goal is to have the “truncated” execution path
be as short as possible, while still informative
enough to reflect the program behavior accurately.
Our study suggests that the EP of a short length
would be sufficient.

One complication arises in any scheme for
generating CFG is how to handle dynamically
linked functions. There can be control flow transfers
between the executable and the entry address of a
function in dynamic libraries, called executable
library jumps. Another type of relevant jumps
occurs within the library code, called internal jumps.
Previous solutions either limit their validation on the
static linked functions [1], [19], or track only the
internal jumps within the same library, ignoring the
executable library jumps [11]. We address this issue
of dynamically linked targets, by seeking help from
the linker and loader. A target address for the
indirect library call could be resolved with only two
values. One is the entrance address of the linker,
which is always fixed for a given runtime system.
The other is the actual address patched by the linker
at runtime, which is always fixed in each run. When
constructing a PAT of BPC||TPC||EP for an indirect
branch for a library call, the TPC can be initialized
as the entrance address of the linker for executable
library jumps (e.g. PLT0 in PLT). When the linker

Fig. 1. CFG of the (TPC, BPC) pairs for code reuse
attack detection: if a code reuse attack follows the
control flow transfer sequence of ①->②->③->④
by compromising the return addresses (② and ④),
it will be detected as ② and ④ are not in the CFG.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 42 Volume 14, 2017

or loader resolves the address at runtime, it patches
both the function pointer table (e.g. GOT) for
dynamic linking, and the TPC in the corresponding
signature. For the internal jumps, we adopt a similar
method adopted in [11], [25] to track the offset,
rather than the absolute address, for the TPC. Thus,
a later compromise of function pointers related to
the dynamically linked libraries can be detected.

4.2 Profiling Results
Fig. 2 shows the experimental result of profiling of
four embedded benchmarks, rawc, dither, toast, and
dijks, from MiBench [16] with the 20 different input
datasets from MiDataSets [14]. It shows the number
of PATs and its convergence pace, with respect to
the EP length from zero (only BPC||TPC) to 15, i.e.
up to 15 conditional branches prior to each indirect
branch instance,

We also did profiling of popular server programs.
The four popular server programs we experimented
are apache, ftpd, sshd, and telnetd. The apache
server hosted the static html files, several popular
large files for download (50MB each), and
contained the CGI (common gateway interface)
programs in C, perl and php. It had run as a “field”
web server for about two weeks, receiving
approximately 1500 hits per day. Synthetic input
scripts were employed to exercise ftpd, sshd, and
telnetd. Fig. 3 shows the profiling results.

The resultant trends have shown that the number
of the PATs is modest and limited, and it converges
after a reasonable amount of profiling time over
different EP lengths. When more than ten branch
outcomes are included in EP, the distance between
two adjacent curves becomes larger. This probably
means that the additional path information is less
informative, and is unlikely to be relevant to the
indirect branches, as it might add random noise.
Moreover, these curves have a greater slope,
indicating a slower convergence speed. With the EP
length less than 10, the number of PATs, i.e., the
number of unique control flow transfer instances, is
less than a few thousands, suggesting the control
validation of CFC is feasible in practice.

Our experimental results clearly show that the
number of PATs does not grow 2c (c=the number of
conditional branches prior to a control flow transfer
instance). The growth of the PATs in our
experiments were actually sublinear. In theory, the
execution path increases 2c. This suggests that the
static CFG has in general a room for including the
control flow transfers not intended in the program
(see Fig. 5).

We also profiled the number of the conditional

branches that appear between two consecutively
executed indirect branches at run-time to determine
the optimized EP length. We measured the
accumulative distribution of the number of
conditional branches that are dynamically executed
between two indirect branches. Fig.4 shows that for
ftpd EP length of three covers 80% the cases while
EP length of seven covers 90% of the cases. To
achieve the same coverage, the lengths should be six
and ten for apache, respectively. sshd and telnetd
have longer execution path between two
consecutively executed indirect branches. For
example, with EP length of eight, it can cover about
70% of the cases for sshd. Typically the direct

Fig. 2. Convergence of the PATs for embedded
applications. It shows the number of the PATs for
rawc, dither, toast, and dijks, with the 20 different
input dataset. Each diagram also shows the results
with different EP length from 0 to 15. The vertical
axis is for the number of the PATs and the
horizontal axis is for the number (in millions) of
indirect branch instances encountered.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 43 Volume 14, 2017

branches that are closer to the indirect branches are
more important since closer branches have more
correlations while remoter branch outcomes are less
relevant and likely to add random noise to the
execution path information. Based on the
experiments shown, six to eight might be reasonable
EP lengths as they have 60% to 80% coverage over
the whole execution paths between any two indirect
branches. With an EP length of eight, BPC||TPC||EP
has a similar converging speed as the cases with a
shorter execution path, while the total number of the
signature still remains moderate.

Fig. 3 Convergence of the PATs for server
applications. It shows the number of PATs for
apache, sshd, ftpd, and telnetd with respect to the
number of the indirect branches that have been
executed. Each diagram also shows the results with
different EP length.

 Fig. 4. Accumulative distribution of the number of
conditional branches between two consecutively
executed indirect branches, for server applications.

0

2000

4000

6000

8000

10000

12000

14000

16000

apache ftpd sshd telnetd

PAT=IBP+8-bitEP
PAT=IBP+6-bitEP

PAT=IBP+4-bitEP
IBP=BPC|TPC

 Fig. 5. The number of unique control transfer
instances, i.e., PATs with different EP lengths (4, 6,
and 8 bits) for server applications. The number of
the PATs grows slowly in sublinear fashion with
respect to the EP lengths.

Fig.5 shows the total number of PATs with
different EP lengths from the server applications.
Note that the number of the PATs grows slowly
with respect to the EP lengths not in exponential
rate but in sublinear fashion. One can see the modest
figures to check each control flow transfer: with a
bit vector representing all the BPC||TPC||EP, CFC
can check each control transfer quickly by accessing
the bit vector with the index based on the bit pattern
of BPC||TPC||EP. Nevertheless, one should note that
the EP length is a design option and its value
depends not only on the protection scope but also
upon the cost one can tolerate to collect and to store
the legitimate BPC||TPC||EPs. The protection
efficacy does not always improve proportional to the
EP lengths.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 44 Volume 14, 2017

5 Control Flow Confinement
There have been numerous software and hardware
proposals to constrain control flow transfers for
secure program execution. Most schemes involve
identifying, encrypting, and/or tracking the control
data [4], [8], [9], [17], [18]. However, it is not
always possible to distinguish and track the
interested control data accurately, especially for the
non-return indirect branches. Non-control-data
attacks [7], [21] to compromise the conditional
branch decisions to alter the control flow implicitly
without compromising the control data. Also, the
code reuse attacks can reinterpret the code binaries
in memory and rearrange the sequence of the
binaries to perform arbitrary functionality [3], [4],
[5], [6], [10], [15], [20], [22].

SSHD do_authentication()
{ int authenticated = 0;

 while(!authenticated) {
L1: type = packet_read(); //vulnerable

switch (type) {
 case SSH_CMSG_AUTH_PASSWORD:
L2: if (auth_password(user, passwd))
 authenticated = 1;

 case ..
 }

L3: if (authenticated) break;
 }
 do_authenticated (pw);
}

Fig. 6. An example of non-control data attack from
a real-world application [7]: A vulnerability in
packet_read() at L1 can be exploited, to overwrite
the variable of “authenticated” from 0 to 1.

The CFC scheme per the CFG of the PATs,

{PAT=(BPC||TPC||EP)}, is effective against a wide
range of control data compromises. First, it is able
to detect the control data attacks that introduce a
foreign code in the runtime stack or the heap,
because the target addresses (TPC) are checked.
Checking the branch location (BPC) prevents an
adversary from compromising an indirect branch
and redirecting the control flow to the existing code
binary as in the code reuse attacks. Including the
path information (EP) is a general protection
measure to validate the dynamic execution path,
based on the correlations among branch instructions,
providing context information for a given indirect
branch instance. As mentioned in [12], library calls

or system calls in many cases are indispensable for
an adversary to introduce malicious operations; and
a considerable number of realistic run-time systems
do invoke library calls through the indirect
branches, using a system function pointer table,
such as PLT (procedure linkage table) and GOT
(global offset table). Thus, checking the execution
path before the indirect branches helps to thwart the
attacks.

With the EP included for representing each
control flow transfer, CFC can detect the non-
control data attack compromising the control flow
implicitly. Consider the example shown in Fig. 6. It
is a non-control data attack to bypass the
authentication by compromising the variable
“authenticated” that has no direct implication to the
control flow [7]: packet_read() at L1 is exploited to
overwrite the variable “authenticated” from 0 to 1.
So, even with an unauthorized access, i.e., the
conditional at L2 is false, the access is granted as
authenticated. For the example code, no static CFG
can represent the fact that the two conditional
branches at L2 and L3 can take the same direction
only: if the first conditional at L2 is true then the
second conditional at L3 is also true. With the triplet
PAT=BPC||TPC||EP (with 2-bit or larger EP), the
attack will be detected; a legitimate PAT in the CFG
cannot have the EP ending with “01” or “10” for the
call do_authenticated. Static CFGs fail in this aspect
because they convey no context information
regarding a specific control transfer instance. Even a
recent context sensitive CFI implementation [24] is
not able to handle the non-control data attack.

CFI has been considered an effective way of
preventing the code reuse attacks (CRAs). However,
recent studies show that CRAs can evade the
existing CFI schemes [4], [5], [10], [15], [24]. A
CRA based on the ROP or its variants will mount
the attack by linking the gadgets, each of which is a
short consecutive portion of a function residing in
memory and ends with an indirect branch
instruction. The gadgets are linked via the indirect
branch instructions including the calls and returns
by compromising their target addresses. The CFI
and the CFC both will detect the attack as long as
the control transfers linking the gadgets are not in
the CFGs .

However, CRAs are possible by exploiting the
legitimate branch addresses and their proper
corresponding target addresses [8]. Consider the
example in Fig. 7: Instead of following the intended
control transfer sequence of ①->②->③->④, ROP
can generate a loop structure of ①->②->③->②.
Note that the control flow transfer from BPCA to

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 45 Volume 14, 2017

TPC1 following the call A of ③ is a legitimate
control flow for the existing CFGs. With each
control flow transfer instance represented
independently in the CFG, there is no context
information to distinguish the returns of ② and ④,
and the attack can evade the protection [5], [24].

call A

…

call A

TPC1

TPC2

Function_A

ret

…
…

BPCA

①
②

③

④

Fig. 7. Loop structure via a compromised but
legitimate control flow [5]: Instead of following the
intended control transfer sequence of ①->②->③-
>④, return-only programming can generate a loop
structure of ①->②->③->②. Note that the control
flow transfer from BPCA to TPC1 following the call
A of ③ is a legitimate control flow per the CFG.

The problem of associating call-return properly
by tracking the relative order of the returns and calls
can be done by utilizing the shadow stack, which
has been suggested for CFI implementations [1], [5].
But the overhead of maintaining the shadow stack is
nontrivial [18] due to the issue of “stack explosion”
[25] and other issues such as the calls without
returns and the context switching. Providing the
context information on fine grain control transfer
events has been known to incur serious performance
overhead [25]. Providing the context information
accurately over the whole scope of program
execution is difficult to achieve in practice and
incurs a serious overhead [11], [19], [25]. Our
control flow representation of the PATs , without a
shadow stack, does not provide protection from the
ROP attack of creating the loop structure in the
example code in Fig. 7. The EP in the PAT does not
help on distinguishing the instances of the same
indirect branch if they follow the same execution
paths. However, the EP helps in general to provide a
tighter protection from the CRAs by restricting the
attacker’s freedom to choose the gadgets. One may
want to enhance the PAT with the information
regarding the relative order of the indirect branches
[24], which is available in a limited scope in the
LBR (last branch record) for the Intel Pentium for
the debugging.

Most CFG representations we are aware of suffer
from the lack of fully accurate context information:
for example, how many calls a recursive structure
will make is hard, if not impossible, to represent in
any form of CFG. Mimicry attack exploits such
imprecise context representation [26]. A CRA that
utilizes only the control flow transfers legitimate per
the CFG but with a different sequence of the
transfers from the uncompromised original program
can evade the protection. Unless we have a CFG
that represents the program control flows accurately
and precisely for the whole scope of the program
execution, it seems wise to avoid a room for the
attacks to evade the protection.

6 Conclusion
Control flow confinement (CFC) ensures that the
program execution avoids unexpected control flow
transfers, because CFC is based on “dynamic” CFG
generated from the execution traces of test input
data during program development. Each control
transfer instance is defined in terms of the three
information pieces, specifically the program counter
value for an indirect branch’s instance (BPC), its
target address (TPC), and the execution path
preceding it (EP). The CFG in terms of the program
attribute triplets – PAT=(BPC||TPC||EP) is a fine
grain context sensitive CFG with no unintended
control flow information included.

Our experiments of the four popular server
programs and the embedded programs from the
Mibench were with various input data sets to cover
most execution scenarios. The experimental results
clearly show that the number of the PATs does not
grow 2c (c=the number of conditional branches prior
to a control flow transfer instance). In theory, the
number of the execution paths increases at the rate
of 2c, and the static CFGs always assume in that
way for the sake of conservative flow analysis. This
suggests that the static CFGs have in general a room
for including the control flow transfers not intended
in the program. With the trend of more use of IoT
and CPS, it is critical to confine software behavior
within the known expected behavior space. Our
CFC per the dynamic CFG can warrant software
behavior within the tested and proven space. The
number of the PATs for the dynamic CFG
converges over the executions with the different
input data sets and is found to be modest for all the
programs experimented, which suggest that the CFC
is feasible in practice.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 46 Volume 14, 2017

Acknowledgment:
This work was supported in part by the National Re-
search Foundation of Korea (NRF
2015R1A2A2A01). For any correspondence
regarding the paper, contact ghlee@korea.ac.kr.

References:
[1] M. Abadi, M. Budiu, U. Erlingsson and J. Ligatti,

“Control-flow integrity principles, implementations,
and applications”, ACM Transactions on
Information and System Security, vol. 13, issue 1,
Oct. 2009, Article no. 4

[2] Bochs, “The Open Source IA-32 Emulation
Project”, http://bochs.sourceforge.net/

[3] E. Buchanan, R. Roemer, H. Shacham, and S.
Savage, “When good instructions go bad:
Generalizing return-oriented programming to
RISC,” in Proceedings of the 15th ACM
conference on Computer and Communications
Security, Oct. 2008, pp. 27–38.

[4] N. Carlini and D. Wagner, “ROP is still
dangerous: Breaking modern defenses”, in
Proceeding of the 23rd USENIX conference on
Security Symposium, 2014, pp. 385-399

[5] N. Carlini, A. Barresi, M. Payer, D. Wagner and
T. R. Gross, “Control-flow bending: on the
effectiveness of control-flow integrity”, in
Proceedings of the 24nd USENIX conference on
Security Symposium, 2015, pp. 161-176

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R.
Sadeghi, H. Shacham, and M. Winandy, “Return
Oriented Programming without Returns”, in
Proceedings of the 17th ACM conference on
Computer and Communications Security, 2010,
pp. 559-572.

[7] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R.
Iyer. “Non-Control-Data Attacks Are Realistic
Threats”, in Proceedings of the 14th conference
on USENIX Security Symposium, Aug. 2005, pp.
12-26.

[8] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, R.
Iyer. “Defeating Memory Corruption Attacks
via Pointer Taintedness Detection”. in
Proceedings of the International Conference on
Dependable Systems and Networks, June, 2005,
pp. 378-387

[9] C. Cowan, C. Pu, D. Maier, J. Walphole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton, “StackGuard: Automatic
adaptive detection and prevention of buffer-
overflow attacks”, in Proceedings of the 7th
conference on USENIX Security Symposium, Jan
1998, pp. 5-20.

[10] L. Davi, A. Sadeghi, D. Lehmann, F.
Monrose, "Stitching the gadgets: on the
ineffectiveness of coarse-grained control-flow
integrity protection", in Proceedings of the 23rd
USENIX conference on Security Symposium,
2014, pp. 401-416.

[11] H. Feng, O. Kolesnikov, P. Fogla, W. Lee,
W. Gong, “Anomaly Detection Using Call Stack
Information”, in Proceedings of the 2003 IEEE
Symposium on Security and Privacy, May, 2003,
pp. 62-75.

[12] S. Forrest, S. Hofmeyr, A. Somayajo, T.
Longstaff, “A Sense of Self for Unix
Processes”, in Proceedings of the IEEE
Symposium on Security and Privacy, 1996, pp.
120-128.

[13] M Frantzen and M. Shuey. “Stackghost:
Hardware facilitated stack protection”, in
Proceedings of the 10th conference on USENIX
Security Symposium, Aug. 2001, vol. 10, no. 5.

[14] G. Fursin, J. Cavazos, M. O'Boyle and O.
Temam, "MiDataSets: creating the conditions
for a more realistic evaluation of Iterative
optimization", in Proceeding of the 2nd
international conference on High performance
embedded architectures and compilers, 2007,
pp. 245-260

[15] E. Goktas, E. Athanasopoulos, H. Bos, and
G. Portokalidis, “Out of control: Overcoming
control-flow integrity”, in Proceedings of the
IEEE Symposium on Security and Privacy,
2014, pp. 575-589.

[16] M . Guthaus, J. S. Ringenberg, D. Ernst, T.
Austin, T. Mudge, and R. B. Brown, “Mibench:
A free, commercially representative embedded
benchmark suite”, in Proceedings of the IEEE
4th Annual Workshop on Workload
Characterization, Dec. 2001, pp. 3-14.

[17] G. Lee and A. Tyagi, “Encoded Program
Counter: Self-Protection from Buffer Overflow
Attacks”, in Proceedings of the First
International Conference on Internet
Computing, June 2000, pp. 387-394.

[18] Y. Park, Z. Zhang, G. Lee,
“Microarchitectural Protection Against Stack-
Based Buffer Overflow Attack”, IEEE Micro,
July 2006, vol 26, no. 4, pp. 62-71.

[19] R. Sekar, M. Bendre, P. Bollineni, D.
Dhurjati, "A Fast Automaton-Based Method for
Detecting Anomalous Program Behaviors", in
Proceedings of the IEEE Symposium on Security
and Privacy, 2001, pp. 144-155.

[20] H. Shacham, “The geometry of innocent
flesh on the bone: Return-into-libc without
function calls (on the x86),” in Proceedings of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 47 Volume 14, 2017

the 14th ACM conference on Computer and
Communications security, Oct. 2007, pp. 552–
61.

[21] SSH CRC-32 Compensation Attack
Detector Vulnerability.
http://www.securityfocus.com/bid/2347/

[22] M. Tran, M. Etheridge, T. Bletsch, X. Jiang,
V. Freeh, and P. Ning, “On the expressiveness of
return-into-libc attacks,” in Proceedings of the
14th International conference on Recent
Advances in Intrusion Detection, 2011, pp. 121–
141.

[23] N. Tuck, B. Calder, G. Varghese, “Hardware
and Binary Modification Support for Code
Pointer Protection from Buffer Overflow”, in
Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture,
2004, pp. 209-220.

[24] V. Veen, D. Andriesse, E. Göktaş, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, C. Giuffrida,
“Practical Context-Sensitive CFI”, in
Proceedings of the 22th ACM conference on
Computer and Communications Security, 2012,
pp. 927–940.

[25] D. Wagner, D. Dean, “intrusion detection
via Static Analysis”, in Proceedings of the IEEE
Symposium on Security and Privacy, 2001, pp.
156-168.

[26] D. Wagner, P. Soto, “Mimicry Attack on
Host-based Intrusion detection system”, in
Proceedings of the 9th ACM conference on
Computer and communications security, Nov.
2002, pp. 255-264.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yongsuk Lee, Gyungho Lee

E-ISSN: 2224-3402 48 Volume 14, 2017

