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Abstract: - In general, iris recognition can be performed to identify users based on the unique iris patterns 
between their pupils and scleras. The main function of iris is to control the size of the pupil according to the 
amount of environmental light. Therefore, the iris patterns dilate and contract based on changing lighting 
conditions. To guarantee robust recognition accuracy in spite of these deformed iris patterns, previous research 
has used the linear rubber band model and uniform track allocation in iris regions. However, some iris patterns 
are actually deformed nonlinearly due to the complicated movements of certain iris muscles including the 
sphincter and the dilator. To overcome these problems, we propose a new method of extracting iris features by 
nonlinear and dynamic track allocation. This proposed method is based on the nonlinear tensile properties of 
iris patterns. This paper presents two contributions over previous works. First, we automatically detected the 
nonlinear positions of the iris patterns in the radial direction when the pupil dilated and contracted with 
changing illumination conditions. This was possible because we used a template matching process with five iris 
patches. From the process, we were able to allocate tracks in the iris region nonlinearly and dynamically. We 
then extracted robust iris features for recognition. Second, we found that the nonlinear tensile properties of the 
iris patterns differed individually. Based on that, we adopted a user-dependent method of dynamic track 
allocation, which greatly improved recognition accuracy. Experimental results showed that the accuracy of the 
proposed method was superior to that of conventional methods which use uniform track allocations based on 
the linear rubber band model. 
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1 Introduction 
In recent years, rapid developments in science and 
technology have made it possible to use biometrics 
in applications such as passenger control in airports, 
access control in restricted areas, and border control 
points, where it is often necessary to establish or 
confirm individual identities [1-3]. Iris recognition, 
which is based on the unique iris patterns of every 
individual, is considered to be one of the most 
reliable biometric systems [2-4]. The main function 
of iris patterns is to control the size of the pupil and 
thus control the amount of light entering the retina 
in widely varying illumination conditions. In 
general, the human pupil acts as an aperture in the 
optical system of the eye. The pupil size varies 
according to illumination changes. During this 
process, the pupil’s diameter ranges from a 
minimum of about 1.5mm to a maximum of over 
7mm [5]. Consequently, the iris texture patterns 
dilate and contract according to the changing 
environmental light. In previous research, in order 
to guarantee robust recognition accuracy against the 

deformations of iris patterns, Daugman used the 
linear rubber band model and uniform track 
allocation in iris regions [1-4]. However, the 
deformed iris patterns were actually nonlinear due 
to the complicated movements of certain iris 
muscles including the sphincter and the dilator, as 
shown in Fig. 7 and 8. Studies on iris physiology 
have also illustrated that the response of the texture 
with respect to different light intensities is non-
linear due to the distribution of the iris muscles 
controlling the pupil size [14]. To overcome such 
problems, in previous research, Yuan and Shi used 
an iris meshwork model proposed by Wyatt [5][7]. 
Based on that model, the researchers found the 
relationship of iris collagen fibers with the different 
pupil sizes [7]. Li used a local calibration method in 
order to reduce iris distortion [9]. All of the above 
methods used Daugman’s linear iris normalization 
method [1-4]. However, linear iris normalization 
cannot cover nonlinear deformations of iris patterns 
according to the dilation and contraction of a pupil. 
In other research, to overcome this problem, and 
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motivated by Wyatt’s iris mesh model, Zhuoshi et 
al. adopted a nonlinear deformation correction 
algorithm that used a Gaussian function to 
approximate the additive deviation of nonlinear iris 
stretching [6]. However, these researchers did not 
automatically detect the nonlinearly moved position 
of the iris patterns in the radial direction when the 
pupil dilated and contracted. In addition, they used 
the same nonlinear deformation correction 
algorithm for all the users, and did not consider 
individual differences. In Clark et al.’s research, 
they analyzed non-linearity of iris muscle [23]. 
However, the research was performed based on only 
mathematical model. That is, experimental 
investigation was not performed. Actually, the 
standardized iris nonlinearity cannot be adopted into 
all persons. 
To overcome these problems, we propose a new 
method of extracting iris features by nonlinear and 
dynamic track allocation based on the nonlinear 
tensile properties of iris patterns. In our research, we 
automatically detected the nonlinearly moved 
position of the iris patterns in the radial direction 
when the pupil dilated and contracted by using 
template matching with five iris patches. From that, 
we allocated tracks in the iris region nonlinearly and 
dynamically, and then extracted robust iris features 
for recognition. 
In addition, we found that the nonlinear tensile 
properties of the iris patterns were different 

individually. Thus, we used the user-dependent 
method of dynamic track allocation, which could 
improve the recognition accuracy. Section 2 outlines 
the proposed method and experimental results are 
shown in section 3. In section 4, conclusions follow. 
 
2 Proposed Method 
2.1 Overview 
Fig. 1 shows the overall procedure of the proposed 
method. After iris recognition started, for 
enrollment,  
we used the proposed method to capture successive 
iris images by turning on and off the visible light 
illuminator (as shown in Fig. 2), in order to observe 
iris contractions and relaxations. Then, the proposed 
method was used to detect the inner and outer 
boundaries of the iris regions by eliminating the 
eyelash regions, the eyelid regions and the SR 
(specular reflections) (as shown in Fig. 1 (1)) [10-
12]. We normalized the detected iris region into 
rectangular coordinates [1-4] (as shown in Fig. 1 
(1)). Then, we detected the moved position of the 
iris patterns in the radial direction when the pupil 
dilated and contracted by using template matching 
with five iris patches (as shown in Fig. 1 (2)). Based 
on these detected positions, eight tracks were 
allocated in the iris region of the rectangular 
coordinates, dynamically and nonlinearly. From 
each track, we applied a Gabor filter and extracted 

 

 

 
 

Fig. 1 Overall procedure of the proposed method 
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the iris binary codes. The extracted iris codes were 
then used for enrollment. For verification, we used 
the proposed method to capture the iris images. The 
same procedures of detecting the iris regions and 
normalizing the iris images were performed as in the 
enrollment mode. Then, with the user ID 
information, the user’s dynamic track allocation 
information of Fig. 10 (c) was retrieved (as shown 
in Fig. 1 (3)). Based on this information, eight tracks 
were allocated in the iris region of the rectangular 
coordinates, both dynamically and nonlinearly. For 
each track, we applied a Gabor filter and extracted 
the iris binary codes as same manner to those in case 
of enrollment. The extracted iris codes were used 
for matching with the enrolled ones for 
authentication. 
 
2.2 Enrollment Procedure 
2.2.1 Capturing successive iris images with the 
visible light illuminator on and off 
As shown in Fig. 1, in order to extract the by 
nonlinear deformation properties of iris patterns, we 
had to capture successive iris images turning on and 
off the visible light illuminator. At first, when we 
started the iris recognition procedure, we turned on 
the visible light illuminator for a predetermined time 
(experimental results showed that it was determined 
as two seconds) and the iris camera captured a total 
of 30 image frames at a speed of 15 frames per 
second. In general, visible light can be dazzling to 
users and can cause great inconvenience.  
 

 
To solve this problem, we compared the user 
inconveniences in case of using different visible 
light illuminators such as red, orange, yellow, or 
violet. Subjective tests with 50 users showed that 
green light produced fewer dazzling effects than 
other colors and so, we used it for our system. Fig. 3 
shows our proposed iris camera system. Because the 

iris camera included an IR (Infra-red) light passing 
filter in front of the camera lens, it cut off the visible 
light and passed through the IR light with a 
wavelength over 730 nm. Based on that, the visible 
light was not included in the captured image and we 
found that the pupil contracted with the visible light 
as shown in Fig. 2. 
The visible light illuminator turned on during two 
seconds and it turned off after that. During the time 
when the visible light illuminator was turned on, the 
iris camera (shown in Fig. 3) captured 30 successive 
image frames with a near-infrared (NIR) light 
illuminator (with wavelengths of 750 nm and 850 
nm). We used left and right NIR illuminators (as 
shown in Fig. 3), because single illuminator can 
make large specular reflections (SR) on the surface 
of glasses in case of user wearing glasses. And the 
large SR can hide iris regions, which degrades the 
user verification performance. For iris enrollment, in 
order to obtain a good quality iris image, the user 
was required to take off his or her glasses and a 
single (left or right) NIR illuminator was used to 
capture successive images with the visible light 
illuminator. However, for iris verification, in order 
to improve convenience, the user was permitted to 
keep his or her glasses on. Then, when the left 
illuminator made large SR on the surface of the 
glasses, our system turned it off and turned on the 
right illuminator and captured the iris image for 
verification. For iris verification, the visible light 
illuminator did not turn on and it was only used for 
iris enrollment (as shown in Fig. 1). 
 
 
 
 
 
 
 
  

Fig. 2 Successive iris images captured by the proposed 
system with a visible light illuminator (6 image samples 
which were selected from 30 captured ones) 

Fig. 3 Proposed iris camera system (A visible light 
illuminator and a single NIR illuminator were used for 
iris enrollment. Left and right NIR illuminators were 
used for iris verification) 
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2.2.2 Extracting the iris, pupil, eyelid and 
eyelash regions and image normalization in the 
polar coordinates 
After capturing successive iris images, our system 
detected the iris regions (as explained in section 2.1 
and shown in Fig. 1). Accurate extraction of the iris 
regions is a very significant part of iris recognition 
[13]. To extract accurate iris regions, we performed 
the following three steps (as shown in Fig. 4). 

 
As shown in Fig. 4 (1), we rapidly located the pupil 
and iris regions of the images based on two circular 
edge detection methods [10], which was based on 
the conventional integro-differential circular edge 
detection [1-4]. Then, the upper and lower eyelids 
were detected by multiple local derivative masks 
and the parabolic curve fitting method (as shown in 
Fig. 4 (2)) [11].  
From the detected iris, pupil and eyelid regions, we 
located the eyelash region based on eyelash 
detection masks and the characteristics of eyelash 
connectivity (as shown in Fig. 4 (3)) [12]. Detailed 
explanations of detecting iris, pupil, eyelid and 
eyelashes can be found in [10-12]. Fig. 5 shows the 
resulting images when detecting the iris, pupil, 
eyelid and eyelash regions. 

 
The detected circular iris region was normalized in 
the polar coordinates in order to reduce the variance 
caused by rotation, translation and scaling of the iris 
image (as shown in Fig. 6) [12][17].  
 
 

 

2.2.3 Extracting the nonlinear tensile property 
of the iris patterns and dynamic track allocation 
In iris textures, there are two dominant muscles in 
the angular and radial directions. The former muscle 
is known as the sphincter (circular fiber) and the 
latter muscle is known as the dilator (radial fiber), as 
shown in Fig. 7 [5]. In strong illumination 
conditions, the sphincter muscles close to the pupil 
region contract but the dilator muscles relax. In 
weak illumination conditions, the sphincter muscles 
relax but the dilator muscles contract. 
 

 
Based on that, as illumination conditions change, 
iris textures such as the circular muscle and the 
radial muscle show different variations of 
contraction and relaxation. This causes the nonlinear 
deformation of the iris patterns according to the 
dilation and contraction of the pupil (as shown in 
Fig. 8). 

Fig. 4 Preprocessing steps when extracting iris regions 

Fig. 5 The resulting images when detecting the iris, 
pupil, eyelid and eyelash regions Detecting the iris and 
pupil regions (b) Detecting the eyelid regions (c) 
Detecting the eyelash regions 

Fig. 6 Iris regions in the polar coordinates 

 

Fig. 7 The muscle structure of the iris [5] (a) A circular 
structural component in the iris that hinders pupil 
dilation. (b) A radial component that hinders pupil 
constriction. (c) A semicircular structural component in 
the iris. (d) A meshwork of left-and right-handed arcs, as 
described by Rohen [16]. 
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In Fig. 8, we defined five tracks of uniform width 
from the pupil boundary based on Daugman’s linear 
rubber band model [1-4]. The positions of the iris 
patterns changed in each track with pupil dilation 
and contraction (see the dotted circles in Fig. 8 (a) 
and (b)). Such nonlinear positional changes degrade 
the recognition accuracy when we used the linear 
rubber band model.    
To overcome this problem, we used the dynamic 
track allocation method with a non-uniform track 
width. For that, we extracted five patches of iris 
textures in the iris image (in which the pupil was 
dilated with the visible light off as shown in Fig. 8 
(a) and Fig. 9).  

 
Fig. 9 The extracted five iris patches (a) Iris image with 
pupil dilation (b) Extracted iris patches 
 
In detail, we extracted iris patches 2, 3, and 4 in the 
regions between tracks 1 and 2, tracks 2 and 3, and 
tracks 3 and 4, respectively. Iris patches 1 and 5 
were extracted in the regions close to the pupil and 
the outer boundaries. Iris patches 1 and 2 roughly 
represent the movements of the circular muscles in 
the area close to the pupil boundary. Iris patches 3, 4 
and 5 roughly represent the movements of the radial 
muscles. 
The size of each iris patch was 5 (height) × 512 
(width) pixels. By using the five iris patches, we 
performed template matching in the radial direction 
with the successive images, which were captured 
with the visible light illuminator on and off (as 
shown in Fig. 2). In order to increase the 
performance of template matching, brightness 
normalization was done based on the mean gray 
level of the iris region before template matching. 
Based on the best-matched positions of the five iris 

Fig. 8 The nonlinear deformation of iris patterns (a) Pupil 
dilation (b) Pupil contraction  

Fig. 10 The dynamic track allocation information (a) Iris image with pupil dilation (b) Iris image with pupil 
contraction (c) The dynamic track allocation information 
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patches, we obtained the dynamic track allocation 
information (as shown in Fig. 10). 
As shown in Fig. 10, the five iris patches were 
extracted in the image in which the pupil was 
dilated by visible light off. From that, we obtained 
the five distances shown as d11, d21, … d51. With the 
five iris patches, we performed template matching 
and obtained the positions of the five iris patches 
shown as d1N, d2N, … d5N (where N means the Nth 
image frame and we regarded N as 30) with the 
successive captured images (of Fig. 2). For template 
matching, we also considered eye rotation and the 
templates were matched in both the horizontal and 
vertical directions within a predetermined range in 
the iris images of the polar coordinates (as shown in 
Fig. 11). 
One optimal shift value in the horizontal direction 
was determined from the weight sum of five shift 
values from five templates. If the template included 
occluded regions such as eyelid, eyelash and 
specular reflections, then it had a lower weight 
compared to that without such occluded area. 
 

 
From those templates, we obtained the nonlinear 
graph for dynamic track allocation as shown in Fig. 
10 (c). Although we used 30 frames to obtain this 
graph, the procedure took less than 10ms when 
using a Pentium-IV 2 GHz because only five iris 
patches were used for template matching. In the 
dynamic track allocation graph of Fig. 10 (c), we 
normalized the Ri and dij by Ii (the radius of the iris) 
because the lengths of Ri and dij were also changed 
by the zooming factor of the human iris according to 
the Z distance between the user’s eye and the iris 
camera as well as the pupil dilation and contraction 
procedures. Based on the five nonlinear curves 
shown as L1, L2 … L5 in Fig. 10 (c), we determined 
four tracks in the iris region. The region between L1 
and L2 is the 1st track and that between L2 and L3 is 
the 2nd track and so on. 
In order to compare the performance of the 

proposed method to Daugman’s method [1-4], we 
expanded eight tracks from the four tracks and 
extracted iris features in each track. For the 
expansion, we modeled the distribution of the inter-
distance between LN and LN+1 as a Gaussian one 
based on [6]. Then, we segmented each track of Fig. 
10 (c) into two tracks and obtained eight tracks 
consequently. For example, the 1st track between L1 
and L2 is divided into 2 tracks and so on. 2.2.4 
Extracting the iris codes with the Gabor wavelet filter for 
enrolment. 
We segmented each of the eight tracks into 256 
sectors based on [1-4] and applied a 1D Gabor 
wavelet filter to each sector in order to extract the 
iris binary codes. The Gabor filter (G(x)) was 
defined as Eq. (1): 
 

𝐺𝐺(𝑥𝑥) = 𝐴𝐴 ∙ 𝑒𝑒−𝜋𝜋�
(𝑥𝑥−𝑥𝑥0)2

𝜎𝜎2 �(𝑐𝑐𝑐𝑐𝑐𝑐⁡(2𝜋𝜋[𝑢𝑢0(𝑥𝑥 − 𝑥𝑥0)])    (1) 
 
where A represents the amplitude of Gabor filter. σ 
and u0 are the kernel size and the frequency of the 
Gabor filter, respectively. 
To ensure that the generated iris code was not 
changed by the image brightness of the iris texture, 
we set the DC component of the Gabor filter as 0 
[17]. The kernel size and frequency were selected in 
order to minimize the EER (Equal to Error Rate) 
when testing with the CASIA-IrisV3-Lamp DB 
[20]. If the convolved value obtained by the Gabor 
wavelet filter was positive, then we assigned it a 
value of 1. If it was negative, then 0 was assigned. 
From that, we obtained the iris code of 2048 bits 
from eight tracks and 256 sectors. If the iris code 
was extracted from an occluded region, we regarded 
it as invalid and it was not used for code matching. 
Then, our system saved the extracted iris code of 
2048 bits and the dynamic track allocation 
information (of Fig. 10 (c)) for each person. 
Experimental results showed that the dynamic track 
allocation information was different for each person. 
In the research discussed in [21-22], it was 
mentioned that generally both the circular and radial 
components undergo large changes in stretching as 
the pupil size changes, since each person has a 
different stretching rate for their iris muscles. So, we 
used different dynamic track allocation information 
for each person, whereas Wei et al. [6] used the 
same information in their research. 

Fig. 11 Template matching in the horizontal and vertical 
directions (with iris patch 3) 
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2.3 Verification Procedure 
When the iris image was captured, our system 
located the iris region by the same manner discussed 
in section 2.2.2. With the detected value of R/I (as 
shown in Fig. 10 (c)) and the retrieved dynamic 
track allocation information based on the user ID (as 
shown in Fig. 1 (3)), the proposed system 
determined the eight non-uniform tracks in the iris 
regions. From that, the proposed system extracted 
the iris codes and tried to match them with the 
enrolled ones. Iris code matching was performed 
based on the HD (Hamming Distance) [1-4] using 
the XOR operation, as shown in Eq. (2).  
 

𝐻𝐻𝐻𝐻 = ‖(𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐴𝐴 ⨂𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐 ∩𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝐴𝐴 ∩𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐 ‖
‖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝐴𝐴 ∩𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐 ‖

         (2) 
                                      
where  is the simple Boolean Exclusive-OR 
operator (XOR), and  is the AND operator, 
respectively. The HD value was calculated by the 
two-phase iris code bit denoted code A and code B 
in Eq. (2). Mask A and mask B calculated mask bits 
that noticed whether the extracted iris code was 
valid or non-valid. If the calculated distance was 
greater than the threshold, the user was rejected. If it 
was smaller than the threshold, the user was 
accepted as a genuine user. The threshold was 
determined based on authentic and imposter 
distributions and the Bayesian rule [17]. 
Experimental results showed the threshold to be 
0.34. 
 
3 Experimental Results 
In the first test, we measured iris recognition 
accuracy when using the proposed method with the 
CASIA-IrisV3-Lamp database [20]. The images 
were collected by an OKI’s IrisPass-h in an indoor 
environment with a visible lamp on/off. The 
numbers of subjects and classes were 411 and 819, 
respectively. Each class included 19 ~ 20 iris images 
which included the dilation and contraction of pupil 
according to a visible lamp on/off. The total number 
of images was 16,213. The image size was 640×480 
pixels. Due to the visible lamp, the images showed 
the nonlinear deformation caused by the dilation and 
contraction of the pupil (as shown in Fig. 12). From 
the images of each class, three images were used for 
training (obtaining the dynamic track allocation 
information of Fig. 10). And, the others were used 
for testing. In details, we selected three images of 
each class (the size of pupil is smallest, medium and 
largest, respectively) and obtained the dynamic 
track allocation information of Fig. 10. And the 
others were used for testing.  
 

 
From that, we compared the iris recognition 
accuracy of the proposed method to of the 
accuracies of Daugman’s linear rubber band model 
[4] and Wei’s nonlinear track model [6]. The 
differences between the proposed method and Wei’s 
method were that we used a different nonlinear track 
model for each person and we also used automatic 
detection of the nonlinear deformation positions of 
each track based on template matching (see section 
2.2.3 and 2.2.4). Table 1 shows the EER (Equal 
Error Rate) of each method. The EER can be 
defined as the smallest error rate which is obtained 
when the FAR (False Acceptance Ratio) and the 
FRR (False Rejection Ratio) are the same. 
 
Table 1. Comparative iris recognition accuracies 
(EER (%)) of Daugman’s [4], Wei’s [6] and the 
proposed method (Using CASIA-IrisV3-Lamp 
database) 

Daugman’s 
method [4] 

Wei’s method 
[6] 

Proposed 
method 

0.932 0.714 0.621 
 
From Table 1, it is clear that the proposed method 
showed better accuracy compared to the other 
methods. Even though we used the same CASIA-
IrisV3-Lamp database, the performance of the 
measured EER values of Wei’s method in our 
experiment were a little better than those in [6]. That 
is because we used different methods for iris, eyelid 
and eyelash detection [10-12]. According to the 
ROC (Receiver Operating Characteristic) curve of 
each method, we could know that the proposed 

Fig. 12 The dilation and contraction of the pupil 
in the CASIA-IrisV3-Lamp database (a) and (c) 
the dilation of the pupil, (b) and (d) the 
contraction of the pupil 
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method showed better accuracy than other methods. 
In the second test, we measured the comparative 
recognition accuracy rates of images from the iris 
database that were captured by our lab-made iris 
camera with the additional visible lamp on/off [8]. 
The numbers of subjects and classes were 50 and 
100, respectively. Each class included ten images 
and the consequent number of iris images was 
1,000. The image size was 640×480 pixels. Fig. 13 
shows some samples of captured images.  
 

 
Table 2. Comparative iris recognition accuracies 
(EER (%)) of Daugman’s [4], Wei’s [6] and the 
proposed method (with iris images captured by our 
lab-made iris camera with the additional visible 
lamp on/off [8]) 

Daugman’s 
method [4] 

Wei’s method 
[6] 

Proposed 
method 

0.521 0.412 0.365 
 
From Table 2, it is clear that our method showed 
better accuracy compared to the other methods. In 
addition, according to the ROC curve of each 
method, we could know that our method showed 
better accuracy compared to the other methods. 
The accuracy in case of using iris images captured 
by our lab-made iris camera was superior to that 
using CASIA-IrisV3-Lamp database. That was 
because the iris diameter (200 ~ 220 pixels) of the 
images captured by our lab-made iris camera was 
greater than that (200 or less than 200 pixels) of 
CASIA-IrisV3-Lamp database as shown in Fig. 12 
and 13.  

Processing time was as small as 250ms for iris 
enrollment and 92ms for iris verification with a 
Pentium-IV 2 GHz CPU. An additional two seconds 
were required for iris enrollment in order to capture 
thirty successive images in which dilation and 
contraction of the pupil occurred (see section 2.2.1). 
 
4 Conclusions 
In this paper, we proposed a new method of 
extracting iris features by nonlinear and dynamic 
track allocation based on the nonlinear tensile 
properties of iris patterns. Experimental results with 
two kinds of databases showed that the accuracy of 
our method was superior to the accuracy of 
Daugman’s and Wei’s methods.  
In future work, we plan to do more tests with iris 
images in which the pupil is dilated and contracted 
by sunlight in outdoor conditions. In addition, we 
plan to apply active contour tracks instead of 
circular tracks in the detected iris region. 
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