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Abstract: - Safety-critical systems are embedded systems whose failure or malfunction could lead to 
unacceptable consequences. Despite the major worries about such systems are related to the design of its 
embedded software, the security is still a challenge to be faced, particularly in terms of data confidentiality, 
since they could store sensitive that, such as cryptographic keys, which could not be revealed by unauthorized 
people. Assuming that safety-critical systems are commonly arranged in unprotected areas, without being under 
surveillance, an attacker could easily capture the respective devices in order to disclosure its cryptographic 
keys. Thus, it is necessary to create solutions to keep cryptographic keys secret. In this paper is proposed 
methods to protect cryptographic keys based on code transformations. Since all major protections stand up to a 
determined attacker’s strategies till a certain period of time, we propose methods taking into account what 
strategies the attacker can perform. We conducted a case study and a discussion to show the difficulty to 
disclosure cryptographic keys if were used one or more methods proposed here. 
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1 Introduction 
The cost reduction of commercial off-the-shelf 
hardware components and the evolution of 
information systems have allowed the widespread 
use of embedded systems everywhere. Those 
systems are being used to bring safety, reliability 
and efficiency to distinct kind of applications, such 
as train control systems, flight monitoring systems 
and so on [1]. However, despite the several benefits 
provided by the emergence of embedded systems, it 
has caused a lot of concern, particularly when we 
are dealing with safety-critical systems, which are 
embedded systems whose malfunction or failure of 
could lead to unacceptable consequences, like 
endanger human lives, substantial economic losses 
and environmental damages [2]. One example of 
safety-critical system could be found on railways 
management systems. Although it could improve 
the performance of such system, it could lead to a 
catastrophic accident if any fault occurs on such 
system [3]. 

The major concern about the software of safety-
critical systems is to guarantee that it behaves like 
expected. Therefore, they are designed in order to be 
protected against attacks to its core functions 
(memory management, process management and 
data communication), such as buffer overflow 
attacks [4]. However, besides the software design, 
there are other security challenges to be faced, such 
as data confidentiality, particularly if we are dealing 
with cryptographic keys.  

Assuming that safety-critical systems generally 
is arranged in unprotected areas, i.e. without being 
under surveillance, their devices are susceptible to 
Man-Et-The-End (MATE) attacks [5]. Those attacks 
happen when attackers, after capturing one of those 
devices, pull out its embedded software to perform 
reverse engineering in order to extract, insert or 
modify code or data. For example, an attacker may 
perform reverse engineering of one safety-critical 
system in order to disclosure cryptographic keys 
inner its embedded software [6]. Another example 
of MATE attack to disclosure cryptographic keys 
can be found on [7], which take advantage of 
entropy analysis to find out where cryptographic 
keys could be stored. 

In cryptography, there is a principle, called 
kerckhoffs's principle, which states that a 
cryptosystem should be secure even if everything 
about it is public, except the cryptographic key. 
Assuming that, if an attacker could disclosure the 
cryptographic key, the respective cryptosystem 
could not be considered reliable. For example, if the 
system responsible to manage railways count on 
information provided by devices that monitor the 
railways and such devices were captured, the 
attacker could extract its cryptographic keys in order 
to send messages to mislead the system and cause 
an accident. So, to keep safety-critical systems 
secure, it is necessary to guarantee that the 
Kerckhoffs's principle be obeyed. For such, it is 
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necessary to protect safety-critical systems against 
MATE attacks whose goal is to disclosure 
cryptographic keys. 

One possible solution to protect cryptographic 
keys is using a trusted platform module (TPM) [8]. 
Such solution consists of a microcontroller capable 
to securely store a small amount of data. Although it 
could be considered a good solution, the cost of 
TPM may preclude its use, mainly when the 
financial resources of the project are limited. In 
addition, the use of TPM may require that all 
hardware architecture should be redesign, which 
also could be expensive. Thus, it may be desirable 
to develop cheaper solutions to protect 
cryptographic keys instead of use TPM.  

One way to protect cryptographic keys without 
using a TPM is by data obfuscation. Data 
obfuscation is a class of code transformations that 
converts an initial data representation into other 
representation that reveals less information about it 
[9]. Data obfuscation could be considered a cheap 
pathway to enhance cryptographic key protection 
because it tries to hinder reverse engineering 
without increasing the financial costs. This is 
because data obfuscation consists only on simple 
code transformations that demand more time and 
effort to understand the obfuscated data. 

In general, data obfuscation could be broadly 
classified as static and dynamic [9]. When it is 
static, the obfuscated data representation remains 
intact during runtime, independently of the user 
input or the environment where the software is 
running. On the other hand, when data obfuscation 
is dynamic, the software itself changes the 
representation of the obfuscated data during 
runtime. In this case, the attacker must to spend 
more time and effort to understand dynamic 
obfuscated data compared to static obfuscated data. 
This is because when an attacker looks at statically 
obfuscated data, he sees a difficult representation to 
analyze, but every time the software runs, he sees 
the same data representation, which is not true when 
it is used dynamic data obfuscation whose data 
representation will be different each time the 
software runs.  

Assuming that while defense methods are 
developed, new attack strategies are created to break 
up them. It is necessary to consider what the 
attacker can do with the available code analysis 
tools during the development of such methods. So in 
this paper it is proposed methods based on software 
protection techniques to protect cryptographic keys 

taking into account the attacker’s strategies to 
disclosure them. Such methods are described in an 
incremental way considering what the approach the 
attacker will use. The main benefits of our methods 
are twofold. First, the software developer could use 
only the methods that will counter the kind of 
attacker he wants to hinder and, second, the 
proposed methods are efficient since they do not 
cause a negative impact in terms of resource 
consumption because such methods only employ 
code transformations. 

The remainder of this paper is organized as 
follows. In section 2, it is presented related works, 
where it is presented a comparison between the 
proposed work and other studies in the literature. 
Next, in the section 3 is described in details the 
proposed methods to protect cryptographic keys as 
countermeasures against different attacker’s 
strategies. In the following, in the section 4, are 
shown a case study and a discussion to evaluate the 
proposed methods in order to demonstrate the 
difficulty to disclosure cryptographic keys protected 
by each proposed method in terms of the effort to 
perform attacks to achieve such goal. Finally, in the 
section 5 is presented our final remarks and future 
works. 

2 Related Works 
Since hardware solutions are more expensive than 
software solutions, we describe mainly software-
based papers. Despite not all papers present 
proposals to protect exclusively cryptographic keys, 
they could be used to that purpose. 

McGregor and Lee [10] propose architectural 
enhancements for general-purpose processors 
capable to protect cryptographic keys. They 
describe modest hardware modifications combined 
with a trusted software library that allows protected 
cryptographic operation, i.e. devices perform 
encryption and decryption using a secret 
cryptographic key. For such, it is proposed to store 
such cryptographic key in the processor. However, 
different from such proposal, the presented paper 
proposed a cryptographic key protection method 
that does not require a special hardware. 

Hu et. al. [11] describe a software encryption 
method to protect software intellectual property. 
Since the security of the encrypted software relies 
on the secrecy of the key, this paper proposes to 
protect it by a key protection scheme, which hides 
the cryptographic key into the encrypted code. 
Despite this method is similar to ours, we focusing 
only on protect cryptographic keys, without 
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encrypting the whole software, which could 
demands unnecessary computation resources.  

Azhar et al. propose to transform cryptographic 
key chunks to a set of randomized functions, which 
are obfuscated together to the program. Thus, when 
such keys are required, an inverse transform is 
executed at the run-time to yield the original bit-
strings of the key [12]. This work is similar to ours, 
but instead of obfuscating a set of cryptographic key 
chunks into randomized functions, our proposal 
obfuscates such chunks into instructions.  

Sanjeev et al. [13] describe two methods to 
protect cryptographic keys. The first one isolates the 
memory location where cryptographic keys are 
stored using the Virtual Machine Monitor as a 
cryptographic service provider. Thus, all 
applications execute in the guest OS, while the 
cryptosystem run in a separate and secure hardware. 
The second method provides a way to securely 
retrieve and store cryptographic keys. For such, the 
bits of the key are scattered all over unused sector of 
files on the secondary storage without using the file 
system calls of the OS to write them.  

Bansod et al. [14] propose the use of bit level 
permutation in cryptographic on automobile 
environment in order to accelerates cryptography, 
providing low cost security solution. However, such 
proposal despite pave a new way in securing small 
scale embedded system, does not cares about 
protecting the cryptographic key inner the 
embedded software, and when it comes address 
automobiles, the manipulation of its information 
could lead to disastrous results. Thus, our proposal 
works complementarily since our proposal is 
intended to protect cryptographic keys against 
MATE attacks. 

Elizabeth et al. [15] proposes two schemes to 
enhance security of Mobile Ad hoc Networks 
(Manets). The first method proposes to choose the 
secret key based on elliptic curve of prime field and 
the second proposes to use RSA algorithm to share 
such secret key. Before sending and receiving the 
keys, it is signed by the sender and after verified by 
the receiver thereby authenticating each other. 
Although this method could improve the security of 
Manets, it does not consider the problem 
cryptographic key disclosure by reverse 
engineering. Once the attacker dumps the embedded 
software on a single device of such infrastructure, 
he could gather the secret key and the pair of RSA 
keys by software analysis tools. Thus, the methods 
could not be sufficient to protect Manets since the 

attacker may send malicious messages or 
compromise confidential communication. 

3 Protect Cryptographic Keys 
In this section, we describe the proposed methods to 
protect cryptographic keys. These methods are 
described incrementally in order to make easier to 
the reader understand what countermeasure could be 
employed against certain attacker strategies. 

Assuming an attacker willing to discover 
cryptographic keys stored inner the embedded 
software of safety-critical, the first step to 
accomplish any strategy to achieve his goal is 
getting the binary code from the disk or memory 
card where the embedded software is stored. Then, 
he could use at ease all available code analysis tools. 
For example, he could use a disassembler to 
translate the binary code into assembly code 
(notation used to represent machine code) or go 
further and use a decompiler to create a high-level 
representation of the code in a certain programming 
language, such as c, in order to make easier to 
analyze the software. 

3.1 Move Cryptographic Keys  
Generally, an ordinary code is composed by one 
code segment, usually containing program 
instructions, and one data segment, commonly used 
to store data. Since no defense mechanism is 
implemented to protect cryptographic keys in such 
code, an attacker could use a strategy called string 
analysis to disclosure cryptographic keys. 

In the string analysis, an attacker simply 
examines the data segment, searching for variables 
or constant names associated to cryptography, such 
as the strings ‘crypt’, ‘password’ and etc. Although 
this strategy could be considered quite naïve, it is 
still useful when no defense methods are used to 
protect cryptographic keys. 

In order to prevent string analysis, we propose to 
move cryptographic key from the data segment to 
the code segment. But, before this, it is necessary to 
create areas in the code segment that never gets 
executed, dead execution spots, allowing store the 
cryptographic key without change the behavior of 
the software. 

Dead execution spots could be created through 
code transformations capable to manipulate the 
software control flow. For instance, it is possible to 
create dead execution spots by code obfuscation 
techniques, such as call obfuscation, return 
obfuscation or false return obfuscation combined 
with control flow manipulation [16].  
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The code snippet presented in the Table 1 shows 
how to create a dead execution spot using call 
obfuscation for ARM processors1. For such, the call 
instruction ‘bl foo’ at line 1 on column (a) is 
replaced by two instructions: ‘add lr, pc, # 4’ and 
‘ldr pc, = foo’ respectively at the lines 1 and 2 on 
column (b). The first instruction (‘add lr, pc, # 4’) is 
responsible to save the return address, in this case, 
the new address of the instruction ‘mul r1, r0, # 2’ 
to the lr register, which is standard used to store the 
return address. Then, the second instruction (‘ldr pc, 
= foo’) is used to update the pc register with the 
address of the first instruction of foo, which is the 
function to be called. After employ such 
obfuscation, a dead execution is created in the line 3 
of column (b) (dead exec spot). 

main:  
1. bl  foo  
2. mul  r1,  r0,#2  
foo:  
3. stmdb  sp!,{r4-­‐r11}  
4. add  r0,r0,#1  
5. ldmia  sp!,  {r4-­‐r11}  
6. ret  

main:  
1. add  lr,pc,#4  
2. ldr  pc,=foo  
3.  dead  exec  spot  
4. mul  r1,  r0,#2  
foo:  
5. stmdb  sp!,{r4-­‐r11}  
6. add  r0,r0,#1  
7. ldmia  sp!,  {r4-­‐r11}  
8. ret  

(a)   (b)  

Table 1. Creating dead execution spot using call obfuscation 

After creating the dead execution spot capable to 
store the cryptographic key, such key is moved from 
the data segment to the code segment, i.e. to the 
recently created dead execution spot. Then, 
disassemblers will incorrectly translate the 
cryptographic key as program instructions.  

When cryptographic keys are translated as 
program instructions, the assembly code, generated 
by disassemblers, does not represent valid code and, 
thus, the analysis upon that code could not be 
considered reliable. In addition, if the assembly 
code is not reliable, errors will be propagated to the 
next stages of code analysis, such as the 
decompilation stage, because it depends on the 
assembly code. Then the analysis upon the 
decompiled code could not be reliable too. 

Before describing the proposed algorithm to 
move cryptographic key to a dead execution spot, it 
is necessary to describe the procedures 
GetCandidateInstructions (Procedure 1) and 
CreateDeadExecutionSpots (Procedure 2). 

                                                
1 http://www.arm.com/products/processors/index.php 

Procedure 1. GetCandidateInstructions(𝒫) 

Input:   Program  𝒫  
Output:   Candidate  Instructions  𝒞!"#$%#  

1. 𝒯   ←  Set  of  obfuscation  techniques    
2. 𝒞!"#$%#   ←   ∅  
3. For  each  instruction    𝒾 ∈   𝒫  
4.             If  𝒾  may  be  obfuscated  by  one  technique  𝓉 ∈ 𝒯  
5.                         𝒞!"#$%# ←   𝒞!"#$%! ∪   𝒾  
6.             End  If  
7. End  For  

The Procedure 1 is responsible to get all candidate 
instructions, i.e. instructions that could be 
obfuscated in the program 𝒫. Such procedure 
depends on the data structure 𝒯, which describes 
how to perform code transformations to obfuscate 
certain instructions. The data structure 𝒯 could be 
seen as a vector composed by tuples with three 
columns, as seen in Table 2. The first column 
contains the label that identifies the obfuscation 
technique; the second column (Opcode to Search) 
contains the opcode that could be obfuscated and the 
third column (Replace Instructions) contains the 
instructions that act as the instruction that was 
obfuscated, i.e. the instruction whose opcode 
matches with the opcode in the respective second 
column. For example, the entry in the Table 2 details 
the call obfuscation for ARM processors, which is 
identified by the label 𝓉1. In this entry the opcode to 
search is ‘bl’ and, according to this entry, such 
instruction could be replaced by the instructions 
‘add lr, pc, #hop’ and ‘ldr pc,=function_address’. 
The constant hop represents how many addresses 
should be added from the address contained in the 
pc register and function_address represents the 
address of the function to be called. 

Obfuscation 
Technique 

Opcode to Search Replace Instructions 

𝓉1 bl function_address 
add lr,pc,#hop 

  ldr pc,= function_address 

Table 2. Typical entry of the set of obfuscation techniques 𝒯 

During the execution of Procedure 1, each 
instruction of 𝒫 is inspected to check if it could be 
obfuscated by at least one obfuscation technique in 
𝒯. If so, the position of the respective instruction (𝒾) 
is stored in the vector of candidate instructions 
(𝒞!"#$%#). The checking process in the step 4 of 
Procedure 1 occurs as follows: the opcode of the 
instruction locate at 𝒾 is compared with the opcode 
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located at the column Opcode to Search of all 
entries of 𝒯 until one or none entry matches. 

The Procedure 2 is responsible to create a dead 
execution spot. Such procedure requires the 
parameters: the program 𝒫, the program address 𝑠 
and the cryptographic key size ℓ𝓁. First, this 
procedure should go on 𝒫 until it comes to 𝑠. For 
this, it is necessary to verify for each instruction 𝒾  
∈  𝒫,   if 𝒾 is 𝑠. When the condition of line 3 is true, 
an obfuscation technique capable to obfuscate the 
instruction at s (𝓉) should be uniformly random 
chosen (line 4). Then, in the line 5, code 
transformations dictated by 𝓉 are applied on s in 
order to create a dead execution spot capable to 
store ℓ𝓁  bytes. 

Procedure 2. CreateDeadExecutionSpots(𝒫,  𝑠,  ℓ𝓁) 

Input:   Program  𝒫,  program  address  𝑠,  key  size  ℓ𝓁  
Output:   Program  𝒫I  

1. 𝒯   ←  Set  of  obfuscation  techniques    
2. For  each  instruction  𝒾  ∈  𝒫  
3.             If  𝒾  =  𝑠  
4.                         Choose  uniformly  random  𝓉 ∈ 𝒯  such  that  it    
                                          could  obfuscate  the  instruction  at  𝑠  
5.                             Employ  code  transformations  dictated  by  𝓉  on  s              
                                              that  manipulates    the  control  flow  to  create  a  
                                              dead  execution  spot  ℓ𝓁  sized  
6.             End  If  
7. End  For  

In the following, we present the proposed 
algorithm to modify a program in order to protect its 
cryptographic key against string analysis (Algorithm 
1). Such algorithm receives the following 
information as input: program 𝒫, cryptographic key 
position 𝒦 and the size of the respective 
cryptographic key ℓ𝓁. Then, it returns the program 
𝒫!! whose cryptographic key was moved to one 
dead execution spot. 

The first step of this algorithm is getting the 
candidate instruction addresses (𝒞!"#$%#). For this, it 
is used the Procedure 1. Next, in the line 2, it is 
randomly chosen one instruction address among 
𝒞!"#$%#, i.e. s. In the following, in the line 3, it is 
called the procedure CreateDeadExecutionSpot 
(Procedure 2) in order to create a dead execution spot 
capable to store the cryptographic key located in 𝒦. 
Next, in the line 4, is called the function MoveKey, 
which is responsible to move all ℓ𝓁  bytes of the 
cryptographic key from the 𝒦 address to the dead 
execution spot created at 𝑠. Finally, the loop started 
on line 5 is used to check every instruction in the 
program in order to check if it uses the 

cryptographic key that was moved. If so, the 
reference to the cryptographic key in such 
instruction is changed, i.e. from 𝒦 to 𝑠. 

Algorithm 1. Proposed algorithm to move cryptographic keys 
to dead execution spots into the code segment.   
Input:   Program  𝒫,  cryptography  key  position  𝒦,  key  size  ℓ𝓁  
Output:   Program  𝒫!!  

1. 𝒞!"#$%#   ←   GetCandidateInstructions(𝒫)  
2. 𝑠   ←  GetRandomCandidate(𝒞!"#$%#)  
3. 𝒫! ←  CreateDeadExecutionSpot  (𝒫, 𝑠,  ℓ𝓁)  
4. 𝒫!! ←  MoveKey(𝒫! ,𝒦,  𝑠, ℓ𝓁)  
5. For  each  instruction  𝒾 ∈   𝒫!!  
6.             If  𝒾  refers  to  𝒦  
7.                         Change  the  reference  of  𝒾  from  𝒦  to  𝑠  
8.             End  If  
9. End  For  

Considering that the procedure 
GetRandomCandidate is performed in constant time 
and the data structure 𝒯 could be a vector whose 
positions could be accessed in constant time. The 
complexity of Algorithm 1 could be obtained through 
the complexity of the procedures it calls and the 
loop starting at line 5.  

Assuming that the number of program 
instructions is equal to the program size (|𝒫|). The 
complexity of GetCandidateInstructions is 
𝑂  (|𝒫| ∗ |𝒯|) because for each instruction, we 
verify in 𝒯 what obfuscation technique can be used 
for obfuscate such instruction. On the other hand, 
the complexity of createDeadExecutionSpots is 
𝑂  (|𝒫|) since such procedure needs to find out the 
program address 𝑠 in 𝒫 and the code 
transformations are performed in constant time. 
Finally, the complexity of the procedure MoveKey is 
𝑂 𝒫  because this procedure simply moves the 
entire key to one dead execution spot once, 
requiring to find out the program address to move 
the instruction. Thus, the complexity of the 
Algorithm 1 is 𝑂(|𝒫| ∗ |𝒯|), i.e the complexity of the 
procedure GetCandidateInstructions.  

3.2 Split Cryptographic Key 
If the string analysis strategy could not help 
attackers to find out cryptographic keys, attackers 
must to use other strategies, such as the entropy 
analysis. In the entropy analysis, an attacker 
measures the entropy of the code, i.e. measure its 
disorder in order to have evidence where the 
cryptographic key could be [17]. 

Generally the entropy of the code segment is low 
because the bytes that comprise the instructions are 
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always the same and repeat. If certain code areas 
have high entropy, it could mean that such areas 
store cryptographic keys since they are composed 
by random bytes [7]. So, the entropy analysis could 
help attackers to identify possible candidate 
positions where cryptographic keys could be stored.  

In order to prevent entropy analysis, we propose 
to split the cryptographic key and moving each part 
of it to several dead execution spots instead of 
moving the entire cryptographic key to one single 
dead execution spot. Therefore, the entropy analysis 
could not indicate candidate position where 
cryptographic keys could be because the random 
bytes are distributed among the code and do not 
impact on the bytes frequency of the code segment. 

In the following, we present the proposed 
algorithm to split cryptographic key and store its 
parts in dead execution spots in order to prevent 
against entropy analysis and consequently against 
string analysis too (Algorithm 2). Such algorithm 
receives as input the program 𝒫, the cryptographic 
key position 𝒦 and the part size 𝓃; and returns the 
program 𝒫!! whose cryptographic key is splitted in 
parts fragment sized and moved to various dead 
execution spots. 

Algorithm 2. Proposed algorithm to split the cryptographic key 
in parts and store each part to a dead execution spot  

Input:   Program  𝒫;  cryptography  key  position  𝒦,  part  size  𝓃  
Output:   Program  𝒫!!  

1. 𝒞!"#$%#   ←   GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←    SplitCryptographicKey  (𝒦,  𝓃)  
3. For  each  𝑘! ∈ 𝒦!"#$%  
4.             𝒮!"#$%   ←  GetRandomCandidate(𝒞!"#$%#)  

5. End  For  
6. For  each  𝑠! ∈ 𝒮!"#$%  
7.             𝒫! ←  CreateDeadExecutionSpot  (𝒫, 𝑠! ,  𝓉,  𝓃)  
8.             𝒫!! ←  MoveKey(𝒫! , 𝑘! ,  𝑠!)  
9. End  For  
10. 𝒫!!   ←  InsertCallsToReconstructRoutine  (𝒫!!! ,  𝒦)  

As in the algorithm 1, the first step of the 
Algorithm 2 is to call the GetCandidateInstructions 
procedure. Then, in the line 2 is called the procedure 
SplitCryptographicKey to split the cryptographic 
key located at  𝒦 in 𝓃 sized parts. Notice that the 
size of the last part of the cryptographic key could 
be different to the other parts, i.e. shorter than 𝓃. 
The position of each part of the cryptographic key is 
stored in the data structure called 𝒦!"#$%. In the 
following, in the line 3 begin a loop to choose 
randomly addresses from  𝒞!"#$%# to create dead 
execution spots to store each part of the 

cryptographic key pointed in 𝒦!"#!" (𝑘!). Each 
address chosen using the GetRandomAddress 
procedure is stored at the data structure called 
𝒮!"#$%. Next, for each address 𝑠! in 𝒮!"#$% it is 
called the procedure CreateDeadExecutionSpot to 
create one dead execution spot to store one part of 
the cryptographic key 𝑘!. Then, one part of the 
cryptographic key is moved to the recently created 
dead execution spots by the function MoveKey. 

Finally, in order to ensure that the correct 
cryptographic key will be used, it is necessary to 
insert a reconstruct cryptographic key routine (ℛ) to 
reconstruct all the parts of the cryptographic key 
that are distributed in the code segment before each 
program instruction that uses the respective 
cryptographic key. For such, in the line 10, is called 
the procedure InsertCallsToReconstructRoutine 
(Procedure 3). The Procedure 3 requires as input the 
program 𝒫, the cryptographic key position 𝒦. First, 
it is appended in 𝒫 the reconstruct cryptographic 
key routine ℛ. Then, for each instruction 𝒾, is 
verified if such instruction refers to the 
cryptographic key in 𝒦. If so, it is added before this 
instruction, a call instruction to execute ℛ. 

Procedure 3. InsertCallsToReconstructRoutine(𝒫,𝒦)  

Input:   Program  𝒫;  cryptography  key  position  𝒦  
Output:   Program  𝒫!!  

1. 𝒫!!   ←   𝒫!   ∪   ℛ  
2. For  each  instruction  𝒾 ∈   𝒫!!  
3.             If  𝒾  refers  𝒦  
4.                         insert  call  to  ℛ  in  𝒾 − 1  
5.             End  If  
6. End  For  

Assuming that the procedures 
SplitCryptographicKey and GetRandomCandidate 
are performed in constant time and the complexity 
of the procedures GetCandidateInstructions, 
createDeadExecutionSpots and MoveKey are 
𝑂  (|𝒫| ∗ |𝒯|), 𝑂  (|𝒫|) and 𝑂 𝒫  respectively. 
Then, the complexity of complexity of Algorithm 2 
could be obtained through analysis of the procedure 
InsertCallsToReconstructRoutine and the loops that 
begin at lines 3 and 6. 

Since the procedure GetRandomCandidate is 
called for each part 𝑘!   of 𝒦!"#$%, the complexity of 
the loop beginning at line 3 is 𝑂(|𝒦!"#$%|) because 
the number of iterations is equal to the size of 
𝒦!"#$%, which is the size of cryptographic key 
located in K divided by the part size 𝓃. Similarly, 
the complexity of the loop beginning at line 6 
depends on the size of 𝒦!"#$% because |𝒮!"#$% | is 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo 
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 73 Volume 12, 2015



equal to |𝒦!"#$% |. Since the complexity of the 
procedures inside this loop is 𝑂 𝒫 , then the 
complexity of this loop is 𝑂( 𝒦!"#$% ∗ 𝒫 ) 
because it is necessary to go through the program 
until find the program address where to create a 
dead execution spot and move the cryptographic key 
to such dead execution spot.   

Finally, the complexity of the Procedure 3 is 
𝑂  (|𝒫|) because insert the call instruction takes 
constant time and it is necessary to verify all 
instructions of the program |𝒫|. Thus, the 
complexity of the Algorithm 2 is 𝑂( 𝒦!"#$% ∗ 𝒫 ). 

3.3 Create False Instructions 
When the previously strategies, i.e. string and 
entropy analysis could not help attackers to find out 
where the cryptographic key is, one possible 
strategy that attackers could use is junky bytes 
investigation. Such strategy states that the attacker 
must to search in the code segment for bytes that are 
not matched as program instructions (junky bytes) 
and combine those bytes in order to find out 
cryptographic keys.  

Since junky bytes do not appear very often in the 
code segment, the attacker could deduce that such 
bytes is or belongs to a certain cryptographic key, 
which may have been moved from the data segment 
to the code segment. Thus, after the attacker finds 
all junky bytes, he could verify them individually or 
combined if it is the desired cryptographic key. 
Besides combining all junky bytes demands time, an 
attacker with time and dedication could always 
reveal the desired cryptographic key and the only 
thing to do is trying to slow down him. Although 
not all junky bytes belongs to cryptographic keys, 
this strategy is useful when the cryptographic key is 
splitted and moved to the code segment in several 
dead execution spots because the bytes of each part 
of the cryptographic key could not be translated as 
program instructions. 

In order to detain junky bytes investigation 
strategy, we propose to camouflage all 
cryptographic key parts into false instructions, 
which are instruction composed by a random 
opcode attached with a single part of the 
cryptographic key, which will look like as the 
operand of such instruction.  

The number of false instructions depends on the 
operand size and the cryptographic key size. After 
splitting the cryptographic key into operand size 
parts and attach them with random opcodes, it is 
necessary to create the required number of dead 
execution spots to store all generated false 
instructions. Notice that false instructions may have 

different sizes because they have different opcodes. 
So, it is necessary to create dead execution spots 
having different sizes. 

Algorithm 3 describes the steps of the proposed 
method to prevent junky byte investigation. 
Algorithm 3 receives as input the program 𝒫, the 
cryptographic key 𝒦 and the operand size 𝓃; and 
returns 𝒫  !!!, the program whose cryptographic key 
is camouflaged in false instructions that are 
distributed in the code segment, being difficulty to 
the attacker distinguish between them and actual 
instructions. The only difference between this 
algorithm and Algorithm 2 are the steps to create false 
instructions and to create dead execution spots since 
such spots have to store false instructions instead of 
cryptographic key parts. 

Algorithm 3. Proposed algorithm to hide cryptographic key 
parts into false instructions 

Input:   Program  𝒫;  cryptography  key  𝒦,  operand  size  𝓃  
Output:   Program  𝒫!!!  

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,𝓃)  
3. 𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   ∅  
4. For  each  𝑘!   ∈   𝒦!"#$%  
5.             𝑓   ←   𝐺𝑒𝑡RandomOpcode() ∘ 𝑘!   
6.             𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∪ 𝑓      
7. End  For  
8. 𝒮!"#$% ←  GetRandomCandidates(𝒞!"#$%# ,  |𝒦!"#$%|)  

9. For  each  𝑠! ∈ 𝒮!"#$%  
10.             Choose  𝑓!   from  𝑓𝑎𝑙𝑠𝑒!"#$%#  
11.             𝒫! ←  CreateDeadExecutionSpot(𝒫, 𝑠! ,  𝓉,|𝑓!|)  
12.             𝒫!!  ←  MoveFalseInstruction(𝒫! , 𝑓! ,  𝑠!)  
13. End  For  
14. 𝒫!!!   ←  InsertCallsToReconstructRoutine(𝒫!! ,  𝒦)  

After splitting the cryptographic key 𝒦 into 𝓃 
sized parts, for each cryptographic key part k, it is 
performed the following steps to create false 
instructions: (i) generation of a random opcode by 
the procedure RandomOpcode and (ii) attaching it 
with k, which will be translated as the operand of 
such instruction (line 5). Each created false 
instruction is store in the data structure 𝑓𝑎𝑙𝑠𝑒!"#$%#. 

Before moving each false instruction in 
𝑓𝑎𝑙𝑠𝑒!"#$%# to a dead execution spot, it is necessary 
to ensure that such spot is capable to store a false 
instruction (𝑓!), i.e. whose size is |𝑓!|. First, it is 
necessary to choose from the candidate instructions 
(𝒞!"#$%#) the instructions to be obfuscated in order to 
create dead execution spots (line 8). In the 
following, for each instruction 𝑠!   in 𝒮!"#$% is chosen 
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one false instruction (𝑓!). Then, it is called the 
procedures CreateDeadExecutionSpot and 
MoveFalseInstruction in order to create the dead 
execution spot capable to store 𝑓!   and move such 
instruction to this dead execution spots respectively. 
Finally it is embedded the reconstruction 
cryptographic key routine to the program and calls 
to it. 

Assuming that the procedures 
SplitCryptographicKey, GetRandomOpcode and 
GetRandomCandidates are performed in constant 
time and the complexity of the procedures 
GetCandidateInstruction, createDeadExecutionSpot 
and MoveFalseInstruction are 𝑂  (|𝒫| ∗ |𝒯|), 
𝑂  (|𝒫|) and 𝑂 𝒫  respectively. Then, the 
complexity of complexity of Algorithm 3 could be 
obtained through analysis of the loops that begin at 
lines 4 and 9. Notice that the complexity of 
MoveFalseInstruction is similar to the complexity of 
MoveKey. 

 In the loop beginning in the line 4, for each 
cryptographic key part (𝑘!) is created one false 
instruction (𝑓). Then, the complexity associated to 
that loop is 𝑂(|𝒦!"#$%|) since the procedure 
GetRandomOpcode executes in constant time. On 
the other hand, the complexity of the loop beginning 
in the line 9 depends on the number of false 
instructions (𝑓𝑎𝑙𝑠𝑒!"#$%#) and the complexity of the 
procedures createDeadExecutionSpot and 
MoveFalseInstruction. Thus this complexity is 
𝑂  ( 𝒫 ∗ |𝑓𝑎𝑙𝑠𝑒!"#$%#|), which is the complexity of 
the Algorithm 3. 

3.4 Insert Garbage Instructions 
Assuming an attacker knowing that the 
cryptographic key was splitted and its parts 
camouflaged in false instructions, he could use the 
dead execution spot investigation to reveal such 
cryptographic key, which states to examine the code 
segment in pursuit of dead execution spots since 
false instructions are store in such spots. Although it 
is difficult to find out dead execution spots because 
it requires sufficient test inputs to achieve all paths 
that produce meaningful behavior, it is possible to 
attackers verify areas in the code segment that never 
gets executed (dead execution spots) and, thus, find 
out all the parts of cryptographic keys, which are the 
operands of the false instructions in such dead 
execution spots.  

In order to counter dead execution spot 
investigation, we propose inserting garbage 
instructions, which are random program 
instructions in dead execution spots too. So, 
attackers require more time and effort to reveal the 

cryptographic key because he could not distinguish 
false instructions from garbage instructions. 

Algorithm 4 describes the steps of the proposed 
method that camouflages cryptographic key parts 
into false instructions and insert garbage 
instructions. Such algorithm receives as input the 
program 𝒫, the cryptographic key 𝒦, the operand 
size 𝓃, number of garbage instructions 𝓂; and 
returns 𝒫!!!, which is the program whose 
cryptographic key is hidden in false instruction and 
has garbage instructions distributed in the code 
segment. 

Algorithm 4. Proposed algorithm to hide cryptographic key 
parts into false instructions and add garbage instructions 

Input:    Program  𝒫;   cryptography   key  𝒦,   operand   size  𝓃,  
number  of  garbage  instructions  𝓂  
Output:   Program  𝒫!!!  

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,  𝓃)  
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ←  CreateFalseInstructions(𝒦!"#$%)  
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   ∅  
5. While  |𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#|  <  𝓂  
6.             𝑔   ←   RandomOpcode() ∘ RandomOperand()    
7.             𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"!"#!   ∪ 𝑔      
8. End  While  
9. ℳ   ← |𝒦!"#$%| +   𝓂  
10. 𝒮!"#$%   ←  GetRandomCandidates(𝒞!"#$%#,  ℳ)  

11. For  each  𝑠! ∈ 𝒮!"#$%  
12.             ℎ  ← 𝑓!   from  𝑓𝑎𝑙𝑠𝑒!"#$%#  or  𝑔! ∈ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#  
13.             𝒫! ←  CreateDeadExecutionSpot(𝒫, 𝑠! ,  𝓉,  ℎ)  
14.             𝒫!! ←  MoveInstruction(  𝒫! , ℎ  ,  𝑠!)  

15. End  For  
16. 𝒫!!!   ←  InsertCallsToReconstructRoutine(𝒫!! ,  𝒦)  

The differences between this algorithm and 
algorithm 3 are: (i) the steps to create garbage 
instructions that do not exist in the previous 
algorithm (lines 4 to 8) and (ii) the number of dead 
execution spots that should be created (line 9). After 
getting the candidate instructions (𝒞!"#$%#) and 
creating the false instructions by the procedures 
GetCandidateInstructions and 
SplitCryptographicKey respectively, this algorithm 
creates 𝓂 garbage instructions. Each garbage 
instruction is created by a random opcode with 
random operands (line 6). Next, it is chosen 
ℳ  addresses from 𝒞!"#$%# and stored at 𝒮!"#$%. In 
the following, for each 𝑠! ∈ 𝒮!"#$% is chosen one 
instruction from 𝑓𝑎𝑙𝑠𝑒!"#$%#  or from 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# 
(ℎ) and for each instruction ℎ is created one dead 
execution spot to store it and then ℎ is moved to the 
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created dead execution spot (lines 13 and 14 
respectively). Finally, the reconstruction 
cryptographic key routine is attached to the program 
and calls to it are inserted before each instruction 
that refers to 𝒦. 

Assuming that the procedures 
SplitCryptographicKey, GetRandomOpcode, 
GetRandomOperand and GetRandomCandidates are 
performed in constant time and the complexity of 
the procedures GetCandidateInstruction, 
createDeadExecutionSpot and MoveInstruction are 
𝑂  (|𝒫| ∗ |𝒯|), 𝑂  (|𝒫|) and 𝑂 𝒫  respectively. 
Then, the complexity of complexity of Algorithm 4 
could be obtained through analysis of the loop that 
begin at lines 4 to create garbage instructions (lines 
4 to 8), which is 𝑂   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!!"#$"  and the loop 
starting at line 10, which is 𝑂  (|𝒫| ∗ |ℳ  |) since it 
is necessary for each garbage and false instruction 
(total of instructions is ℳ) to go create dead 
execution spots and move such instruction to that 
spot, which requires  𝑂  (|𝒫|). So, the complexity of 
the Algorithm 4 is  𝑂  (|𝒫| ∗ |ℳ  |). 

3.5 Insert Obfuscation Engine 
The previously methods try to hinder reverse 
engineering assuming attackers can only use static 
code analysis tools. However, such methods are not 
effective when he can use dynamic code analysis 
tools, such as debuggers and emulators because the 
software is static. Beyond that, attackers could have 
different strategies taking advantage that the 
software is static.  

The fist strategy that takes advantage of static 
software is the program diffing. This strategy 
requires that attackers have two or more copies of 
the same software and the cryptographic key be 
different in each copy. In this case, the attacker 
could reveal cryptographic keys by comparing the 
copies whereas each copy is identical except on the 
program addresses where the cryptographic key is 
stored. Thus, examining the program addresses that 
are not identical could lead attackers to easily 
disclosure cryptographic keys.  

The other strategy that takes advantage of static 
software is the recurrent attack. The goal of this 
strategy is compromise the largest possible number 
of devices. Assuming a scenario where there are 
many devices containing identical software 
embedded in it, once an attacker could find out the 
program address where the cryptographic key is 
located in one of such copies, he may create a script 
to remotely read such address on other devices, 
where the cryptographic key is expected to be, in 
order to find out new cryptographic keys without 
analyze the software of all devices. 

The countermeasure proposed in this work to 
prevent against such strategies is inserting to the 
embedded software an obfuscation engine that 
dynamically modify both false and garbage 
instructions. Notice that the obfuscation engine 
could move both instructions to different program 
address in order to make it more difficult to identify 
such instructions.  

The obfuscation engine could prevent against 
program diffing because the copy contained in each 
device will be different since this software 
periodically changes its code differently and not 
only in the program addresses where the 
cryptographic key is. So, there are many program 
addresses in the code that are different, making 
difficult to know cryptographic key position by 
simply comparing two or more copies. Furthermore, 
the obfuscation engine hinders recurrent attacks 
because it provides software diversity, i.e. the 
software within each device is different. Thus, the 
attacker could not take advantage of previous 
knowledge (cryptographic key location) to discover 
new cryptographic keys to propagate an attack for 
other devices. 

The Algorithm 5 describes the steps of the 
proposed method to counter dynamic analysis and 
the strategies program diffing and recurrent attacks. 
Such algorithm receives the following information 
as input: program 𝒫, cryptographic key 𝒦, the 
operand size 𝓃, the number of garbage instructions 
𝓂 and returns 𝒫!!! containing an obfuscation 
engine capable to periodically hides cryptographic 
key in false instructions and inserts garbage 
instructions in different ways, by changing its shape 
and its position inside the code. In order to ensure 
that each device has distinct software, it is necessary 
to use schemes that gets intrinsic features of the 
device where the software is embedded, such as 
Physical Unclonable Function (PUF) [18], in order 
to be the seed to the random functions that creates 
new false instructions and/or garbage instructions.  

The steps of Algorithm 5 are similar to the 
Algorithm 4 except for the steps to embed the 
obfuscation engine 𝒪. This is done to guarantee that 
before 𝒪 runs for the first time, the software will be 
different for each device. Thus, until the line 13 is 
reached, the algorithm 5 behaves as the algorithm 4. 
After this line, the algorithm 5 fills 𝒪 with the 
following information in order to ensure that it has 
the required information to create new dead 
execution spots and move the existing false and 
garbage instructions: 𝒞!"#$%#, 
𝑓𝑎𝑙𝑠𝑒!"#$%#,  𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# and 𝑆!"#$%. 𝒞!"#$%# is 
required to the 𝒪 knows where new dead execution 
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spots could be created; 𝑆!"#$% is provided to 𝒪 in 
order that it knows the dead execution spots where 
is stored false and garbage instructions. Finally, it 
must to know 𝑓𝑎𝑙𝑠𝑒!"#$%# and  𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# in 
order to know what kind of instruction is in each 
dead execution spots informed by 𝑆!"#$%. The last 
steps of this algorithm are responsible to embed the 
𝒪 and inserts instructions that calls it randomly in 
different program addresses in the software. 

Algorithm 5. Proposed algorithm to embed the obfuscation 
engine into a program 

Input:    Program  𝒫;   cryptography   key  𝒦;   operand   size  𝓃,  
number  of  garbage  instructions  𝓂  
Output:   Program  𝒫!!!  

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)  
2. 𝒦!"#$% ←  SplitCryptographicKey(𝒦,𝓃)  
3. 𝑓𝑎𝑙𝑠𝑒!"#$%#   ←   CreateFalseInstructions(𝒦!"#$%)  
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#   ←   CreateGarbageInstructions(𝓂)  
5. ℳ   ← |𝒦!"#$%| +   𝓂  
6. 𝒮!"#$%   ←  GetRandomCandidates(𝒞!"#$%#,  ℳ)  

7. For  each  𝑠! ∈ 𝒮!"#$%  
8.             ℎ  ← 𝑓!   from  𝑓𝑎𝑙𝑠𝑒!"#$%#  or  𝑔! ∈ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#  
9.             𝒫! ←  CreateDeadExecutionSpot(𝒫, 𝑠! ,  𝓉,  ℎ)  
10.             𝒫!! ←  MoveInstruction(  𝒫! , ℎ  ,  𝑠!)  

11. End  For  
12. 𝒫!!!   ←  InsertCallsToReconstructRoutine(𝒫!! ,  𝒦)  
13. 𝒪 ← 𝒪 ∪   𝒞!"#$%# ∪   𝑓𝑎𝑙𝑠𝑒!"#$%#   ∪   𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#        
14. 𝒫!"   ←   𝒫!!!   ∪   𝒪  
15. 𝒫! ←  insertCallsToObfuscatorEngine(𝒫!")  

During the execution of 𝒪, it creates new false 
and garbage instructions, which could be stored in 
new dead execution spots or simply moved among 
the existing ones. For this, 𝒪 randomly chooses n 
false instructions and m garbage instructions to be 
modified in this moment. In the following, it is 
chosen how many false and garbage instructions 
should be modified in its shape, in its locations or 
both. Then it is performed the respective steps to do 
such actions, i.e. the steps to create new false and 
garbage instructions, the steps to create new dead 
execution spots and the steps to move false and 
garbage instructions to new locations. Finally, 
before 𝒪 returns the control flow to the software, it 
ensures that the addresses of dead execution spots 
are known and what kind of instruction is stored in 
each of them. 

The complexity of Algorithm 5 is identical to the 
complexity of the Algorithm 4, i.e. 𝑂  (|𝒫| ∗ |ℳ  |) 
because the instructions at lines 13 and 14 operates 
at constant time and the complexity of the procedure 

insertCallsToObfuscatorEngine is identical of the 
complexity of InsertCallsToReconstructRoutine, i.e. 
𝑂  (|𝒫|).  

3.6 Insert Anti-Debugging Techniques 
When attackers could use dynamic analysis tools 

to seek cryptographic keys, even if the software is 
dynamic, i.e. changes its own code during runtime, 
they could disclosure cryptographic keys since it is 
not an absolute protection. Thus, to improve 
cryptographic key protection, we could insert anti-
debugging techniques in order to prevent against 
dynamic analysis tools [19].  

Debuggers such as GDB2 (The GNU Project 
Debugger) and OllyDbg3 provide an interface that 
links the hardware subsystem and the human 
analyst. Anti-debugging tricks work by detecting or 
exploiting specific debugging subsystems. Software 
that employs anti-debugging techniques can 
determine if it’s being debugged by identifying the 
debugging process whether from the software or 
hardware. For example, when it is detected an 
unexpected pause in execution, it could give 
evidence that an attacker has paused the software to 
analyze it. The evidence of the debugging process 
could be simply detected by take the time in two 
periods and compare them. If the time difference is 
higher than usual time, it implies that a debugger is 
used to analyze the software. On the other hand, 
hardware debugging could be detected by checking 
debug registers for specific values since hardware 
debuggers use such registers to place breakpoints on 
processes. 

4 Case Study and Discussion 
In this section, we present a case study showing the 
difficulty to disclosure cryptographic keys by the 
proposed protection methods. In the following, we 
show after employ each of the proposed methods, 
how the effort to disclosure cryptographic key 
increases. 

Since there is not an absolute metric to evaluate 
software protection methods in the literature, we 
propose an effort metric (𝐸), which measures the 
difficulty to achieve a goal, such as disclosure 
cryptographic keys. This metric is expressed as 
𝐸 = 𝑇!×𝛼!!

!!! , where 𝑇! is a time-based factor, 
representing the time required to the attacker to 
perform a certain task; and 𝛼! is a constant factor 
that weights the respective difficulty to perform the 
related task. 

                                                
2 https://www.gnu.org/software/gdb/ 
3 http://www.ollydbg.de/ 
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For our experiments, we used the rijndael 
application of an embedded benchmark suite, called 
MiBench [20]. This application is an 
implementation of the AES symmetric cipher to 
ARM processors. In its original form, such 
application does not have any method to prevent 
MATE attacks.  

The first strategy to disclosure its cryptographic 
keys is the string analysis. Considering that the 
attacker knew nothing about the rijndael application 
a priori, he could examining its code with IDA 
PRO4, a commercial multi-processor disassembler 
and debugger, in order to find out its cryptographic 
key in the data segment (.rodata). Figure 1 shows that 
it is possible to find out the cryptographic key in its 
application since it could be found after identifying 
the string CRYPTO_KEY stored at the program 
address 0x020311FC. For such, attackers must to 
spend the effort 𝐸 = 𝑇!×𝛼!, where 𝑇! is the time to 
examine one string in the data segment and 𝛼! is 
related to number of strings in the data segment. 

 
Figure 1. Cryptographic key revealed by string analysis 

The first countermeasure, as described in 
subsection 3.1, to protect the rijndael application 
consists in moving the cryptographic key to the code 
segment, more specifically in a dead execution spot. 
In our experiments, we create a dead execution spot 
in the code segment of the rijndael application 
through call obfuscation. A way to perform call 
obfuscation in ARM is described on [16]. 

Table 3 shows how to create a dead execution spot 
in ARM using call obfuscation. In this example, the 
bytes of the crypto_key (0xFFFF) are moved from 
the data segment (.data) of the code snippet in the 
column (a) to the created dead execution spot at line 
3 of the code snippet in the column (b). We follow 
the same knowledge to create in the rijndael 
application one dead execution spot. In the Figure 2 it 

                                                
4 http://www.hex-rays.com/products/ida/ 

is possible to see the cryptographic key 
CRYPT_KEY, first shown in the Figure 1, translated 
as program instruction from the program address 
0x020234C8. Notice that not all bytes of 
CRYPT_KEY were translated as program 
instructions since some of them were translated as 
junky bytes, such as the bytes at 0x020234D0. 

.data  
crypto_key:          .word          0xFFFF  

.text  
main:  
7. bl  foo  
8. mul  r1,  r0,#2  
9. bl  bar  
10. div  r1,0,#3  
foo:  
11. stmdb  sp!,{r4-­‐r11}  
12. add  r0,r0,#1  
13. ldmia  sp!,  {r4-­‐r11}  
14. ret  
bar:  
1. stmdb  sp!,{r4-­‐r11}  
2. sub  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  

.text  
main:  
1.  add  lr ,pc,#4  
2. ldr  pc,=foo  
3.  0xFFFF  
4. mul  r1,  r0,#2  
5. bl  bar  
6. div  r1,0,#3  
foo:  
1. stmdb  sp!,{r4-­‐r11}  
2. add  r0,r0,#1  
3. ldmia  sp!,  {r4-­‐r11}  
4. ret  
bar:  
9. stmdb  sp!,{r4-­‐r11}  
10. sub  r0,r0,#1  
11. ldmia  sp!,  {r4-­‐r11}  
12. ret  

(a)   (b)  
Table 3. Original code sample (a) and obfuscated code (b) 

Despite the movement of the cryptographic key 
to the code segment is effective against string 
analysis, such method is not effective against 
entropy analysis. To perform the entropy analysis, 
we created a script in the IDA PRO to calculate for 
each code block of 1024 bytes the shannon entropy 
[17]. After calculate the entropy for all code blocks, 
we calculate the entropy mean and the entropy 
variance. Finally, if the entropy of a code block is 
greater than the entropy mean more the entropy 
variance. Then the first program address of such 
code block is returned.  

The Figure 2 shows the program addresses where 
the cryptographic key could be located, which are 
the program addresses of the code block whose 
entropy is greater than the entropy mean 
(0,13040864204) more the entropy variance 
(0,0181771936). After examining the results of the 
script, we are able to find out the cryptographic key 
since one of program addresses returned by the 
script is the program address 0x020234C8, i.e. the 
program address where the dead execution spot 
were created to store the cryptographic key. 
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Figure 2. Entropy Calculation 

The effort to disclosure the cryptographic key 
using the entropy analysis strategy is 𝐸 = 𝑇!×𝛼!, 
where 𝑇! is the time to examine each program 
address returned by the script and 𝛼! is a constant 
factor related to the number of program addresses 
returned by the script to calculate the entropy 
regardless the effort to create such script. Notice 
that if the attacker has performed the string analysis 
before the entropy analysis, then the total effort to 
disclosure the desired cryptographic key is 
𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼! and so on. 

The second countermeasure proposed in this 
paper, described in the subsection 3.2, is split the 
cryptographic key and store its parts in a distinct 
dead execution spots, which is randomly disposed in 
the code segment. In this case, the script that 
calculates the entropy does not return any possible 
candidate program address. Thus, the cryptographic 
key could not been disclosure by entropy analysis. 

If the entropy analysis could not help attackers, 
they could use other strategy, such as the junky 
bytes examination, i.e. examine the code segment 
for junky bytes. Such bytes appear in the code 
segment because disassemblers could not make the 
correspondence between these bytes with a certain 
program instruction. However, such bytes could also 
be incorrectly translated as program instructions. It 
happens when an assumption used by disassemblers 
are not followed. For example, when disassemblers 
detect a call instruction, they assume that the return 
address is the subsequent address after the call 
instruction. However, since the return address is 
manipulated to redirect the control flow to other 
program address, disassemblers still translates the 
bytes located at return address that they consider as 
real program instructions. 

The effort to disclosure cryptographic key using 
junky bytes examination is 𝐸 = 𝑇!×𝛼! +   𝑇!×𝛼!, 
where 𝑇! is the time to find out one junky byte, 𝛼! 
the total number of junky bytes, 𝑇! the time to 

combine the junky bytes in a certain order and 𝛼! 
dictate the number of combinations, which depends 
on the number of junky bytes found in the code 
segment. Notice that some parts of the 
cryptographic key will not be translated as garbage 
instructions. Thus such strategy could not be 
absolutely effective. 

Next, to counter the attacker to find out junky 
bytes, it is applied the method described in the 
subsection 3.3. Then, the cryptographic key parts, 
which before were translated as junky bytes, now 
are operand of false instructions, making difficult to 
attackers to use junky bytes investigation to find out 
cryptographic keys. 

Assuming that attackers know that the 
cryptographic key parts are camouflaged as false 
instructions, they could try to identify such 
instructions in the code segment. However, 
distinguish false instructions from actual 
instructions is difficult because false instructions do 
not have a standard format that differentiate it from 
actual instructions. Thus, attackers should try to 
identify all the dead execution spots in the code 
segment (dead execution investigation).  

One way to identify dead execution spots is by 
analyzing the software control flow. However, to 
perform such analysis, it is necessary to generate the 
Control Flow Graph (CFG) of the program and 
since the CFG depends on the assembly code 
created by disassemblers and the method to create 
dead execution spots could infringe certain 
disassembler assumptions, the CFG created could 
not be reliable, making difficulty to identify such 
dead execution spots. 

The effort to find out cryptographic keys by dead 
execution investigation is 𝐸 =   𝑇!×𝛼! +   𝑇!×𝛼!. 
Such effort depends on the identification of dead 
execution spots among all program instructions and 
the time to combine the cryptographic key parts 
(𝑘1,  𝑘2,  𝑘3, …,  𝑘n) since the false instructions could 
be disorderly arranged in the code segment. For so, 
𝑇! is the time to find out one dead execution spot, 
𝛼! depends on the number of dead execution spots 
regardless of the attacker’s capacity to identify dead 
execution spots. 𝑇! is the time to combine the 
operand bytes of each false instruction in a certain 
order and 𝛼! dictate the number of combinations, 
which depends on the number of dead execution 
spots found in the code segment. 

If an attacker discovers all the dead execution 
spots, and consequently, the false instructions, the 
proposed solution to counter such attacker was 
inserting garbage instructions in dead execution 
spots too in order to increase the number of 
combinations to disclosure the cryptographic key.  
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The effort to do this is 𝐸 =   𝑇!×𝛼! +   𝑇!×𝛼! +
  𝑇!×𝛼!. Beyond such effort must to consider the 
time to find out false instructions, it has to consider 
the time to find out garbage instructions (𝑇!) and its 
respective constant factor (𝛼!). Similarly as the 
distinction between false instructions from actual 
instructions is difficulty, the distinction between 
false and garbage instructions is even more difficult. 
For instance, to reconstruct the cryptographic key 
𝒦, the attacker must to discover the false 
instructions among n + m dead execution spots 
whereas m is the number of garbage instructions and 
n the number of false instructions. 

In order to prevent against program diffing and 
recurrent attacks, it is applied the last method, 
described in the subsection 3.5. Since the 
obfuscation engine changes randomly the software 
running on each device, thus making program 
diffing could be considered impossible. This is 
because each copy of software has different code, 
since the n parts of the cryptographic key are 
arranged in different places and in different false 
instructions. Notice that if only the false instructions 
are changed, the obfuscation engine could give 
indications of the location of these keys. However, 
the obfuscation engine also generates garbage 
instructions at runtime. Thus when comparing 
copies of two different devices, it does not help the 
attacker to locate a cryptographic key as the copies 
are very different and the effort to understand the 
differences between them makes it almost 
impossible. 

Software diversity provided by the obfuscation 
engine is also useful to counter recurrent attacks. 
This is because the software is constantly changing 
and therefore cannot take advantage of an earlier 
analysis to compromise the same device in the 
future or other devices that have the same software. 

The Table 4 presents an example showing how an 
application could changes due the obfuscation 
engine operation at two different times T1 and T2 
respectively shown in column (a) and (b). At T1, the 
cryptographic key part (0xE0C7) is camouflaged in 
the false instruction ‘addeq r8, r4, # 199’ on dead 
execution spot created by call obfuscation. In T2, 
0xE0C7 is camouflaged within the false instruction 
‘subne r8, r4, # 199’. Such instruction is stored in a 
dead exexcution spots created with return 
obfuscation. For this, the ret instruction of the 
function bar is replaced by the instructions ‘add r3, 
lr, # 4' and ‘b r3’, which manipulate the control flow 
in order to create a dead execution spot between the 
call instruction ‘bl foo’ and the instruction ‘mul r1, 
r2, #2’. 

.text  
main:  
1. add  lr,pc,#4  
2. ldr  pc,=foo  
3.  addeq  r8,r4,#199  
4. mul  r1,  r0,#2  
5. bl  bar  
6. div  r1,0,#3  
foo:  
7. stmdb  sp!,{r4-­‐r11}  
8. add  r0,r0,#1  
9. ldmia  sp!,  {r4-­‐r11}  
10. ret  

.text  
main:  
1. add  lr,pc,#4  
2. bl  foo  
3.  subne  r8,r4,#199  
4. mul  r1,  r0,#2  
5. bl  bar  
6. div  r1,0,#3  
foo:  
7. stmdb  sp!,{r4-­‐r11}  
8. add  r0,r0,#1  
9. ldmia  sp!,  {r4-­‐r11}  
10. add  r3,lr,#4  
11. b  r3  

(a)   (b)  
Table 4 code examples that show two samples created by 

obfuscation engine operation at two different times T1 (a) and 
T2 (b) 

5 Conclusion 
Security of cryptographic mechanisms is ultimately 
based on the assumption that cryptographic keys are 
kept secret. This assumption is very difficult to 
accommodate because with time and creativity, and 
attacker always could achieve his goal. However, in 
this work, we presented methods to hinder script 
kiddies and slow down skilled attackers. Such 
methods could be considered appropriate for safety-
critical systems because it decreases the risk of 
disclosure cryptographic keys by reverse 
engineering, without financial costs and with little 
impact against resource consumptions, such as 
memory and processing.  

5.1 Future Works 
For future works, we intend to improve the 
evaluation of proposed methods by analyzing the 
effectiveness and efficiency of human analysis 
through forms that subjectively measure the weights 
of alphas used to measure the effort to perform the 
attacks to disclosure cryptographic keys [21] [22].  
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