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Abstract:  This paper analyzes the complexity of a new phenotype for evolvable hardware with more plasticity 

than the traditional phenotype. The plasticity is due to that fact that this phenotype is unstructured and that 

property allows it to perform combinational and sequential tasks. The complexity is evaluated in relation to 

Shannon’s limit (lower) and Lupanov’s limit (upper). These limits define a bounded and sufficient search space 

for the combinational circuits. However, in the studied case (multipliers with 2-bits word width operands) the 

lowest number of iterations is achieved when the number of cells available is around four-times the Shannon’s 

limit. Moreover, at calculate the mutation rate of digital organisms using the Lynch’s equation, which relates 

the mutation rate to the genome length of the species, the circuit size stays around Lupanov’s limit. Finally, it 

important to note that compact circuits are obtained directly, with an evolutionary algorithm that only follows a 

wished-for functionality, where the economy of the phenotypes is an emergent property of the process. 

 

Key-Words:  Circuit Size, Complexity Limits, Evolvable Hardware, Iterations, Lupanov’s limit, Phenotype, 

Shannon’s limit. 

 

1 Introduction 
Evolvable hardware is born at the intersection of 

three disciplines: electronics, computation, and 

biology [1]. That intersection is defined as the area 

where evolutionary algorithms are utilized to design 

electronic systems. Thus, the hardware produced 

using this technique is bio-inspired [2]. Evolvable 

hardware is also divided into three classes: extrinsic, 

intrinsic, and complete [3]. The difference between 

these classes is based on the software and hardware 

used in the evolutionary process. In the extrinsic 

class, the entire process is run on software and the 

candidate evaluations are realized via simulations. 

The intrinsic class is differentiated from the 

extrinsic class in that the evaluations are realized 

directly in the hardware. For this purpose, the Field-

Programmable Gate Array (FPGA) is the most 

habitually used digital reconfigurable hardware. 

Finally, in the complete class, the entire process 

happens on the FPGA. 

On the other hand, evolvable hardware deserves 

a conceptual redefining. It is just not right to treat 

this technique as a simple application of the 

evolutionary algorithms that are used to design 

electronic systems. It is much better to consider the 

task that is to be performed (to be automated) as 

being part of the digital organism’s behavior, where 

that behavior is more complex and encompasses the 

evolution. In turn, the digital organism can be 

analyzed from three points of view or dimensions: 

behavioral, phenotypic, and genotypic. This 

definition of evolvable hardware is more global and 

compact. Thus, the technique consists of defining 

these three dimensions in terms of the function of 

the task that the system must perform. Certainly, the 
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term, “digital organism”, has been used previously, 

but in a more specific form that was associated with 

replicants that compete by resources [4], long before 

the term, “artificial creature”, was used in the field 

of artificial neural networks [5].  

This paper analyzes the phenotypic complexity 

of a new digital organism species. This complexity 

is evaluated by assessing the results of an extrinsic 

class of evolvable hardware when multipliers with 

2-bits word width operands are sought. 

The rest of paper is organized in the following 

manner: Section 2 examines the classic phenotype 

and its genotype; Section 3 presents the phenotypic 

complexity concept and the definitions of base and 

size; Section 4 analyzes the theoretical limits of the 

complexity; Section 5 presents the new phenotype; 

Section 6 discusses the results of the experiment; 

and Section 7 presents the conclusions. 

 

 

2 Classic Phenotype 
The traditional or classic phenotype consists of a 

rectangular array where each cell is occupied by a 

logic gate of two inputs; the system inputs are on the 

left and the system outputs are on the right. This 

phenotype is known as gate-level Cartesian Genetic 

Programming (CGP) [6]. The types of available 

logic gates are restricted to a small group of basic 

logical functions. The interconnections are 

constrained from left to right (forward), and it is 

typical that the inputs of a column can only connect 

to the outputs of the previous column. However, 

there are cases with more restrictions, where the 

rows are also limited, as well as other cases that are 

more lax, where the cells can connect to the right-

most columns with a depth greater than one. These 

constraints are due to the fact that the task selected 

to test the technique in the current state-of-the-art is 

the combinational circuit design, and as is known, 

the combinational circuit definition implies an 

acyclic graph since the outputs only depend on the 

inputs. Fig. 1 shows a diagram of a typical 

phenotype with its genotype extracted from [7].  

The inputs of the function to implement, as well 

as its inverses and the logic constants 0 and 1, are 

usually found between the inputs of the phenotype. 

The inclusion of constants allows a logic gate of two 

inputs to be simplified as a NOT (inverter) or a 

WIRE (no-inverter). Moreover, in general, this 

inclusion implies a decrease in the total number of 

logic gates and gives greater homogeneity to the 

structure, since one input gate is not necessary. For 

example, in [8] the number of WIREs is maximized 

to obtain a more compact circuit size. 

The genotype is a chain formed by groups of 

three values. The first value represents the logic gate 

function. The second and third values identify the 

position of two other cells associated with each gate 

input, thus {function, cell#, cell#}. The number of 

groups coincides with the available nodes of the 

array. The identifiers of the cells from which the 

system outputs are taken are found at the genotype 

end; thus {cell#}. Obviously, the number of genes 

matches the number of system outputs. As detailed 

in Fig. 1, when the function value is positive, the 

cell controls the selection signal of MUX. When the 

function value is negative, this represents the logic 

function of the gate. Both binary and decimal 

codification is used equally in state-of-the-art 

 

     (a) 

 
     (b) 

-10 5 6 -6 1 7 -12 3 4 -3 10 3 -12 7 8 -12 6 8 -12 11 12 -9 13 11 10 9 13 16 12 

Fig. 1a.The classic phenotype of evolvable hardware; b. its genotype [7]. 
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systems. This present work uses binary codification 

because it simplifies the mutation; due to the binary 

alphabet, this genetic operation is simply a bit-flip, a 

NOT. It is important to consider the order in which 

the cells are numbered. If the cells are numbered by 

rows instead of by columns, the problem becomes 

disruptive. If this happens, two nearby circuits in the 

phenotypic plane can be far in the genotypic plane, 

making the problem more difficult for the algorithm. 

Ultimately, to complete the image of digital 

organisms found in current state-of-the-art, it is 

important to define the behavior, which is already 

known partially because the tasks to be performed 

are combinational, typically multipliers. Then, to 

complete the behavior it is necessary to specify the 

algorithm associated with the evolutionary process. 

Genetic algorithms [9] and evolution strategies [10] 

are used indistinctly. The difference between them 

is that in genetic algorithms the population is larger, 

while in evolution strategies the iteration number is 

larger; thus, the evaluation number (the iteration-

population product) is equal in both. Moreover, the 

obtained results are similar for both algorithms, and 

one is not more advantageous than the other. The 

fitness is equal to the number of coincidences 

between the outputs of the truth table of the wished-

for Boolean function and the circuit output values, 

in which the maximum fitness is equal to M 2
N
, 

where N is the number of inputs and M is the 

number of outputs.  

This function is used exclusivity in all studies to 

calculate the fitness, except in [11] where the 1s are 

heavier than the 0s but without benefits. One 

approach that is used habitually is to divide the 

search process into two parts. First, the fitness is 

associated with the task, and when a 100% 

functional phenotype is achieved, the small circuits 

(those that use fewer cells) are weighted [7]. Then, 

it can be said that the first stage is the design and the 

second stage is the optimization (minimization). 

Finally, it is important to note that this digital 

organism species of evolvable hardware with a 

direct evolution search suffers from a lack of 

scalability, with a limit well defined as a 4-bits 

multiplier (eight inputs and outputs). In [12], the 

current state-of-the-art is reviewed briefly, and it is 

concluded that improvements are needed in this 

area. 

 

 

3 Phenotypic Complexity 
The central theme of the theory of computing is to 

identify a task’s complexity in terms of the 

resources that are consumed. Then, if the 

complexity of a Boolean function needs to be 

calculated, it can be measured as the minimum 

number of operations required to make such a 

function. Of course, this measure depends on the 

available types of cells. If a combinational circuit is 

used for the implementation, the complexity is the 

minimum number of gates based on the types of 

gates that are available. This available operations set 

defines the base. Thus, the complexity of a function 

with respect to a specific base is the minimum 

number of operations required to conduct the 

computing. 

A base is complete when it allows for 

implementing any Boolean function. This is very 

important; a complete base is necessary if an 

adaptive system is required. Obviously, when the 

base is changed, the circuit properties, the size, and 

the depth (or level) are modified. The first property 

is the number of gates and the second property is the 

direct longer path between the input and the output. 

When using evolutionary algorithms in the 

synthesis, the depth is not limited; however, when 

employing classic methods, such as Karnaugh’s 

maps [13] or its computational equivalent Quine–

McCluskey [14,15], the depth is constrained to two 

levels. In addition, if the base is complete, e.g., 

{AND, OR, NOT}, the search space is bounded 

accelerating the adaptation. Table 1 shows that the 

bases used in the current state-of-the-art are mainly 

super-complete. This property is due to the 

introduction of elements that belong to the problem 

that is being addressed; e.g., the use of XOR in 

arithmetic circuits (in this work we include this type 

of cell in the base because the task is to multiply). 

The WIRE (that copies the input value into the 

output) allows obtaining smaller circuits if the 

number of these gates (WIREs) is maximized during 

the evolution. It is also normal find the base {AND, 

OR, NOT} together with its complement (the same 

base but denied) {NAND, NOR, WIRE}. In 

addition, the logic constants, 0 and 1, are usual, and 

the gates with one or both inputs denied. This fact 

allows it generate equivalent functions, which is 

evidenced if the laws of Boole’s algebra, e.g., De 

Morgan’s laws, are applied. The equivalent 

functions expand the polymorphism (morphologic 

diversity) of the phenotypes, and include MUX, 

which produces the same effect. Note that an MUX 

allows the system to implement the logic functions, 

but it can also be considered to be a flow control 

expression (IF select THEN z ELSE y). 
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Table 1The digital evolvable hardware bases. 

Function Base Ref. 

multiply 
AND, XOR, NOT, NAND, 

NOT-XOR, WIRE, MUX 
[15] 

multiply and add AND, OR, NOT, XOR, MUX [16] 

multiply 
AND, OR, NOT, XOR, 

NAND, NOR, WIRE 
[17] 

multiply and add AND, OR, NOT, XOR [18] 

multiply and 

others 
AND, OR, NOT, XOR, WIRE [7] 

 

 

4 Theoretical Limits 
For the complete base {AND, OR, NOT}, the limits 

for the circuit size have been found. Shannon shows, 

for most of the circuits with N inputs, that compute 

a Boolean function, that the circuit size should be 

greater than 2
N
/N (asymptotically) [20]. This fact 

allows one to fix a lower limit for the genotype 

length, confining the search space. Meanwhile, 

Lupanov proves that if the circuit size is greater that 

2
N
/N, all functions of the N inputs can be achieved 

by a fraction of this value [21]. This second fact 

allows one to fix an upper potential limit that is 

twice Shannon’s limit. Then, these two limits are 

very important for the size of the phenotypes and 

their genotypes, obviously only for the same base. 

Then, the task of implementing a Boolean function 

through a combinational circuit has a minimum 

complexity defined by the Shannon’s limit and a 

maximum complexity equal to twice that limit.  

Table 2 shows the lower limit, the number of 

used gates, and the amount of cells available for the 

multipliers and adders with an increasing number of 

inputs. For the multipliers, in order to increase the 

inputs, the phenotype must deviate more and more 

from the lower limits (the distances are: 3 gates, 15 

gates, and 28 gates); however, these distances are 

greater than the fraction of the lower limit. 

Therefore, it can be said that, according to Lupanov, 

the circuits could be smaller. It can also be said that 

the technique seems to lose its efficiency to increase 

the number of inputs. However, the number of 

available cells, and therefore the search space, is too 

great, i.e., it is oversized. For example, for a 

multiplier of 4-bits the lower limit is 32 and the 

amount of available cells is 269, but this can be 

fixed on 64 (twice the Shannon’s limit). Thus, the 

search space can be reduced while success can be 

ensured. On the other hand, the size of the 

phenotype is always approximately equal to the 

lower limit. That demonstrates a measure of the 

efficiency of the evolvable hardware as a technique 

of synthesis. 

 

Table 2The sizes and limits of the multipliers and adders. 

Function Inputs 
Shannon’s 

limit 

Available 

cells 

Used 

gates 
Ref. 

multiply 

2-bits 
4 4 

12 7 [16] 

48 - [15] 

10 7 [18] 

25 7 [7] 

7 7 [17] 

add  

2-bits 
5 7 

9 6 [16] 

15 10 [18] 

multiply 

3-bits 
6 11 

35 28 [16] 

30 26 [18] 

57 23 [17] 

add  

3-bits 
7 19 20 12 [16] 

multiply 

4-bits 
8 32 269 60 [17] 

 

As discussed in the previous two paragraphs, to 

ensure that the evolutionary process can build a 

100% functional system, it should work with a 

complete base and a size equal to or greater than the 

minimum complexity. In the current state-of-the-art 

these topics are never addressed, although as 

previously mentioned, the used bases are super-

complete and of a specific kind {AND, OR, NOT}. 

In the adders (see Table 2), the used number of 

gates is below the Shannon’s limit, i.e., the addition 

seems to be less complex than the multiplication. 

Indeed, this fact is clear if the multiplication is 

thought of as a progressive addition or if one 

compares the fitness of both the adders and the 

multipliers for the same number of inputs. Table 3 

shows a comparison of the fitness between the 

adders (without carry) and the multipliers. From a 

functional viewpoint, it is evident that the 

multipliers are more complex than the adders. For 

the same width of operand, the wished-for fitness is 

doubled in the multipliers with respect to the adders. 

 
Table 3Fitness of the multipliers and the adders. 

Function 
Bits by 

operand 
Inputs Outputs 

Wished-for 

fitness 

Adder 

2 4 2 32 

3 6 3 192 

4 8 4 1024 

Multiplier 

2 4 4 64 

3 6 6 384 

4 8 8 2048 

 

 

5 New Phenotype 
The new phenotype has two fundamental properties 

that differentiate it from the traditional phenotype. 

First, it is unstructured, i.e., there is no a restriction 

on the interconnection mode of the nodes. At first 
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glance, this plasticity seems to be a disadvantage, 

but it is not, even though the search space increases. 

This flexibility allows the new phenotype to 

perform both combinational and sequential tasks, 

covering the two digital system behaviors. Second, 

the phenotype is a hardware description in Very-

high-speed-integrated-circuit Hardware Description 

Language (VHDL) [22] that can be synthesized in 

FPGA or in an Application-Specific Integrated 

Circuit (ASIC). Obviously, it can also be seen as a 

graphic. Furthermore, a hardware description in a 

standard language facilitates the modification and 

evaluation (simulation), as well as the union, 

between the design tools. 

An unstructured phenotype allows loops, giving 

rise to cyclic graphs. However, these structures can 

also achieve a behavior that is purely combinational. 

An analysis method to investigate whether or not a 

cyclic graph is combinational is presented in [23]. 

Loops that allow obtaining compact combinational 

circuits are reported in [24]. A method to synthesize 

combinational circuits with loops that obtain small 

circuits is reported in [25]. Fig. 2 shows a trivial 

circuit of [26] to explain combinational circuits with 

loops. This trivial circuit is combinational, although, 

at first glance, it does not seem to be. However, the 

output value is always 0 when the input is 0, and the 

same thing happens with 1. Thus, this trivial circuit 

respects the behavioral definition of a combinational 

circuit: the output values only depend on the input 

values. However, this trivial circuit does not meet 

the classic structural definition, because it is a cyclic 

graph (it has a loop) instead of an acyclic graph. 

Evidently, the restriction over the phenotype found 

in the current state-of-the-art originates from the 

classic structural definition of a combinational 

circuit. However, a broader, new definition allows 

one to create a more flexible phenotype. The 

availability of the logic constants 1 and 0 as system 

inputs permits the construction of NOT and WIRE 

from two inputs gates, and it can decrease the total 

gate number, e.g., an AND with an input in 0 is a 

constant. Moreover, a transformation in WIRE 

implies a reduction in the effective number of cells. 

A typical configuration in which a WIRE appears is 

a cell in which the inputs are connected to the same 

signal. In turn, with the new phenotype, a set of new 

possible simplifications, which can reduce the 

circuit size, appears due to the presence of loops, 

e.g., the trivial circuit shown in Fig. 2 is a WIRE 

that removes two gates. These facts, and the 

foundation presented in the previous paragraph, 

indicate that the new phenotype can lead to a 

compact circuit. 

The new genotype has a minor modification in 

the structure of the groups of three values. In this 

case, the position of two cells associated to each 

gate input first appears, and then the logic gate 

function appears; thus {cell#, cell#, function}. This 

order facilitates the process of constructing the 

phenotype from the genotype, with the phenotype 

being a description in VHDL that follows a style, 

named dataflow, where all the sentences are 

concurrent and simple [27]. Therefore, each set of 

three values of the genotype is translated into a 

concurrent sentence of the phenotype (description). 

At the same time, VHDL demands that a signal have 

only one driver, i.e., multiple drivers for the same 

signal are prohibited. In order to save that 

restriction, each sentence is applied to its own 

signal, whose number coincides with the cell 

position in the array. Taking Fig. 1 as an example, 

the translation of node 15 would be: s15 <= s13 

XOR s11, where the letter “s”, followed by a 

number, identifies each signal. Fig. 3 shows the 

description of the new phenotype in VHDL; it 

includes a multiplier of 2-bits (four inputs and 

outputs) with 20nodes. Fig. 3 also shows its pseudo-

genotype (remember that the used codification is 

binary). It is important to note that the signals 0 and 

1 are associated, respectively, with the logic 

constants 0 and 1. The inputs start from signal 

number two. In the example shown in Fig. 3, the 

inputs go from s2 to s5 because there are four 

inputs, and the nodes go from s6 to s25 because 

there are 20nodes. Meanwhile, the kind of data 

used, std_ulogic, allows one to decrease the 

simulation time of the candidates’ evaluation. This 

type is “unresolved”, i.e., it does not have a 

resolution function, and neither is it a subtype. Thus,

  

 

 
(a)                                                       (b)                                                               (c) 

Fig. 2a.Trivial combinational circuit with a loop; equivalent circuit with b. x=0 and c. x=1. 
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 (a) 

 (b) 

20 14 AND 14 13 XOR … 5 2 NAND 12 14 XOR 12 8 XOR 17 8 7 20 

Fig. 3a.New phenotype; b. pseudo-genotype. 

 

 

to evaluate each expression it is not necessary use 

the resolution function to make a conversion, as 

would happen with std_logic since this is a 

“resolved” subtype of std_ulogic [28]. Finally, it 

should be mentioned that the used base is {AND, 

NAND, XOR}, which is small and homogeneous, 

and it gives good results. 

 

 

6 Results 
The complexity of the new phenotype is evaluated 

by building the multipliers with 2-bits word width 

operands. To finish completing the behavior of the 

digital organism, an algorithm that is similar to an 

evolution strategy (1+) is used, where  is equal to 

4. The difference is that if the mutations do not 

produce improvement, a crossover of one point is 

used, as in a genetic algorithm. At the same time, 

the search start point is a null genome, with all its 

bits in zero. Then, at the beginning, the mutations to 

1 are more frequent; thus, the phenotype size 

increases.  

Fig. 4 shows the iterations (generations) and 

fitness while the number of available nodes in the 

phenotype increases. In this experiment, the 

maximum iteration number is 320,000, the 

maximum fitness is 64 and, the number of genes 

mutant is 10 regardless of the genotype length. 

Shannon’s limit for the wished-for combinational 

circuit is four. For this quantity of available nodes, 

the fitness value is 59 (92% of the maximum 

fitness), i.e., the phenotypic functionality is 92%. 

Later, when the goal of six available cells is 

achieved 98% functionality is reached, and when 

twice the lower limit (eight) is reached the 

functionality is 100%. With respect to the iterations, 

these decrease until the 17 available cells, and then 

the iterations begin to increase. This fact shows that 

it is possible to increase the quantity of cells beyond 

the upper limit and increase the speed with which 

the results are obtained even though the search 

space increases. In this case, the number of available 

cells that minimizes the iterations is approximately 

four-times greater than the Shannon’s limit. 

library ieee; 

use ieee.std_logic_1164.all; 

entity phenotype is port ( 

i0, i1, i2, i3 : in std_ulogic; 

o0, o1, o2, o3 : out std_ulogic); 

end entity; 

architecture dataflow of phenotype is 

signal s0,s1,s2,s3,…,s25 : std_ulogic; 

begin 

s0 <= '0'; 

s1 <= '1'; 

s2 <= i0; 

s3 <= i1; 

s4 <= i2; 

s5 <= i3; 

s6 <= s20 AND s14; 

s7 <= s14 XOR s13; 

s8 <= s20 XOR s22; 

s9 <= s29 NAND s4; 

… 

s23 <= s5 NAND s2; 

s24 <= s12 XOR s14; 

s25 <= s12 XOR s8; 

o0 <= s17; 

o1 <= s8; 

o2 <= s7; 

o3 <= s20; 

end dataflow; 
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Fig. 4Iterations and fitness vs. available nodes for 

multipliers with 2-bits word width operands where the 

number of genes mutant is fixed at 10. 

 

Fig. 5 presents the iterations and size versus the 

available nodes for multipliers with 2-bits word 

width operands. The first thing that can be observed 

is that although in this case does not used a two-step 

strategy to obtain the compact circuits (design 

follow by optimization), the minimum value of the 

current state-of-the-art (seven gates) is achieved 

many times. It is also noted that this happens after 

the upper limit is reached. It is thought that this fact 

is related to the greater flexibility of the new 

phenotype. The phenotype loops allow for more 

compact combinational circuits; they also increase 

the quantity of the cases where it is possible to 

simplify the logic gates (to appear more WIREs). 

Note that even when there are 40cells (10-times the 

lower limit), the size does not increase too much (it 

is eight). Therefore, it is evident the evolutionary 

process maintains the phenotype economy. 

 

 
Fig. 5Iterations and size vs. available nodes for 

multipliers with 2-bits word width operands where the 

number of genes mutant is fixed at 10. 

 

The question then arises: what initial mutation 

rate (the relation between the number of mutant 

genes and the genotype length) will improve the 

economy of phenotypes? For example, Fig. 6 

exhibits the variations needed to obtain an initial 

mutation rate of 4.46%. While it is possible to keep 

trying with many rates, it is already evident that one 

rate is good for a specific number of available cells 

while for others it produces large phenotypes. 

Therefore, it may be adequate to take a look at the 

bio-inspiration. 

 

 
Fig. 6Iterations and size vs. available nodes for 

multipliers with 2-bits word width operands with an 

initial mutation rate of 4.46%. 
 

In [29], Lynch reports the relationship between 

the genotype length and the mutation rate of the 

species. This expression has a fitting of 80%. This is 

shown in equation (1), where: T is the mutation rate 

and L is the genotype length. However, this 

expression is not useful because the genotypes of 

the digital organisms are much shorter than the 

natural genotypes. The genotypes of natural 

organisms consist of 10
6 

base pairs while the 

genotypes of digital organisms are in the hundreds 

of bits. Accordingly, equation (1) is multiplied by a 

scale constant equal to one-tenth to achieve the 

appropriate rates for the length of the digital 

genomes. 

 

T = -0.81 + 0.68 log10(L) (1) 

 

Fig. 7 shows the iterations and phenotype sizes 

in the function of available nodes when Lynch’s 

equation (multiplied by one-tenth) is used to 

calculate the initial mutation rate. Observe that the 

size dispersion is very small, with the phenotypes 

ranging between seven and eight gates, except for 

33 available nodes where the value is sixteen. 

However, as can be seen in Fig. 5 and Fig. 6, a peak 
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always appears. Therefore, it can be said that 

Lynch’s equation maintains the economy of the 

phenotypes even though the number of available 

nodes increases. 

 

 
Fig. 7Iterations and size vs. available nodes for 

multipliers with 2-bits word width operands with an 

initial mutation rate that follows Lynch’s equation. 
 

 

7 Conclusions 
The new phenotype of the evolvable hardware, 

which is more flexible than the classic phenotype, 

allows for performing both combinational and 

sequential tasks because it is unstructured. At the 

same time, the presence of loops makes it possible 

to find combinational circuits that are as small as 

those in the current state-of-the-art, but without 

following a two-step evolution process that includes 

design and optimization (minimization). 

Regarding the phenotype complexity, Shannon’s 

limit (lower) and Lupanov’s limit (upper) define a 

bounded and sufficient search space for the 

combinational circuits. However, in the studied case 

(multipliers with 2-bits word width operands) the 

lowest number of iterations is achieved when the 

number of cells available is around four-times the 

Shannon’s limit. In addition, when calculating the 

mutation rate of digital organisms using Lynch’s 

equation, which relates the mutation rate to the 

genome length of the species, the circuit size stays 

around Lupanov’s limit. 
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