WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

An Iterative Algorithm for Single-pair K Shortest Paths Computation

GUISONG LIU*, ZHAO QIU, WENYU CHEN
School of Computer Science and Engineering
University of Electronic Science and Technology of China
Xiyuan Road 2006, West High-Tech Zone, Chengdu, China
*lgs@uestc.edu.cn

Abstract: - In this paper, we report a novel method to computektlshortest paths between a given pair of nodes

in a given directed weighted graph, where loops are allowed in the solution paths. Once the shortest path from
source node to goal node has been computed, the algorithm finds the-néxshortest paths recursively. A* and
on-the-fly search strategies are also applied to the proposed algorithm. The correctness of the presented algoritht
is analyzed mathematically, and the simulative results confirming the superior performance of the algorithm to
others in the literature for real road datasets are reported, especiallykvighesther small.

Key—Words: K shortest paths, Heuristic search, On-the-fly search

1 Introduction s. It maintains the same asymptotic worst-case com-
plexity as the EA algorithm. Their experimental eval-
The K-Shortest-Paths problem (KSP) is about find- uation showed that K* is more efficient than LVEA
ing the k shortest paths in a directed weighted graph in route planning and the computation of counterex-
for an arbitrary natural numbet. Since first pro- amples in stochastic model checking. However, it is
posed by Hoffman and Pavley in the 1950s [1], KSP essential for EA, LVEA and K* to establish a compli-
has got great attention and can be separated into two cated data structure before finding thehortest path-
variants according to whether loops are allowed in the S. In this paper, we present an Heuristic and Recursive
solution paths or not [2]. Recent application domain Algorithm by using on-the-Fly search (HRAF), aim-
examples for KSP problems include network rout- ing to solve the KSP problem, which loops and muilti-
ing optimization[3], multiple object tracking[4], se- ple edge between nodes are allowed. When the short-
quence alignment[5], gene network[6], scheduling[7], €st path is computed, the algorithm is able to find the
dynamic routing[8] and many other areas in which op- nextk — 1 shortest paths in a recursive way. HRAF is
timization problems need to be solved[9]. very efficient whent is small while time-consuming
The goal of most of algorithms is to compute whenk:_ is !arge._ But in a lot of KSP applications, the
KSPs between two given nodes, which also can be key point is to find out few best solutions rather than
called single-pair KSP problem [2, 10, 11, 12, 14, 19, to enumerate all or a large number of shortest paths in

16]. The related problem is single-source KSP prob- a graph.

lem which aims to find KSPs from a given node to The remaind_er_of t_his paper is prganized as fol-
each other node[6, 9]. In this paper, we consider the lows. Some preliminaries are described in Section 2,

variant of the KSP problem, where loops are allowed Ncluding A* and on-the-fly search strategies. Section
in the solution paths. In terms of asymptotic com- S Presents the proposed algorithm with its implemen-
plexity, the most advantageous algorithm for solving tation in detail. An simple example to illustrate HRAF

this variant of KSP is Eppstein’'s Algorithm (EA)[9] is carried out in Section 4. Section 5 gives the correct-
with a complexity ofO(m + nlogn + k) in terms ness and complexity analysis of HRAF. Simulations
of both runtime and space, whengis the number of based on a benchmark data set and conclusions are p-

nodes andn is the number of edges in the problem resented in Section 6 and Section 7, respectively.
graph. Jimenez and Marzal presented a Lazy Variant

of Eppstein’s Algorithm (LVEA) [21], which main-

tains the same asymptotic worst-case complexity as 2 A* and On-the-fly Search

EA and outperformed EA in their experiment result-

s. The K* algorithm proposed by Husain Aljazaar LetG = (V, E) be a directed graph, whe#é is the
and Stefan Leue [10] is the most efficient algorithm set of nodes and’C V' x V is the set of edges. Given
known so far according to their experimental result- an edgee = (u,v) € E, we representail(e) by u

E-ISSN: 2224-3402 305 Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

andhead(e) by v. Letw : E — R > 0 be a function
mapping edges to non-negative real-valued weights or
lengths. Lets, teV denote the source and target n-
odes, respectively. A path i@ is denoted byP, with-
out loss of generalityP,, denotes the-th shortestst
path inG. The length of a patlP = v; — v9 — .
. — vy, is defined as the sum of the edge lengths,
formally,
n—1
I(P) = w(vi, vit1) (1)
=1
For an arbitrary pair of nodesandv, d(u,v) denotes
the length of the shortest path franto v, andd(s, u)
is abbreviated td(u). If there is no path fromu to v,
thend(u,v) is equal to +o.

It is known that the A* search[23] is designed for
solving the shortest path problem while making use of
a heuristic estimate. It finds the shortest path from the
start nodes to each node irdz. The set of these paths
forms a tree called the shortest path tfeeA* stores
nodes on the search front in a priority queue which is
ordered according to a heuristic evaluation functfon
computed as the sum of two functiodsndh,

f=d+h.)

The functiond gives the shortest path length from
nodes to a node, whereak is the heuristic estimate
of the distance from the considered node to the target.
As shown in Fig. 1,f(v) is then an estimate of the
length of ans-t path throughv.

(s) —
T d(v) y
7\\\\ //
-
L A h(v)
unexplored t\J

part

Figure 1: A* search;f (v) = d(v) + h(v) determines
the expansion order of nodes.

We describe the traditional implementation of A*
as follows and we will show the variant of A* imple-
mentation used in HRAF later. At the beginning of
A* search, the search queue contains only the start n-
odeswith f(s) = h(s). In each search iteration, the
head of the search queue, sg)is removed from the
gueue and expanded. More precisely, for each suc-
cessor node of v, if v has not been explored before,
thend(v) is set tod(u) + w(u,v), andv is put into
the search queue. if has been explored before, then
d(v) is set to the smaller distance of the al@) and

E-ISSN: 2224-3402 306

Guisong Liu, Zhao Qiu, Wenyu Chen

d(u) + w(u,v). We distinguish between two type-

s of explored nodes, namely closed and open nodes.
Closed nodes are those which have been explored and
expanded, whereas open nodes are those which have
been explored but not yet expanded.

Notice that there is a problem when use the above
traditional version of A* to HRAF directly, remember
that HRAF can be used to the graph which multiple
edges between two nodes is allowed, thus, the weight
w(u,v) between node andv is ambiguous. For effi-
ciency consideration and the use of on-the-fly search
strategy, we use the flowing implementation of A*.

The main difference between our implementation
of A* and the traditional implementation of A* de-
scribed above is that we store edges instead of nodes
in the search queue, and the edge in the search queue
is sorted according to the value of functifte) which
can be calculate for edgeby:

f(e) = d(tail(e)) + h(head(e)) + w(e). (3)
What is more, no relaxation(change the valuel ah
traditional implementation of A*) of our implementa-
tion of A* is required.

For simplicity, the process of our implementa-
tion can be described as flows (see Fig.1). At the
beginning of the search, sdfs) = 0 and set the
state ofs as closed, the search queue contains on-
ly those edge which outgoing from start noslevith
f(e) = h(head(e)) + d(s) + w(e). In each search
iteration, the head of the search queue, sais re-
moved from the queue for processirig;ad(e) is ei-
ther closed, in this case is marked assidetrack
edge, or not closed, whea is set as @ree edge and
the vertexhead(e) is expanded: for each edge out-
going fromhead(e), if head(ex) is not closedf (e) is
calculated and it is added to the search queue, other-
wise, ex is set assidetrack edge. We continue to do
so until the target node is found or the search queue is
empty.

For each explored node d(v) is always equal
to the length of some path fromito v that has been
discovered so far. We refer to this path as the solu-
tion base ofv. The set of these solution bases forms
a search tre@. A* ensures that the search tréeis
a shortest path tree for all closed nodes. Notice that
a shortess-t path is found as soon ass closed. In
order to retrieve the selected shortest path to some n-
ode, a linkT'(v) is attached to each explored node
referring to the parent of in T'. The solution path
can then be constructed by following these links from
t upwards tcs.

The heuristic functionh should be admissible,
which guarantees that a shortsdtpath will be found
by A*, referring to Ref[23] for more information.

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

Some search algorithms can be performed on-the-fly,
including A*. This means that they can be applied to
an implicit description ofz, by usings and a func-
tion succ : V. — II(V), which returns the set of it-

s successor nodes for each nadei.e., succ(u)
{vlv € V,(u,v) € E}. The on-the-fly strategy
enables the partial generation and processing of the
problem graph as needed by the search algorithm.
This strategy is able to improve the performance and
scalability of many search algorithms because there
is no need to process the entire graph. It also saves
memory since the search algorithm does not need to
manage the entire graph in its data structures. The on-
the-fly feature finally allows the algorithm to handle
graphs which are either infinite, or finite but too large
to fit into main memory.

3 The Proposed Algorithm

The HRAF algorithm is designed to quickly find the

Guisong Liu, Zhao Qiu, Wenyu Chen

Figure 2: Example graph: the solid arrow lines repre-
sent the search tree computed by A*; the dashed arrow
lines are the sidetrack edges.

path tree is highlighted by solid arrow lines. We apply
A* to G in a forward manner, which yields a search
tree T rooted as. The forward search strategy is nec-
essary in order to be able to work on an implicit de-
scription of the problem grapy’ using the successor
function succ. Notice that HRAF can perform on-the

shortest paths as soon as the shortest path from sourcelly search: HRAF first applies A* search @ until

nodesto goal nodd is obtained. In HRAF, A* search

is first applied to the problem graghuntil t is chosen

for expansion. At this moment, A* is suspended and
the first shortess-t path is acquired. Then the next

1 shortest paths can be constructed in a recursive way
as follows,

1. Exploring thei" shortest path to obtain all can-
didate shortest paths.

2. Choosing a shortest path from candidate path list
to be the(i + 1) shortest-path frorstort.

3. Recursively doing this until alt shortest paths
are found.

As we mentioned earlier, HRAF is designed to perfor-
m on-the-fly and to be guided by heuristic search. In
the process of recursively finding1 shortest paths,
A* will be resumed as needed.

3.1 A*searchonG

HRAF applies A* search to the problem graphto
compute a search tréB. Note that A* computes a
search tree while searching for a shortest path from
s to t, this tree is formed by the father-node links
that are stored while A* is searching in order to be
able to reconstruct the path frosto t. Every edge
founded by A* will be marked as eithéeree edge

or sidetrack edge. If an edge(u,v) belongs to the
shortest path tre€, we call it atree edge, otherwise,

it is a sidetrack edge. As shown in Fig.2, lek be
the start node ansk be the target node. The shortest

E-ISSN: 2224-3402 307

the goal nodd is selected for expansion and resume
A* when required. In the remainder of the pap&ris
assumed to be a locally finite graph, if nothing else is
explicitly stated.

3.2 Path Representation

We represent everg-t path as a list ofsidetrack
edges. Each edge either belongs to the shortest path
treeT, tree edge or is asidetrack edge, as we men-
tioned above. For ang-t path P in G, we denote
the subsequence of sidetrack edges ugiig), which
are taken inP. In this way, P can be unambiguously
described by the sequenééP). In other words, the
mappingé(.) from subsequence afidetrack edges
to s-t path is injective. Consequently, there is a partial
injective inverse mapping(.) so thaty(¢(P))=P. The
mappingé(.) establishes this unique way of complet-
ing the sequence dfidetrack edges £(P) by adding
the missing tree edges in order to obtain P(see Ref[9]).
In Fig. 2, letP be the patlsg — s1 — s2 — s3. No-
tice thatr=¢(P)= {(s1, s2)} andnext(m)=s1. From
the sidetrack sequendds;, s2)} we can obtain the
pre-imagex{(sa, s1)}=P, P=sp — s1 — s2 — s3
as follows. We start at the goal nodg and add the
tree edge(sq, s3) to P. It is clear thats is the head
node of the sidetrack ed@g, s2), SO we add the side-
track edge(s;, s2) to P. Then thereeedge (s, s1) is
added toP. This results in completing the path =
So — 81 — S2 — S3.

In the following section, we denote to be the
subsequence ofidetrack edge of ans-t path in G,
andm; = £(F;) to be the subsequence of sidetrack

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

edges of the!” shortest pathP; in G. Let next(r;)

be the next node of the start noslan path P;.
Representing paths Bydetrack edge is very im-

portant in our algorithm. As we have described, we

can represent a path by sequenceidktrack edge,

which is a verycheap way In this way, all candidate

paths can possibly be explored efficiently.

3.3 Computing & Shortest Paths Recursively

In order to clarify our procedure, we first illustrate
how HRAF computes the second shortest path from
the (first) shortest path, and then from theshortest
path to the(s + 1) shortest path.

After the shortest-path tree d@d is constructed,
we obtain the shortest-t pathm; = £(P;), as well
as every other node’s (closed in A*) shortest path to
s. Note that our shortest path tr&eis rooted at the
start nodes. We iterate over all nodes exceptin
the shortest path to produce all candidate paths for
the second shortest path in the following way: for
every nodev in the shortest path except we con-
sider every sidetrack edgewhich is incoming tov,

as a candidate path, whose length is calculated by

d(t) — d(v) + w(e) + d(tail(e)). Then, we add this
candidate path to the candidate pathdistrdered by
path length. Finally, we choose a shortest path ftém
to be the second shortest pathand remove this path
from C'. m;41 can ke constructed fromr; in a similar
way. We iterate over all nodes i from next(m;) to
the tail of the last sidetrack edge of. Letlv be the
tail node of the last sidetrack edge 4. For every
incoming sidetrack edge to v (v is the node inP;
from next(m;) to lv), by addinge to the end ofr;, a
candidate pathr. can be constructed whose length is
l(me) — d(v) + w(e) + d(tail(e)). Thenr,. is added
to the candidate path ligt. We regard all these can-

Guisong Liu, Zhao Qiu, Wenyu Chen

Algorithm 1: The HRAF Algorithm.
Data: A graph given by its start node s and goal node t and a function
succ and a natural number k
Result: A list R containing k sidetrack edge sequences representing k
shortest paths
1 Function succ(v) return all edges outgoing or incoming from v.
2 openA : empty priority queue, store opened vertices in A¥*.
3 closeA: empty hash table, store closed vertices in A*.
4 C: empty priority queue, candidate path list, ordered by path length.
5 R: empty list, result paths list.
6 m:empty list, represent a path(consist of sidetrack edge).
7 v+ t.
8 run A* on G until the goal node t is selected for expansion.
9 if t was not reached then

10 exit without a solution.

11 end

12 do

13 foreach v in x(m) from lv to next(r) do

14 foreach incoming edge e in succ(v) and is not tree edge do
15 if tail(e) is not in closeA then

16 run A* until tail(e) is added to closeA.

17 end

18 if e is not set as sidetrack edge then set e as sidetrack edge
19 add e to 7 form P,

20 calculate length of P.

21 add P, to C

22 end

23 end

24 7 + shortest path on C'

25 erase m from C'

26 lv < tail of last sidetrack edge of 7
27 add 7 to R

28 if R.size == k then break

29 while C is not empty

30 return R

Figure 3: HRAF Algorithm Structure

ration tasks. After some initialization statements, A*
is started at lined until t is selected for expansion, in
which case the first shortestt path has been found. If

t is not reachable, then the algorithm terminates with-
out a solution. Notice that it would not terminate on
an infinite graph. Otherwise, the algorithm assigns
the goal node to [v, which represents the tail node of
the last sidetrack edge of the previous shortest path.
HRAF then enters its main loop. After having got

didate paths found in this step as the candidate paths the first shortess-t pathm;, we compute the nexi-1

explored byr;. Finally, we choose the shortest path
from C' to bew; 1 and remove it fronC.

3.4

The algorithm principle of HRAF is shown in Fig. 3.
First, we run A* on graphG until the target node

t is selected for expansion. In this moment, we get
the first shortest path fromto t, which is consist of
tree edges and is a empty sequence when represent-
ed by sidetrack edges. Then, we explore the next
k-1 shortest path tree recursively. Algorithm 1 shows
the pseudo-code of HRAF.

The code from linel2 to line 29 forms the main
loop of HRAF. The loop terminates when the candi-
date path lisC' is empty or theth shortest path is pro-
duced. The lines before linE2 perform some prepa-

Implementation of the Algorithm

E-ISSN: 2224-3402 308

shortests-t paths recursively.

HRAF iterates over all nodes in P, from [v to
next(m)(the second node is-t path x (7)) (see line
13), and for each incoming edge(not markedas:
edge) e to v. If tail(e) is not closed in A*, then we
resume A* untiltail(e) is selected for expansion. No-
tice that every closed node has exactly one incoming
tree edge, thus, ife is not set agidetrack edge set
e as sidetrack edge. Lin® to 21 construct candidate
paths that relate te, and decide if this candidate path
should be added to the candidate path disbr not.
Notice that in line21, in order to make sure the can-
didate path listC contain at mosk-1 paths. IfC is
not full, add the new candidate pathdq otherwise,
choose the shortest one of the new candidate path and
longest path irC'. In line 24 to 28, the parameters is
updated to prepare for the next loop. If we have pro-

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

duced thekth shortest path or candidate path lisis
empty, HRAF terminates, otherwise, it continues with
the main loop.

4 An Example Using HRAF

We use the following example to illustrate how HRAF
works. Consider the directed, weighted gra@ghin
Fig. 4 which is similar to the example graph used in
[10]. The start node igy and the target node is;.
We use HRAF to find th& shortest paths from, to

Guisong Liu, Zhao Qiu, Wenyu Chen

candidate path lis€ is empty. We explore the first
shortest pathsy — so — s4 — sg) to obtain can-
didate paths by iterating over each node fregnto

so along the shortest path tree T. As we explsgeit
has three edges, onece edge (s4,56), then the oth-
er two edges,d,s¢) and (s,s6), are set tidetrack
edges. When edge 41,s¢) is processed, it is noticed
that s; is not closed in A* so we should resume A*
until s; is closed, Figure 6 shows the result graph
when s; is closed. Then, we considé€(si, s¢)} as

a candidate path with a length(s;, s¢) + d(s1) = 10,
and this candidate path is added to the candidate path

s¢. We assume that a heuristic estimate exists. The it Similarly, when edgess,sq) is processed, it is

heuristic values are given by the labéls) to h(sg)

in Fig. 4. It is easy to see that this heuristic function
is admissible. We first apply A* search @ until s¢

is found. The part of7 explored so far is illustrated
in Fig. 5. Note that the solid arrow lines represen-

set assidetrack edge, consider thats is not closed
in A*, we resume A* untils5 is closed. Fig. 7 il-
lustrates the updated graph whenis closed in A*.
We then considef(ss, s¢)} as a candidate path with
lengthw(ss, sg) + d(s5)= 20 and add this candidate

t the search tree computed by A* the dashed armow a1 1o, After s is completely explored, we then

lines are thesidetrackedges. A* is suspended af-

h(sy)=7

/ﬁg\7
3
1,
4 1 ?
1 ()
@ 2 1 h(ss)=0
h(so)=7 5
4
h(s=2 g /@/
9
J)=

hss)=4

Figure 5. The explored graph when the goal node
is found using A*: solid arrow lines represent tree
edges; dotted arrow lines represaidetrackedges;

gray dotted lines represent the edges added to open

set in A*; the gray solid lines represent the unexplored
part of the graph; the f value of edges is written below
lines.

ter the goal nodeyg is found, and the first shortest
path g — s — s4 — sg) is obtained, then HRAF
begins to find nexk-1 shortest paths. Initially, the

E-ISSN: 2224-3402 309

considersy which is father node ofg in the shortest
path tree T. We continue to explosg. The result of
the exploration in this step is illustrated in Table 1.

Figure 6: Result graph whe#y is closed in resumed
A*,

Figure 7: Result graph whesy is closed in resumed
A*,

After having explored the first shortest path, we
have got five candidate paths with the lengths in candi-
date path lisC, i.e., (s2 — s4, 9),(s1 — s2, 9),(s1 —
sg, 10), (s1 — s4, 10) and 5 — sg, 20). We then we

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

Guisong Liu, Zhao Qiu, Wenyu Chen

Table 1: Explored results of the first shortest path

Node S6 S4q S9
Incoming sidetrack edge s{, s¢) (s5, s6) (s1, 84) (54, 82) (s1,$2)
Candidate path {(81) 86)} {(55) 86)} {(Sla 54)} {(845 52)} {(815 52)}
Path length 10 20 10 9 9

choose a shortest path frafhto be the second short-
est pathm,. In this case,m={(s4,s2)}, andm is
erased fronC'. Then we go on exploring.. We iter-
ate over each node from, which is the tail of the last
sidetrack edge of,, to s, along T. Note thak, has
one incomingsidetrack edge (s1, s4) from which we
obtain one candidate paflisy4, s2), (s1, s4) }, we add
it to C. We then process, which has two incoming
sidetrack edges (s4, s2), (s1,s2). We add them to
79 and obtain two candidate pathig:sy, s2), (s4, 52) }
and{(s4, s2), (s1, s2)}, then we add them t6¢". The
result of this step is listed in Table 2, and the content
of C'is listed in Table 3.

We repeat the above step until th& shortest
path is found or candidate path litis empty. The
result of this example is enumerated in Table 4.

5 Algorithm Analysis

5.1 Correctness Analysis

Lemma 1: If w; hasj sidetrackedge, then the candi-
date paths explored by, havej + 1 sidetrackedges.

Proof: Remember that the candidate paths ex-
plored byw; are constructed by adding a sidetrack
edge tomr;. Thus, in this way, ifr; has; sidetrack
edges, the candidate paths exploredrbhave; + 1
sidetrack edgeisl

Lemma 2: The paths in candidate path liét
have at most-1 sidetrack edges.

Proof: Note thatr; is empty, in other wordsP;
has nosidetrackedge, because it is exactly the first
shortest path with all its edges in the shortest path tree.
Note thatr; is not necessarily chosen from the candi-
date paths explored by;_;. Thus, according to Lem-
mal, 7; has at most— 1 sidetrackedges, andry, has
at mostk — 1 sidetrack edges. So the path in candi-
date path listC has at mosk — 1 sidetrackedges in
the process of our algorithnil

The importance of Lemma 2 lies in the space
complexity boundary. From Lemma 2 we can con-
clude that the candidate path litwill at most con-
tain k& paths, we have more to say about it in Section
5.2. According to Lemma 2, each path has at most
k-1 sidetrack edge, and we are intend to compuke
shortest paths, thus, the worst-case space complexity
of C'is O(k?).

Lemma 3: The length of each path explored by
m; is larger than that of;.

Proof: Recall how we calculate the candidate
pathr. explored fromr;, the length ofr, is i(m;) —

d(v) + d(tail(e)) + w(e), wherev is one of the n-
odes inP; from next(m;) to the tail of the last side-
track edge ofr;, e is an incoming sidetrack edge to
v. Note thatv is head(e) sincee is a sidetrack edge,
thus, d(tail(e)) + w(e) > d(v) andi(m;) — d(v) +
d(tail(e)) +w(e) > I(m;). O

Lemma 4: There is a one-to-one correspondence
between paths in' ands-t paths in G.

Proof: We prove this lemma by induction. We
first prove that there is a one-to-one correspondence
between paths explored ky ands-t paths inG, then
prove that there is a one-to-one correspondence be-
tween paths explored by, ands-t path inG.

The first shortest path is the path frato t along
the shortest path treg, in other wordsr; is empty,
thus, there is a one-to-one correspondence betwgen
ands-t paths inG. Next, we explorer;. Letwv be a
node inP; from next(m;) tot, and lete be an incom-
ing sidetrack edge of. Then, we form a candidate
pathm. = e, the corresponding-t path inG is from
t to head(e) alond’, throughe, then fromtail(e) to
salongT, which is implicitly defined. Thus, there is
a one-to-one correspondence between paths explored
by 71 ands-t paths inG. Letlv be the tail of the last
sidetrack edge im;, similarly, there is a path; in G
fromt alongP; tolv. Letw is one of nodes iP; from
next(m;) to lv, ande is a sidetrack edge incoming to

Table 2: Result after having explored the second shortest path.

Node Sa

52

Incoming sidetrack edge
Candidate path
Path length

SL 84)
{(s4,52),(s1,54)}
12

(s4,82) (51, 52)
{(54,82),(54,52)} {(54,52),(51, 52)}
11 11

E-ISSN: 2224-3402 310

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

Guisong Liu, Zhao Qiu, Wenyu Chen

Table 3: Contents of candidate path listafter having explored the second shortest path

Candidate path Length Candidate path Length
{(s1,52)} 9 {(s4, 82),(54, 52)} 11
{(s1,84)} 10 {(54,52),(s1, 54)} 12
{(s1,56)} 10 {(s5, 56)} 20
{(54,52),(s1, 52)} 11

Table 4: The results of 8 shortest paths on the graph in Fig. 4

T =¢(P) P length
1 {} So — S92 — S4 — Sg 7
2 {(s4,52)} S0 — S92 — 84 — Sg — S4 — Sg 9
3 {(81, 82)} So — S1 — S2 — S4 — Sg 9
4 {(81, 86)} So — S1 — Sg 10
5 {(81, 84)} So — S1 — S4 — Sg 10
6 {(s4,52),(54,82)} So— 82— 84— 83— 84— S2—>84—>8 11
7 {(s4,52),(s1,82)} S0 — S1— S92 —> S4 — S2 — S4 — Sg 11
8 {(84, 82),(81, 84)} So—> S1 —> S4 — S92 — S4 — Sg 12

v, then, the candidate path we get nowrjst e, the
correspondings-t path inG is fromt along P; to lv,
then through e tgalong7'.0d

The correctness of HRAF can be stated as fol-
lows. LetG be a locally finite graph, Lemma 4 en-

needO(mlogk + m) time. We also need to find
the minimum path irC' which needsD(k) time, then
we delete it fromC' and adjust the heap again which
needsO(log(k)) time. All the operations need to be
performedk — 1 times, the total time complexity on

sures a one-to-one correspondence between paths inC is O((k — 1)(mlog(k) + m + k + log(k))), i.e.,

candidate paths ligst ands-t paths inGG. This implies
the correctness of HRAF since any path fraimre-
sults in a valids-t path. In other words, the result of
HRAF consists of valig-t paths. Lemma 3 ensures us
to compute the: shortest paths in a non-descending
way. SinceG is a locally finite graph, HRAF will
complete after a finite number of iterations.

5.2 Theoretical Complexity

As we described in Section 3, the computation of
HRAF comprises two steps, including applying A*
search ta= and finding thek shortest paths iterative-
ly. It is known that performing A* has an asymptotic
worst-case time complexity aD(m + nlogn). In
finding the k& shortest paths by HRAF, we need to
iterate over all incoming edges of the nodes which
rang from the second node of the previous shortest
path to the tail of the last sidetrack edge of previous
shortest path. In the worst case, HRAF needs to it-
erate overm edges. Then, for each sidetrack edge,
we add the corresponding paths to path {5t In
order to limit the size ofC (by using max-heap) to

k — 1, we should determine the maximum elemen-
t of C, which needsO(m) time in worst-case (in
practice very much less than(m)). Decreasing the
key of the maximum element @ and adjustingC’

E-ISSN: 2224-3402 311

O(kmlog(k) + k?). Thus, the worst case time com-
plexity of HRAF isO(mklog k + k% + nlogn). For
space complexity, in the worst case, we need to store
n nodes andn edges, and maintain a candidate path
list C' with its size limited tok — 1. As we mentioned
earlier, listC contains at most — 1 candidate path-

s and each path consists of at mést 1 sidetrack
edges (see Lemma 2). Therefore, the worst case space
complexity of HRAF isO(m + n + k?). Notice that
some efficient implementation of heap or other data
structure also can be used to implementdistwhich

can lower the practical complexity of HRAF.

The theoretical complexity of the HRAF appar-
ently is not so promising especially when we compare
it with EA[9], LVEA[21] and K*[10]. It is known
that all the three algorithms have the same asymptotic
complexities ofO(m + nlog(n) + k), for both time
and space. We should point out that the complexities
of HRAF are analyzed in the worst case, neverthe-
less whenk is rather small, the complexities for both
time and space are also comparable. For example, in
practical Transportation Navigation System, the road
map contains more than millions of nodes and edges,
while the system only needs to provides several op-
tions to the users (maybe no more than 10) because
much more selections for users mean lower usabili-
ty. So the performance of the HRAF algorithm for

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

KSPs computation is considerable wheis very s-
mall. The following experiments demonstrate our s-
tandpoints.

6 Simulations

As we discussed above, K* is more efficient than EA
and LVEA for single-pair KSPs computation accord-
ing to their experiments, although the three famous al-
gorithms have same theoretical complexities. There-
fore, we compare HRAF only with K* in the sim-
ulations. We implement HRAF and K* using C++
in Microsoft Visual Studio 10.0. In our simulation-
s, the graph data are first loaded into the main mem-
ory stored as an adjacency list in which we can ac-
cess edges by node. The CPU time is obtained in
milliseconds by using the C++ function GetSystem-
Time(). Note that we neglect the time needed for load-
ing graph data into main memory, and the memory

Guisong Liu, Zhao Qiu, Wenyu Chen

6.1 Runtime Comparisons

For HRAF and K*, settingc = 1 means finding the
shortest path in a map. In each map, fesmodes are
randomly selected witBO times running on both al-
gorithms. Then we obtain an average runtime for each
s-tpath computation and finally the average runtime is
calculated over four computations. All the following
simulations use the same testing method.

For finding only the shortest path, the runtime
comparison for both algorithms is listed in Table 6.
We can conclude that HRAF outperforms K* by about
11% to 28% when we just compute one shortest path
from related maps. This is due to the fact that HRAF
just uses A* to compute shortest path tree and obtain
the first shortest path while K* needs to establish a
complicated path graph when it uses the A* search.

An overall runtime comparison is shown in Fig.
8. It takes more runtime whéenincreases for the both
algorithms. However, HRAF always performs better
in the NY map and BAY map, while whehis larger
than78 in COL map and5 in FLA map, K* is the

consumption is measured by PagefileUsage, which is better choice.

part of process information returned by the function
GetProcessMemoryinfo. We run all experiments on
a desktop computer equipped with an Intel Pentium
Dual-Core CPU (2GHz) and 2GB memory. No paral-
lel implementations are taken into account in the ex-
periments.

Our simulations of both algorithms are based on
four maps: New York City, San Francisco Bay Area,
Colorado and Florida, as shown in Table 5. The maps
data are available from the home page of the 9th DI-
MACS Implementation Challenge[24]. We use airline
distance, which is computed by the law of cosines, as
a heuristic estimate for both algorithms. Four differ-
ent pairs of start-goal nodes(from center of the map to
the edge, or from a side to another side according to
its coordinates) are randomly selected for each map,
we then run the algorithm20 times for each pair. In
order to fully compare the above two algorithms, K*
and HRAF, we first compare needed runtime using
both algorithms whet is equal to one, then compare
runtime whenk is small (less than 50). The overall

6500

6000 5000 I
ke -

5500

5
g | Ero
5 5000 == 7~ 5 6500
6000
4500

4000
0

me(ms)

t

50 100
K (map:COL)

150 200 0 50 100

K (map:BAY)

150 200

x
9000 17

gsoof —~
8000
7500 5 14
7000 / 13
65005 50 150 200 2 50

runtime(ms)

100 100 150 200
K (map:NY)
K (map:FLA)

Figure 8: Runtime comparisons on four maps.

Table 7 shows the full notes of the execution of

comparisons about runtime and space consumption of both algorithms with the detailed improvement when

both algorithms are also listed.

Table 5: Datasets of 4 maps used in our simulations.

Map Abbr. No. Nodes No. Edges

Colorado COL 435,666 1,057,066

San Francisco BAY 321,270 800,172
New York City ~ NY 264,346 733,846
Florida FLA 1,070,376 2,712,798

E-ISSN: 2224-3402 312

k is less tharb0. HRAF is able to obtain an average
improvement on the four maps with more th&2f%
to about18%. Clearly, there exists a tendency that
the improvement becomes smaller and smaller as the
number of routes needed to be computed increases.
Furthermore, we can see that different maps resulted
in different performance, this is due to the difference
of the four maps and the influence of random selec-
tions of thes-t node pairs in each map.

It is easy to conclude that the value bfhas a

Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guisong Liu, Zhao Qiu, Wenyu Chen

great influence on HRAF, i.e, the larger the valué of
the more runtime is needed to find the routes. Howev- ’
er, K* is less sensitive té&, i.e, time consumed using
K* changed little whenk increased. It is clear that
HRAF outperforms K* wherk is less than a thresh-
old, which depends on the number of nodes and the
number of edges of the explored graph. When the
number of nodes in the map increases, HRAF per-
forms better with biggek than K* does.
It is known that many practical applications do
not need too many best path selections, just like Trans-
portation Navigation System. Usually, it is enough for
an algorithm to provide a limited number of optimal
solutions, which is the key point of HRAF compared
with K*.

Hraf

scpace (KB)
scpace (KB)

200 400 600 800 1000 0
K (map:COL)

200 400 600 800 1000
K (map:BAY)

x10°

scpace (KB)
FO
505

scpace (KB)

e
@

[
&

6
500 1000 0

K (map:NY)

200 400 600 800 1000
K (map:FLA)

6.2 Space consumption comparison Figure 9: Space performance comparisons on four

o : . maps.
Space consumption is also important for an algorithm aps

when solving the KSP problem. Fig. 9 shows the s-

pace usage for both algorithms obtained when running with K. However, this worst-case bound is very hard

once each for different value &t to achieve, because the candidate path exploretftby
It is clear that HRAF is able to save aboli% shortest path has at mast 1 sidetrackedges and is

space compared with K* whehis no more thars0. much lower than in practice.

We can also conclude that the space consumption for

HRAF grows proportionally whet increases in our

experiments, just like runtime. Meanwhile, HRAF 7 Conclusions

consumes less memory than K* whéns rather s-

mall. Notice that the worst-case space complexity of There are many publications aiming to solve the

HRAF isO(m+n+ K?), which means that the worst- single-pair KSP problem. We reported a new algo-

case space required using HRAF grows quadratically rithm named HRAF, which operates on-the-fly strat-

Table 6: Runtime (ms) comparison wher 1 with 4 randomly selected-t pairs.

ot COL BAY NY FLA

K* HRAF K* HRAF K* HRAF K* HRAF
1 7291 6454 8030 6125 8729 7081 15738 13908
2 5620 4988 7966 5684 8415 6583 10714 9489
3 3589 3112 8020 5751 8437 6653 15638 13834
4 3485 3075 7615 5132 8641 7001 13861 15620
Avg 4996 4407 7908 5673 8555 6829 14428 12773
Ipv 11.8% 28.3% 20.2% 11.5%

Table 7: Average runtime (ms) for finding less than 50 routes on four maps for both algorithms.

COL BAY NY FLA Avg.
K* HRAF K* HRAF K* HRAF K* HRAF Ipv

1 4996.3 4407.3 7908.1 5673.0 8555.5 6829.6 144279 12773.2 17.9%
5 4994.1 4484.6 7900.3 5827.3 8550.3 6898.0 14407.2 12896.8%
20 5002.3 4596.8 7911.1 5950.2 8557.4 6955.4 144145 13216.0%
30 5009.0 4688.2 7915.0 6002.2 8563.0 6989.8 14440.0 13408.8%
40 5018.3 4767.0 7920.6 6043.8 8576.7 7025.8 14431.7 13583.2%
50 5025.1 4852.1 7928.2 6114.9 8581.5 7055.4 14435.4 13729.83%

K

E-ISSN: 2224-3402 313 Volume 12, 2015

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS

Guisong Liu, Zhao Qiu, Wenyu Chen

egy and can be guided using heuristic estimates. We [10] H. Aljazzar, S. Leue, K*: a heuristic search algo-

proved its correctness and determined its asymptotic
worst-case complexities for runtime and space con-
sumption. Our experimental results show that HRAF
outperforms the famous KSP algorithm K* wheris
small. The performance advantage compared to K*
becomes smaller whénincreases. Wheh arrives at
a threshold (usually with a very large, HRAF ex-
hibits performance worse than K*.
Acknowledgements: This work was sup-
ported by the Fundamental Research Funds for
the Central Universities (grant No.ZYGX2013J076),
Sichuan Science and Technology Department (grant
N0.2015570045) and National Science Foundation of
China (grant N0.61273308).

References:

[1] W. Hoffman, R. Pavley, A method of solution of
the Nth best path problendpurnal of the ACM
Vol.6, No.4, 1959, pp.506-14.

J.Y. Yen. Finding the K shortest loopless paths in
a network,Management Sciengc¥ol.17, No.11,
1971, pp.712-6.

Y. Honma, M. Aida, H. Shimonishi, New rout-
ing Methodology Focusing on the Hierarchical
Structure of Control Time Scal®/SEAS Trans-
actions on Communicationsol.13, No.1, 2014,
pp.505-12.

Berclaz J, Fleuret F, Turetken E, Multiple ob-
ject tracking using k-shortest paths optimization.
IEEE Trans on Pattern Analysis and Machine In-
telligence Vol.33, No.9, 2011, pp.1806-1819.

Ozer B, Gezici G, Meydan C, et al, Multiple se-
quence alignment based on structural properties,
2010 5th International Symposium on Health
Informatics and Bioinformatics (HIBIT)EEE,
pp.39-44.

[6] Y.K. Shih, S. Parthasarathy, A single source k-
shortest paths algorithm to infer regulatory path-
ways in a gene networlBioinformatics 2011,
Vol.28, No.12, pp.49-58.

[7] W. Xu, S. He, R. Song, Finding the K shortest
paths in a schedule-based transit netw@&m-
puters & Operations ResearchVol.39, No.8,
2012, pp.1812-1826.

[8] X. Wan, L. Wang, N. Hua, et al, Dynamic rout-
ing and spectrum assignment in flexible optical
path networksNational Fiber Optic Engineers
ConferenceOptical Society of America, 2011.

D. Eppstein. Finding thé shortest pathsSIAM
J. ComputingVol.28, No.2, 1998, pp.652-73.

[2]

[3]

[4]

[5]

[9]

E-ISSN: 2224-3402 314

rithm for finding the K shortest pathartificial
Intelligeng Vol.175, No.18, 2011, pp.2129-54.
A. Sedeno-Noda, An efficient time and space
K point-to-point shortest simple paths algo-
rithm, Applied Mathematics and Computation
Vol.218, No.20, 2012, pp.10244-57.

A. Sedeno-Noda , J.J. Espino-Martin, On the K
best integer network flow&omputers&: Oper-
ations Researghvol.40, No.2, 2013, pp.616-26.

[11]

[12]

[13] Z. Gotthilf, M. Lewenstein, Improved algo-
rithms for the kshortest paths and the replace-
ment paths problemsinformation Processing
Letters Vol.109, No.7, 2009, pp.352-55.

J. Hershberger, M. Maxel, S. Suri, Finding the
k Shortest Simple Paths: a new algorithm and
its implementationACM Transactions on Algo-
rithms, Vol.3, No.4, 2007.

A. Perko, Implementation of algorithms for K
shortest loopless pathNetworks Vol.16, No.2,
1986, pp.149-60.

V.M. Jimenez, A. Marzal, Computing thé
shortest paths: A new algorithm and an exper-
imental comparisorl,.ecture Notes in Computer
ScienceVo.1668, 1999, pp.15-29.

Y.L. Chen, H.H. Yang, Finding the first K short-
est paths in a time-window networ&omputer-

s & Operations Resear¢chvol.31, No.4, 2004,
pp.499-513.

L.R. Nielsen, K.A. Andersen, D. Pretolani,
Finding the K shortest hyperpath€omputer-

s & Operations Research/ol.32, No.6, 2005,
pp.1477-97.

H.H. Yang, Y.L. Chen, Finding K shortest loop-
ing paths in a traffic-light networkComputer-

s & Operations Researchv/ol.32, No.3, 2005,
pp.571-81.

E. Martins, M. Pascoal, J. Santos, A new algo-
rithm for ranking loopless path§echnical re-
port, Universidade de Coimbra, Portugal 1997.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21] V.M. Jimenez, A. Marzal, A lazy version of Epp-
stein’s shortest paths algorithirecture Notes in
Computer Scien¢a/0l.2647, 2003, pp.179-90.

[22] E.W. Dijkstra, A note on two problems in con-
nexion with graphs,Numerische Mathematik
\Vol.1, No.1, 1959, pp.269-71.

[23] J. Pearl, Heuristics: Intelligent Search Strategies
for Computer Problem Solvingdddision Wes-
ley, 1986.

[24] The 9th DIMACS implementation challenge:
The shortest path problem, University of Rome.
http://www.dis.uniromal.it/ challenge92006.

Volume 12, 2015

