
Methods to Protect Cryptographic Keys on Safety-Critical Systems

RAFAEL COSTA1, 2, DAVIDSON BOCCARDO2, LUCI PIRMEZ1, 2, LUIZ FERNANDO RUST2
Federal University of Rio de Janeiro1, National Institute of Metrology, Quality and Technology2

BRAZIL
rafaelcosta@ppgi.ufrj.br, {drboccardo, lfrust}@inmetro.gov.br, luci@nce.ufrj.br

Abstract: - Safety-critical systems are embedded systems whose failure or malfunction could lead to
unacceptable consequences. Despite the major worries about such systems are related to the design of its
embedded software, the security is still a challenge to be faced, particularly in terms of data confidentiality,
since they could store sensitive that, such as cryptographic keys, which could not be revealed by unauthorized
people. Assuming that safety-critical systems are commonly arranged in unprotected areas, without being under
surveillance, an attacker could easily capture the respective devices in order to disclosure its cryptographic
keys. Thus, it is necessary to create solutions to keep cryptographic keys secret. In this paper is proposed
methods to protect cryptographic keys based on code transformations. Since all major protections stand up to a
determined attacker’s strategies till a certain period of time, we propose methods taking into account what
strategies the attacker can perform. We conducted a case study and a discussion to show the difficulty to
disclosure cryptographic keys if were used one or more methods proposed here.

Key-Words: - Security, Safety-Critical Systems, Cryptographic Key Protection, Obfuscation

1 Introduction
The cost reduction of commercial off-the-shelf
hardware components and the evolution of
information systems have allowed the widespread
use of embedded systems everywhere. Those
systems are being used to bring safety, reliability
and efficiency to distinct kind of applications, such
as train control systems, flight monitoring systems
and so on [1]. However, despite the several benefits
provided by the emergence of embedded systems, it
has caused a lot of concern, particularly when we
are dealing with safety-critical systems, which are
embedded systems whose malfunction or failure of
could lead to unacceptable consequences, like
endanger human lives, substantial economic losses
and environmental damages [2]. One example of
safety-critical system could be found on railways
management systems. Although it could improve
the performance of such system, it could lead to a
catastrophic accident if any fault occurs on such
system [3].

The major concern about the software of safety-
critical systems is to guarantee that it behaves like
expected. Therefore, they are designed in order to be
protected against attacks to its core functions
(memory management, process management and
data communication), such as buffer overflow
attacks [4]. However, besides the software design,
there are other security challenges to be faced, such
as data confidentiality, particularly if we are dealing
with cryptographic keys.

Assuming that safety-critical systems generally
is arranged in unprotected areas, i.e. without being
under surveillance, their devices are susceptible to
Man-Et-The-End (MATE) attacks [5]. Those attacks
happen when attackers, after capturing one of those
devices, pull out its embedded software to perform
reverse engineering in order to extract, insert or
modify code or data. For example, an attacker may
perform reverse engineering of one safety-critical
system in order to disclosure cryptographic keys
inner its embedded software [6]. Another example
of MATE attack to disclosure cryptographic keys
can be found on [7], which take advantage of
entropy analysis to find out where cryptographic
keys could be stored.

In cryptography, there is a principle, called
kerckhoffs's principle, which states that a
cryptosystem should be secure even if everything
about it is public, except the cryptographic key.
Assuming that, if an attacker could disclosure the
cryptographic key, the respective cryptosystem
could not be considered reliable. For example, if the
system responsible to manage railways count on
information provided by devices that monitor the
railways and such devices were captured, the
attacker could extract its cryptographic keys in order
to send messages to mislead the system and cause
an accident. So, to keep safety-critical systems
secure, it is necessary to guarantee that the
Kerckhoffs's principle be obeyed. For such, it is

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 68 Volume 12, 2015

necessary to protect safety-critical systems against
MATE attacks whose goal is to disclosure
cryptographic keys.

One possible solution to protect cryptographic
keys is using a trusted platform module (TPM) [8].
Such solution consists of a microcontroller capable
to securely store a small amount of data. Although it
could be considered a good solution, the cost of
TPM may preclude its use, mainly when the
financial resources of the project are limited. In
addition, the use of TPM may require that all
hardware architecture should be redesign, which
also could be expensive. Thus, it may be desirable
to develop cheaper solutions to protect
cryptographic keys instead of use TPM.

One way to protect cryptographic keys without
using a TPM is by data obfuscation. Data
obfuscation is a class of code transformations that
converts an initial data representation into other
representation that reveals less information about it
[9]. Data obfuscation could be considered a cheap
pathway to enhance cryptographic key protection
because it tries to hinder reverse engineering
without increasing the financial costs. This is
because data obfuscation consists only on simple
code transformations that demand more time and
effort to understand the obfuscated data.

In general, data obfuscation could be broadly
classified as static and dynamic [9]. When it is
static, the obfuscated data representation remains
intact during runtime, independently of the user
input or the environment where the software is
running. On the other hand, when data obfuscation
is dynamic, the software itself changes the
representation of the obfuscated data during
runtime. In this case, the attacker must to spend
more time and effort to understand dynamic
obfuscated data compared to static obfuscated data.
This is because when an attacker looks at statically
obfuscated data, he sees a difficult representation to
analyze, but every time the software runs, he sees
the same data representation, which is not true when
it is used dynamic data obfuscation whose data
representation will be different each time the
software runs.

Assuming that while defense methods are
developed, new attack strategies are created to break
up them. It is necessary to consider what the
attacker can do with the available code analysis
tools during the development of such methods. So in
this paper it is proposed methods based on software
protection techniques to protect cryptographic keys

taking into account the attacker’s strategies to
disclosure them. Such methods are described in an
incremental way considering what the approach the
attacker will use. The main benefits of our methods
are twofold. First, the software developer could use
only the methods that will counter the kind of
attacker he wants to hinder and, second, the
proposed methods are efficient since they do not
cause a negative impact in terms of resource
consumption because such methods only employ
code transformations.

The remainder of this paper is organized as
follows. In section 2, it is presented related works,
where it is presented a comparison between the
proposed work and other studies in the literature.
Next, in the section 3 is described in details the
proposed methods to protect cryptographic keys as
countermeasures against different attacker’s
strategies. In the following, in the section 4, are
shown a case study and a discussion to evaluate the
proposed methods in order to demonstrate the
difficulty to disclosure cryptographic keys protected
by each proposed method in terms of the effort to
perform attacks to achieve such goal. Finally, in the
section 5 is presented our final remarks and future
works.

2 Related Works
Since hardware solutions are more expensive than
software solutions, we describe mainly software-
based papers. Despite not all papers present
proposals to protect exclusively cryptographic keys,
they could be used to that purpose.

McGregor and Lee [10] propose architectural
enhancements for general-purpose processors
capable to protect cryptographic keys. They
describe modest hardware modifications combined
with a trusted software library that allows protected
cryptographic operation, i.e. devices perform
encryption and decryption using a secret
cryptographic key. For such, it is proposed to store
such cryptographic key in the processor. However,
different from such proposal, the presented paper
proposed a cryptographic key protection method
that does not require a special hardware.

Hu et. al. [11] describe a software encryption
method to protect software intellectual property.
Since the security of the encrypted software relies
on the secrecy of the key, this paper proposes to
protect it by a key protection scheme, which hides
the cryptographic key into the encrypted code.
Despite this method is similar to ours, we focusing
only on protect cryptographic keys, without

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 69 Volume 12, 2015

encrypting the whole software, which could
demands unnecessary computation resources.

Azhar et al. propose to transform cryptographic
key chunks to a set of randomized functions, which
are obfuscated together to the program. Thus, when
such keys are required, an inverse transform is
executed at the run-time to yield the original bit-
strings of the key [12]. This work is similar to ours,
but instead of obfuscating a set of cryptographic key
chunks into randomized functions, our proposal
obfuscates such chunks into instructions.

Sanjeev et al. [13] describe two methods to
protect cryptographic keys. The first one isolates the
memory location where cryptographic keys are
stored using the Virtual Machine Monitor as a
cryptographic service provider. Thus, all
applications execute in the guest OS, while the
cryptosystem run in a separate and secure hardware.
The second method provides a way to securely
retrieve and store cryptographic keys. For such, the
bits of the key are scattered all over unused sector of
files on the secondary storage without using the file
system calls of the OS to write them.

Bansod et al. [14] propose the use of bit level
permutation in cryptographic on automobile
environment in order to accelerates cryptography,
providing low cost security solution. However, such
proposal despite pave a new way in securing small
scale embedded system, does not cares about
protecting the cryptographic key inner the
embedded software, and when it comes address
automobiles, the manipulation of its information
could lead to disastrous results. Thus, our proposal
works complementarily since our proposal is
intended to protect cryptographic keys against
MATE attacks.

Elizabeth et al. [15] proposes two schemes to
enhance security of Mobile Ad hoc Networks
(Manets). The first method proposes to choose the
secret key based on elliptic curve of prime field and
the second proposes to use RSA algorithm to share
such secret key. Before sending and receiving the
keys, it is signed by the sender and after verified by
the receiver thereby authenticating each other.
Although this method could improve the security of
Manets, it does not consider the problem
cryptographic key disclosure by reverse
engineering. Once the attacker dumps the embedded
software on a single device of such infrastructure,
he could gather the secret key and the pair of RSA
keys by software analysis tools. Thus, the methods
could not be sufficient to protect Manets since the

attacker may send malicious messages or
compromise confidential communication.

3 Protect Cryptographic Keys
In this section, we describe the proposed methods to
protect cryptographic keys. These methods are
described incrementally in order to make easier to
the reader understand what countermeasure could be
employed against certain attacker strategies.

Assuming an attacker willing to discover
cryptographic keys stored inner the embedded
software of safety-critical, the first step to
accomplish any strategy to achieve his goal is
getting the binary code from the disk or memory
card where the embedded software is stored. Then,
he could use at ease all available code analysis tools.
For example, he could use a disassembler to
translate the binary code into assembly code
(notation used to represent machine code) or go
further and use a decompiler to create a high-level
representation of the code in a certain programming
language, such as c, in order to make easier to
analyze the software.

3.1 Move Cryptographic Keys
Generally, an ordinary code is composed by one
code segment, usually containing program
instructions, and one data segment, commonly used
to store data. Since no defense mechanism is
implemented to protect cryptographic keys in such
code, an attacker could use a strategy called string
analysis to disclosure cryptographic keys.

In the string analysis, an attacker simply
examines the data segment, searching for variables
or constant names associated to cryptography, such
as the strings ‘crypt’, ‘password’ and etc. Although
this strategy could be considered quite naïve, it is
still useful when no defense methods are used to
protect cryptographic keys.

In order to prevent string analysis, we propose to
move cryptographic key from the data segment to
the code segment. But, before this, it is necessary to
create areas in the code segment that never gets
executed, dead execution spots, allowing store the
cryptographic key without change the behavior of
the software.

Dead execution spots could be created through
code transformations capable to manipulate the
software control flow. For instance, it is possible to
create dead execution spots by code obfuscation
techniques, such as call obfuscation, return
obfuscation or false return obfuscation combined
with control flow manipulation [16].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 70 Volume 12, 2015

The code snippet presented in the Table 1 shows
how to create a dead execution spot using call
obfuscation for ARM processors1. For such, the call
instruction ‘bl foo’ at line 1 on column (a) is
replaced by two instructions: ‘add lr, pc, # 4’ and
‘ldr pc, = foo’ respectively at the lines 1 and 2 on
column (b). The first instruction (‘add lr, pc, # 4’) is
responsible to save the return address, in this case,
the new address of the instruction ‘mul r1, r0, # 2’
to the lr register, which is standard used to store the
return address. Then, the second instruction (‘ldr pc,
= foo’) is used to update the pc register with the
address of the first instruction of foo, which is the
function to be called. After employ such
obfuscation, a dead execution is created in the line 3
of column (b) (dead exec spot).

main:
1. bl foo
2. mul r1, r0,#2
foo:
3. stmdb sp!,{r4-­‐r11}
4. add r0,r0,#1
5. ldmia sp!, {r4-­‐r11}
6. ret

main:
1. add lr,pc,#4
2. ldr pc,=foo
3. dead exec spot
4. mul r1, r0,#2
foo:
5. stmdb sp!,{r4-­‐r11}
6. add r0,r0,#1
7. ldmia sp!, {r4-­‐r11}
8. ret

(a) (b)

Table 1. Creating dead execution spot using call obfuscation

After creating the dead execution spot capable to
store the cryptographic key, such key is moved from
the data segment to the code segment, i.e. to the
recently created dead execution spot. Then,
disassemblers will incorrectly translate the
cryptographic key as program instructions.

When cryptographic keys are translated as
program instructions, the assembly code, generated
by disassemblers, does not represent valid code and,
thus, the analysis upon that code could not be
considered reliable. In addition, if the assembly
code is not reliable, errors will be propagated to the
next stages of code analysis, such as the
decompilation stage, because it depends on the
assembly code. Then the analysis upon the
decompiled code could not be reliable too.

Before describing the proposed algorithm to
move cryptographic key to a dead execution spot, it
is necessary to describe the procedures
GetCandidateInstructions (Procedure 1) and
CreateDeadExecutionSpots (Procedure 2).

1 http://www.arm.com/products/processors/index.php

Procedure 1. GetCandidateInstructions(𝒫)

Input: Program 𝒫
Output: Candidate Instructions 𝒞!"#$%#

1. 𝒯 ← Set of obfuscation techniques
2. 𝒞!"#$%# ← ∅
3. For each instruction 𝒾 ∈ 𝒫
4. If 𝒾 may be obfuscated by one technique 𝓉 ∈ 𝒯
5. 𝒞!"#$%# ← 𝒞!"#$%! ∪ 𝒾
6. End If
7. End For

The Procedure 1 is responsible to get all candidate
instructions, i.e. instructions that could be
obfuscated in the program 𝒫. Such procedure
depends on the data structure 𝒯, which describes
how to perform code transformations to obfuscate
certain instructions. The data structure 𝒯 could be
seen as a vector composed by tuples with three
columns, as seen in Table 2. The first column
contains the label that identifies the obfuscation
technique; the second column (Opcode to Search)
contains the opcode that could be obfuscated and the
third column (Replace Instructions) contains the
instructions that act as the instruction that was
obfuscated, i.e. the instruction whose opcode
matches with the opcode in the respective second
column. For example, the entry in the Table 2 details
the call obfuscation for ARM processors, which is
identified by the label 𝓉1. In this entry the opcode to
search is ‘bl’ and, according to this entry, such
instruction could be replaced by the instructions
‘add lr, pc, #hop’ and ‘ldr pc,=function_address’.
The constant hop represents how many addresses
should be added from the address contained in the
pc register and function_address represents the
address of the function to be called.

Obfuscation
Technique

Opcode to Search Replace Instructions

𝓉1 bl function_address
add lr,pc,#hop

 ldr pc,= function_address

Table 2. Typical entry of the set of obfuscation techniques 𝒯

During the execution of Procedure 1, each
instruction of 𝒫 is inspected to check if it could be
obfuscated by at least one obfuscation technique in
𝒯. If so, the position of the respective instruction (𝒾)
is stored in the vector of candidate instructions
(𝒞!"#$%#). The checking process in the step 4 of
Procedure 1 occurs as follows: the opcode of the
instruction locate at 𝒾 is compared with the opcode

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 71 Volume 12, 2015

located at the column Opcode to Search of all
entries of 𝒯 until one or none entry matches.

The Procedure 2 is responsible to create a dead
execution spot. Such procedure requires the
parameters: the program 𝒫, the program address 𝑠
and the cryptographic key size ℓ𝓁. First, this
procedure should go on 𝒫 until it comes to 𝑠. For
this, it is necessary to verify for each instruction 𝒾
∈ 𝒫, if 𝒾 is 𝑠. When the condition of line 3 is true,
an obfuscation technique capable to obfuscate the
instruction at s (𝓉) should be uniformly random
chosen (line 4). Then, in the line 5, code
transformations dictated by 𝓉 are applied on s in
order to create a dead execution spot capable to
store ℓ𝓁 bytes.

Procedure 2. CreateDeadExecutionSpots(𝒫, 𝑠, ℓ𝓁)

Input: Program 𝒫, program address 𝑠, key size ℓ𝓁
Output: Program 𝒫I

1. 𝒯 ← Set of obfuscation techniques
2. For each instruction 𝒾 ∈ 𝒫
3. If 𝒾 = 𝑠
4. Choose uniformly random 𝓉 ∈ 𝒯 such that it
 could obfuscate the instruction at 𝑠
5. Employ code transformations dictated by 𝓉 on s
 that manipulates the control flow to create a
 dead execution spot ℓ𝓁 sized
6. End If
7. End For

In the following, we present the proposed
algorithm to modify a program in order to protect its
cryptographic key against string analysis (Algorithm
1). Such algorithm receives the following
information as input: program 𝒫, cryptographic key
position 𝒦 and the size of the respective
cryptographic key ℓ𝓁. Then, it returns the program
𝒫!! whose cryptographic key was moved to one
dead execution spot.

The first step of this algorithm is getting the
candidate instruction addresses (𝒞!"#$%#). For this, it
is used the Procedure 1. Next, in the line 2, it is
randomly chosen one instruction address among
𝒞!"#$%#, i.e. s. In the following, in the line 3, it is
called the procedure CreateDeadExecutionSpot
(Procedure 2) in order to create a dead execution spot
capable to store the cryptographic key located in 𝒦.
Next, in the line 4, is called the function MoveKey,
which is responsible to move all ℓ𝓁 bytes of the
cryptographic key from the 𝒦 address to the dead
execution spot created at 𝑠. Finally, the loop started
on line 5 is used to check every instruction in the
program in order to check if it uses the

cryptographic key that was moved. If so, the
reference to the cryptographic key in such
instruction is changed, i.e. from 𝒦 to 𝑠.

Algorithm 1. Proposed algorithm to move cryptographic keys
to dead execution spots into the code segment.
Input: Program 𝒫, cryptography key position 𝒦, key size ℓ𝓁
Output: Program 𝒫!!

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝑠 ← GetRandomCandidate(𝒞!"#$%#)
3. 𝒫! ← CreateDeadExecutionSpot (𝒫, 𝑠, ℓ𝓁)
4. 𝒫!! ← MoveKey(𝒫! ,𝒦, 𝑠, ℓ𝓁)
5. For each instruction 𝒾 ∈ 𝒫!!
6. If 𝒾 refers to 𝒦
7. Change the reference of 𝒾 from 𝒦 to 𝑠
8. End If
9. End For

Considering that the procedure
GetRandomCandidate is performed in constant time
and the data structure 𝒯 could be a vector whose
positions could be accessed in constant time. The
complexity of Algorithm 1 could be obtained through
the complexity of the procedures it calls and the
loop starting at line 5.

Assuming that the number of program
instructions is equal to the program size (|𝒫|). The
complexity of GetCandidateInstructions is
𝑂 (|𝒫| ∗ |𝒯|) because for each instruction, we
verify in 𝒯 what obfuscation technique can be used
for obfuscate such instruction. On the other hand,
the complexity of createDeadExecutionSpots is
𝑂 (|𝒫|) since such procedure needs to find out the
program address 𝑠 in 𝒫 and the code
transformations are performed in constant time.
Finally, the complexity of the procedure MoveKey is
𝑂 𝒫 because this procedure simply moves the
entire key to one dead execution spot once,
requiring to find out the program address to move
the instruction. Thus, the complexity of the
Algorithm 1 is 𝑂(|𝒫| ∗ |𝒯|), i.e the complexity of the
procedure GetCandidateInstructions.

3.2 Split Cryptographic Key
If the string analysis strategy could not help
attackers to find out cryptographic keys, attackers
must to use other strategies, such as the entropy
analysis. In the entropy analysis, an attacker
measures the entropy of the code, i.e. measure its
disorder in order to have evidence where the
cryptographic key could be [17].

Generally the entropy of the code segment is low
because the bytes that comprise the instructions are

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 72 Volume 12, 2015

always the same and repeat. If certain code areas
have high entropy, it could mean that such areas
store cryptographic keys since they are composed
by random bytes [7]. So, the entropy analysis could
help attackers to identify possible candidate
positions where cryptographic keys could be stored.

In order to prevent entropy analysis, we propose
to split the cryptographic key and moving each part
of it to several dead execution spots instead of
moving the entire cryptographic key to one single
dead execution spot. Therefore, the entropy analysis
could not indicate candidate position where
cryptographic keys could be because the random
bytes are distributed among the code and do not
impact on the bytes frequency of the code segment.

In the following, we present the proposed
algorithm to split cryptographic key and store its
parts in dead execution spots in order to prevent
against entropy analysis and consequently against
string analysis too (Algorithm 2). Such algorithm
receives as input the program 𝒫, the cryptographic
key position 𝒦 and the part size 𝓃; and returns the
program 𝒫!! whose cryptographic key is splitted in
parts fragment sized and moved to various dead
execution spots.

Algorithm 2. Proposed algorithm to split the cryptographic key
in parts and store each part to a dead execution spot

Input: Program 𝒫; cryptography key position 𝒦, part size 𝓃
Output: Program 𝒫!!

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey (𝒦, 𝓃)
3. For each 𝑘! ∈ 𝒦!"#$%
4. 𝒮!"#$% ← GetRandomCandidate(𝒞!"#$%#)

5. End For
6. For each 𝑠! ∈ 𝒮!"#$%
7. 𝒫! ← CreateDeadExecutionSpot (𝒫, 𝑠! , 𝓉, 𝓃)
8. 𝒫!! ← MoveKey(𝒫! , 𝑘! , 𝑠!)
9. End For
10. 𝒫!! ← InsertCallsToReconstructRoutine (𝒫!!! , 𝒦)

As in the algorithm 1, the first step of the
Algorithm 2 is to call the GetCandidateInstructions
procedure. Then, in the line 2 is called the procedure
SplitCryptographicKey to split the cryptographic
key located at 𝒦 in 𝓃 sized parts. Notice that the
size of the last part of the cryptographic key could
be different to the other parts, i.e. shorter than 𝓃.
The position of each part of the cryptographic key is
stored in the data structure called 𝒦!"#$%. In the
following, in the line 3 begin a loop to choose
randomly addresses from 𝒞!"#$%# to create dead
execution spots to store each part of the

cryptographic key pointed in 𝒦!"#!" (𝑘!). Each
address chosen using the GetRandomAddress
procedure is stored at the data structure called
𝒮!"#$%. Next, for each address 𝑠! in 𝒮!"#$% it is
called the procedure CreateDeadExecutionSpot to
create one dead execution spot to store one part of
the cryptographic key 𝑘!. Then, one part of the
cryptographic key is moved to the recently created
dead execution spots by the function MoveKey.

Finally, in order to ensure that the correct
cryptographic key will be used, it is necessary to
insert a reconstruct cryptographic key routine (ℛ) to
reconstruct all the parts of the cryptographic key
that are distributed in the code segment before each
program instruction that uses the respective
cryptographic key. For such, in the line 10, is called
the procedure InsertCallsToReconstructRoutine
(Procedure 3). The Procedure 3 requires as input the
program 𝒫, the cryptographic key position 𝒦. First,
it is appended in 𝒫 the reconstruct cryptographic
key routine ℛ. Then, for each instruction 𝒾, is
verified if such instruction refers to the
cryptographic key in 𝒦. If so, it is added before this
instruction, a call instruction to execute ℛ.

Procedure 3. InsertCallsToReconstructRoutine(𝒫,𝒦)

Input: Program 𝒫; cryptography key position 𝒦
Output: Program 𝒫!!

1. 𝒫!! ← 𝒫! ∪ ℛ
2. For each instruction 𝒾 ∈ 𝒫!!
3. If 𝒾 refers 𝒦
4. insert call to ℛ in 𝒾 − 1
5. End If
6. End For

Assuming that the procedures
SplitCryptographicKey and GetRandomCandidate
are performed in constant time and the complexity
of the procedures GetCandidateInstructions,
createDeadExecutionSpots and MoveKey are
𝑂 (|𝒫| ∗ |𝒯|), 𝑂 (|𝒫|) and 𝑂 𝒫 respectively.
Then, the complexity of complexity of Algorithm 2
could be obtained through analysis of the procedure
InsertCallsToReconstructRoutine and the loops that
begin at lines 3 and 6.

Since the procedure GetRandomCandidate is
called for each part 𝑘! of 𝒦!"#$%, the complexity of
the loop beginning at line 3 is 𝑂(|𝒦!"#$%|) because
the number of iterations is equal to the size of
𝒦!"#$%, which is the size of cryptographic key
located in K divided by the part size 𝓃. Similarly,
the complexity of the loop beginning at line 6
depends on the size of 𝒦!"#$% because |𝒮!"#$% | is

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 73 Volume 12, 2015

equal to |𝒦!"#$% |. Since the complexity of the
procedures inside this loop is 𝑂 𝒫 , then the
complexity of this loop is 𝑂(𝒦!"#$% ∗ 𝒫)
because it is necessary to go through the program
until find the program address where to create a
dead execution spot and move the cryptographic key
to such dead execution spot.

Finally, the complexity of the Procedure 3 is
𝑂 (|𝒫|) because insert the call instruction takes
constant time and it is necessary to verify all
instructions of the program |𝒫|. Thus, the
complexity of the Algorithm 2 is 𝑂(𝒦!"#$% ∗ 𝒫).

3.3 Create False Instructions
When the previously strategies, i.e. string and
entropy analysis could not help attackers to find out
where the cryptographic key is, one possible
strategy that attackers could use is junky bytes
investigation. Such strategy states that the attacker
must to search in the code segment for bytes that are
not matched as program instructions (junky bytes)
and combine those bytes in order to find out
cryptographic keys.

Since junky bytes do not appear very often in the
code segment, the attacker could deduce that such
bytes is or belongs to a certain cryptographic key,
which may have been moved from the data segment
to the code segment. Thus, after the attacker finds
all junky bytes, he could verify them individually or
combined if it is the desired cryptographic key.
Besides combining all junky bytes demands time, an
attacker with time and dedication could always
reveal the desired cryptographic key and the only
thing to do is trying to slow down him. Although
not all junky bytes belongs to cryptographic keys,
this strategy is useful when the cryptographic key is
splitted and moved to the code segment in several
dead execution spots because the bytes of each part
of the cryptographic key could not be translated as
program instructions.

In order to detain junky bytes investigation
strategy, we propose to camouflage all
cryptographic key parts into false instructions,
which are instruction composed by a random
opcode attached with a single part of the
cryptographic key, which will look like as the
operand of such instruction.

The number of false instructions depends on the
operand size and the cryptographic key size. After
splitting the cryptographic key into operand size
parts and attach them with random opcodes, it is
necessary to create the required number of dead
execution spots to store all generated false
instructions. Notice that false instructions may have

different sizes because they have different opcodes.
So, it is necessary to create dead execution spots
having different sizes.

Algorithm 3 describes the steps of the proposed
method to prevent junky byte investigation.
Algorithm 3 receives as input the program 𝒫, the
cryptographic key 𝒦 and the operand size 𝓃; and
returns 𝒫 !!!, the program whose cryptographic key
is camouflaged in false instructions that are
distributed in the code segment, being difficulty to
the attacker distinguish between them and actual
instructions. The only difference between this
algorithm and Algorithm 2 are the steps to create false
instructions and to create dead execution spots since
such spots have to store false instructions instead of
cryptographic key parts.

Algorithm 3. Proposed algorithm to hide cryptographic key
parts into false instructions

Input: Program 𝒫; cryptography key 𝒦, operand size 𝓃
Output: Program 𝒫!!!

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦,𝓃)
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← ∅
4. For each 𝑘! ∈ 𝒦!"#$%
5. 𝑓 ← 𝐺𝑒𝑡RandomOpcode() ∘ 𝑘!
6. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← 𝑓𝑎𝑙𝑠𝑒!"#$%# ∪ 𝑓
7. End For
8. 𝒮!"#$% ← GetRandomCandidates(𝒞!"#$%# , |𝒦!"#$%|)

9. For each 𝑠! ∈ 𝒮!"#$%
10. Choose 𝑓! from 𝑓𝑎𝑙𝑠𝑒!"#$%#
11. 𝒫! ← CreateDeadExecutionSpot(𝒫, 𝑠! , 𝓉,|𝑓!|)
12. 𝒫!! ← MoveFalseInstruction(𝒫! , 𝑓! , 𝑠!)
13. End For
14. 𝒫!!! ← InsertCallsToReconstructRoutine(𝒫!! , 𝒦)

After splitting the cryptographic key 𝒦 into 𝓃
sized parts, for each cryptographic key part k, it is
performed the following steps to create false
instructions: (i) generation of a random opcode by
the procedure RandomOpcode and (ii) attaching it
with k, which will be translated as the operand of
such instruction (line 5). Each created false
instruction is store in the data structure 𝑓𝑎𝑙𝑠𝑒!"#$%#.

Before moving each false instruction in
𝑓𝑎𝑙𝑠𝑒!"#$%# to a dead execution spot, it is necessary
to ensure that such spot is capable to store a false
instruction (𝑓!), i.e. whose size is |𝑓!|. First, it is
necessary to choose from the candidate instructions
(𝒞!"#$%#) the instructions to be obfuscated in order to
create dead execution spots (line 8). In the
following, for each instruction 𝑠! in 𝒮!"#$% is chosen

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 74 Volume 12, 2015

one false instruction (𝑓!). Then, it is called the
procedures CreateDeadExecutionSpot and
MoveFalseInstruction in order to create the dead
execution spot capable to store 𝑓! and move such
instruction to this dead execution spots respectively.
Finally it is embedded the reconstruction
cryptographic key routine to the program and calls
to it.

Assuming that the procedures
SplitCryptographicKey, GetRandomOpcode and
GetRandomCandidates are performed in constant
time and the complexity of the procedures
GetCandidateInstruction, createDeadExecutionSpot
and MoveFalseInstruction are 𝑂 (|𝒫| ∗ |𝒯|),
𝑂 (|𝒫|) and 𝑂 𝒫 respectively. Then, the
complexity of complexity of Algorithm 3 could be
obtained through analysis of the loops that begin at
lines 4 and 9. Notice that the complexity of
MoveFalseInstruction is similar to the complexity of
MoveKey.

 In the loop beginning in the line 4, for each
cryptographic key part (𝑘!) is created one false
instruction (𝑓). Then, the complexity associated to
that loop is 𝑂(|𝒦!"#$%|) since the procedure
GetRandomOpcode executes in constant time. On
the other hand, the complexity of the loop beginning
in the line 9 depends on the number of false
instructions (𝑓𝑎𝑙𝑠𝑒!"#$%#) and the complexity of the
procedures createDeadExecutionSpot and
MoveFalseInstruction. Thus this complexity is
𝑂 (𝒫 ∗ |𝑓𝑎𝑙𝑠𝑒!"#$%#|), which is the complexity of
the Algorithm 3.

3.4 Insert Garbage Instructions
Assuming an attacker knowing that the
cryptographic key was splitted and its parts
camouflaged in false instructions, he could use the
dead execution spot investigation to reveal such
cryptographic key, which states to examine the code
segment in pursuit of dead execution spots since
false instructions are store in such spots. Although it
is difficult to find out dead execution spots because
it requires sufficient test inputs to achieve all paths
that produce meaningful behavior, it is possible to
attackers verify areas in the code segment that never
gets executed (dead execution spots) and, thus, find
out all the parts of cryptographic keys, which are the
operands of the false instructions in such dead
execution spots.

In order to counter dead execution spot
investigation, we propose inserting garbage
instructions, which are random program
instructions in dead execution spots too. So,
attackers require more time and effort to reveal the

cryptographic key because he could not distinguish
false instructions from garbage instructions.

Algorithm 4 describes the steps of the proposed
method that camouflages cryptographic key parts
into false instructions and insert garbage
instructions. Such algorithm receives as input the
program 𝒫, the cryptographic key 𝒦, the operand
size 𝓃, number of garbage instructions 𝓂; and
returns 𝒫!!!, which is the program whose
cryptographic key is hidden in false instruction and
has garbage instructions distributed in the code
segment.

Algorithm 4. Proposed algorithm to hide cryptographic key
parts into false instructions and add garbage instructions

Input: Program 𝒫; cryptography key 𝒦, operand size 𝓃,
number of garbage instructions 𝓂
Output: Program 𝒫!!!

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦, 𝓃)
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← CreateFalseInstructions(𝒦!"#$%)
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← ∅
5. While |𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#| < 𝓂
6. 𝑔 ← RandomOpcode() ∘ RandomOperand()
7. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"!"#! ∪ 𝑔
8. End While
9. ℳ ← |𝒦!"#$%| + 𝓂
10. 𝒮!"#$% ← GetRandomCandidates(𝒞!"#$%#, ℳ)

11. For each 𝑠! ∈ 𝒮!"#$%
12. ℎ ← 𝑓! from 𝑓𝑎𝑙𝑠𝑒!"#$%# or 𝑔! ∈ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#
13. 𝒫! ← CreateDeadExecutionSpot(𝒫, 𝑠! , 𝓉, ℎ)
14. 𝒫!! ← MoveInstruction(𝒫! , ℎ , 𝑠!)

15. End For
16. 𝒫!!! ← InsertCallsToReconstructRoutine(𝒫!! , 𝒦)

The differences between this algorithm and
algorithm 3 are: (i) the steps to create garbage
instructions that do not exist in the previous
algorithm (lines 4 to 8) and (ii) the number of dead
execution spots that should be created (line 9). After
getting the candidate instructions (𝒞!"#$%#) and
creating the false instructions by the procedures
GetCandidateInstructions and
SplitCryptographicKey respectively, this algorithm
creates 𝓂 garbage instructions. Each garbage
instruction is created by a random opcode with
random operands (line 6). Next, it is chosen
ℳ addresses from 𝒞!"#$%# and stored at 𝒮!"#$%. In
the following, for each 𝑠! ∈ 𝒮!"#$% is chosen one
instruction from 𝑓𝑎𝑙𝑠𝑒!"#$%# or from 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#
(ℎ) and for each instruction ℎ is created one dead
execution spot to store it and then ℎ is moved to the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 75 Volume 12, 2015

created dead execution spot (lines 13 and 14
respectively). Finally, the reconstruction
cryptographic key routine is attached to the program
and calls to it are inserted before each instruction
that refers to 𝒦.

Assuming that the procedures
SplitCryptographicKey, GetRandomOpcode,
GetRandomOperand and GetRandomCandidates are
performed in constant time and the complexity of
the procedures GetCandidateInstruction,
createDeadExecutionSpot and MoveInstruction are
𝑂 (|𝒫| ∗ |𝒯|), 𝑂 (|𝒫|) and 𝑂 𝒫 respectively.
Then, the complexity of complexity of Algorithm 4
could be obtained through analysis of the loop that
begin at lines 4 to create garbage instructions (lines
4 to 8), which is 𝑂 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!!"#$" and the loop
starting at line 10, which is 𝑂 (|𝒫| ∗ |ℳ |) since it
is necessary for each garbage and false instruction
(total of instructions is ℳ) to go create dead
execution spots and move such instruction to that
spot, which requires 𝑂 (|𝒫|). So, the complexity of
the Algorithm 4 is 𝑂 (|𝒫| ∗ |ℳ |).

3.5 Insert Obfuscation Engine
The previously methods try to hinder reverse
engineering assuming attackers can only use static
code analysis tools. However, such methods are not
effective when he can use dynamic code analysis
tools, such as debuggers and emulators because the
software is static. Beyond that, attackers could have
different strategies taking advantage that the
software is static.

The fist strategy that takes advantage of static
software is the program diffing. This strategy
requires that attackers have two or more copies of
the same software and the cryptographic key be
different in each copy. In this case, the attacker
could reveal cryptographic keys by comparing the
copies whereas each copy is identical except on the
program addresses where the cryptographic key is
stored. Thus, examining the program addresses that
are not identical could lead attackers to easily
disclosure cryptographic keys.

The other strategy that takes advantage of static
software is the recurrent attack. The goal of this
strategy is compromise the largest possible number
of devices. Assuming a scenario where there are
many devices containing identical software
embedded in it, once an attacker could find out the
program address where the cryptographic key is
located in one of such copies, he may create a script
to remotely read such address on other devices,
where the cryptographic key is expected to be, in
order to find out new cryptographic keys without
analyze the software of all devices.

The countermeasure proposed in this work to
prevent against such strategies is inserting to the
embedded software an obfuscation engine that
dynamically modify both false and garbage
instructions. Notice that the obfuscation engine
could move both instructions to different program
address in order to make it more difficult to identify
such instructions.

The obfuscation engine could prevent against
program diffing because the copy contained in each
device will be different since this software
periodically changes its code differently and not
only in the program addresses where the
cryptographic key is. So, there are many program
addresses in the code that are different, making
difficult to know cryptographic key position by
simply comparing two or more copies. Furthermore,
the obfuscation engine hinders recurrent attacks
because it provides software diversity, i.e. the
software within each device is different. Thus, the
attacker could not take advantage of previous
knowledge (cryptographic key location) to discover
new cryptographic keys to propagate an attack for
other devices.

The Algorithm 5 describes the steps of the
proposed method to counter dynamic analysis and
the strategies program diffing and recurrent attacks.
Such algorithm receives the following information
as input: program 𝒫, cryptographic key 𝒦, the
operand size 𝓃, the number of garbage instructions
𝓂 and returns 𝒫!!! containing an obfuscation
engine capable to periodically hides cryptographic
key in false instructions and inserts garbage
instructions in different ways, by changing its shape
and its position inside the code. In order to ensure
that each device has distinct software, it is necessary
to use schemes that gets intrinsic features of the
device where the software is embedded, such as
Physical Unclonable Function (PUF) [18], in order
to be the seed to the random functions that creates
new false instructions and/or garbage instructions.

The steps of Algorithm 5 are similar to the
Algorithm 4 except for the steps to embed the
obfuscation engine 𝒪. This is done to guarantee that
before 𝒪 runs for the first time, the software will be
different for each device. Thus, until the line 13 is
reached, the algorithm 5 behaves as the algorithm 4.
After this line, the algorithm 5 fills 𝒪 with the
following information in order to ensure that it has
the required information to create new dead
execution spots and move the existing false and
garbage instructions: 𝒞!"#$%#,
𝑓𝑎𝑙𝑠𝑒!"#$%#, 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# and 𝑆!"#$%. 𝒞!"#$%# is
required to the 𝒪 knows where new dead execution

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 76 Volume 12, 2015

spots could be created; 𝑆!"#$% is provided to 𝒪 in
order that it knows the dead execution spots where
is stored false and garbage instructions. Finally, it
must to know 𝑓𝑎𝑙𝑠𝑒!"#$%# and 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# in
order to know what kind of instruction is in each
dead execution spots informed by 𝑆!"#$%. The last
steps of this algorithm are responsible to embed the
𝒪 and inserts instructions that calls it randomly in
different program addresses in the software.

Algorithm 5. Proposed algorithm to embed the obfuscation
engine into a program

Input: Program 𝒫; cryptography key 𝒦; operand size 𝓃,
number of garbage instructions 𝓂
Output: Program 𝒫!!!

1. 𝒞!"#$%# ← GetCandidateInstructions(𝒫)
2. 𝒦!"#$% ← SplitCryptographicKey(𝒦,𝓃)
3. 𝑓𝑎𝑙𝑠𝑒!"#$%# ← CreateFalseInstructions(𝒦!"#$%)
4. 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%# ← CreateGarbageInstructions(𝓂)
5. ℳ ← |𝒦!"#$%| + 𝓂
6. 𝒮!"#$% ← GetRandomCandidates(𝒞!"#$%#, ℳ)

7. For each 𝑠! ∈ 𝒮!"#$%
8. ℎ ← 𝑓! from 𝑓𝑎𝑙𝑠𝑒!"#$%# or 𝑔! ∈ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#
9. 𝒫! ← CreateDeadExecutionSpot(𝒫, 𝑠! , 𝓉, ℎ)
10. 𝒫!! ← MoveInstruction(𝒫! , ℎ , 𝑠!)

11. End For
12. 𝒫!!! ← InsertCallsToReconstructRoutine(𝒫!! , 𝒦)
13. 𝒪 ← 𝒪 ∪ 𝒞!"#$%# ∪ 𝑓𝑎𝑙𝑠𝑒!"#$%# ∪ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒!"#$%#
14. 𝒫!" ← 𝒫!!! ∪ 𝒪
15. 𝒫! ← insertCallsToObfuscatorEngine(𝒫!")

During the execution of 𝒪, it creates new false
and garbage instructions, which could be stored in
new dead execution spots or simply moved among
the existing ones. For this, 𝒪 randomly chooses n
false instructions and m garbage instructions to be
modified in this moment. In the following, it is
chosen how many false and garbage instructions
should be modified in its shape, in its locations or
both. Then it is performed the respective steps to do
such actions, i.e. the steps to create new false and
garbage instructions, the steps to create new dead
execution spots and the steps to move false and
garbage instructions to new locations. Finally,
before 𝒪 returns the control flow to the software, it
ensures that the addresses of dead execution spots
are known and what kind of instruction is stored in
each of them.

The complexity of Algorithm 5 is identical to the
complexity of the Algorithm 4, i.e. 𝑂 (|𝒫| ∗ |ℳ |)
because the instructions at lines 13 and 14 operates
at constant time and the complexity of the procedure

insertCallsToObfuscatorEngine is identical of the
complexity of InsertCallsToReconstructRoutine, i.e.
𝑂 (|𝒫|).

3.6 Insert Anti-Debugging Techniques
When attackers could use dynamic analysis tools

to seek cryptographic keys, even if the software is
dynamic, i.e. changes its own code during runtime,
they could disclosure cryptographic keys since it is
not an absolute protection. Thus, to improve
cryptographic key protection, we could insert anti-
debugging techniques in order to prevent against
dynamic analysis tools [19].

Debuggers such as GDB2 (The GNU Project
Debugger) and OllyDbg3 provide an interface that
links the hardware subsystem and the human
analyst. Anti-debugging tricks work by detecting or
exploiting specific debugging subsystems. Software
that employs anti-debugging techniques can
determine if it’s being debugged by identifying the
debugging process whether from the software or
hardware. For example, when it is detected an
unexpected pause in execution, it could give
evidence that an attacker has paused the software to
analyze it. The evidence of the debugging process
could be simply detected by take the time in two
periods and compare them. If the time difference is
higher than usual time, it implies that a debugger is
used to analyze the software. On the other hand,
hardware debugging could be detected by checking
debug registers for specific values since hardware
debuggers use such registers to place breakpoints on
processes.

4 Case Study and Discussion
In this section, we present a case study showing the
difficulty to disclosure cryptographic keys by the
proposed protection methods. In the following, we
show after employ each of the proposed methods,
how the effort to disclosure cryptographic key
increases.

Since there is not an absolute metric to evaluate
software protection methods in the literature, we
propose an effort metric (𝐸), which measures the
difficulty to achieve a goal, such as disclosure
cryptographic keys. This metric is expressed as
𝐸 = 𝑇!×𝛼!!

!!! , where 𝑇! is a time-based factor,
representing the time required to the attacker to
perform a certain task; and 𝛼! is a constant factor
that weights the respective difficulty to perform the
related task.

2 https://www.gnu.org/software/gdb/
3 http://www.ollydbg.de/

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 77 Volume 12, 2015

For our experiments, we used the rijndael
application of an embedded benchmark suite, called
MiBench [20]. This application is an
implementation of the AES symmetric cipher to
ARM processors. In its original form, such
application does not have any method to prevent
MATE attacks.

The first strategy to disclosure its cryptographic
keys is the string analysis. Considering that the
attacker knew nothing about the rijndael application
a priori, he could examining its code with IDA
PRO4, a commercial multi-processor disassembler
and debugger, in order to find out its cryptographic
key in the data segment (.rodata). Figure 1 shows that
it is possible to find out the cryptographic key in its
application since it could be found after identifying
the string CRYPTO_KEY stored at the program
address 0x020311FC. For such, attackers must to
spend the effort 𝐸 = 𝑇!×𝛼!, where 𝑇! is the time to
examine one string in the data segment and 𝛼! is
related to number of strings in the data segment.

Figure 1. Cryptographic key revealed by string analysis

The first countermeasure, as described in
subsection 3.1, to protect the rijndael application
consists in moving the cryptographic key to the code
segment, more specifically in a dead execution spot.
In our experiments, we create a dead execution spot
in the code segment of the rijndael application
through call obfuscation. A way to perform call
obfuscation in ARM is described on [16].

Table 3 shows how to create a dead execution spot
in ARM using call obfuscation. In this example, the
bytes of the crypto_key (0xFFFF) are moved from
the data segment (.data) of the code snippet in the
column (a) to the created dead execution spot at line
3 of the code snippet in the column (b). We follow
the same knowledge to create in the rijndael
application one dead execution spot. In the Figure 2 it

4 http://www.hex-rays.com/products/ida/

is possible to see the cryptographic key
CRYPT_KEY, first shown in the Figure 1, translated
as program instruction from the program address
0x020234C8. Notice that not all bytes of
CRYPT_KEY were translated as program
instructions since some of them were translated as
junky bytes, such as the bytes at 0x020234D0.

.data
crypto_key: .word 0xFFFF

.text
main:
7. bl foo
8. mul r1, r0,#2
9. bl bar
10. div r1,0,#3
foo:
11. stmdb sp!,{r4-­‐r11}
12. add r0,r0,#1
13. ldmia sp!, {r4-­‐r11}
14. ret
bar:
1. stmdb sp!,{r4-­‐r11}
2. sub r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret

.text
main:
1. add lr ,pc,#4
2. ldr pc,=foo
3. 0xFFFF
4. mul r1, r0,#2
5. bl bar
6. div r1,0,#3
foo:
1. stmdb sp!,{r4-­‐r11}
2. add r0,r0,#1
3. ldmia sp!, {r4-­‐r11}
4. ret
bar:
9. stmdb sp!,{r4-­‐r11}
10. sub r0,r0,#1
11. ldmia sp!, {r4-­‐r11}
12. ret

(a) (b)
Table 3. Original code sample (a) and obfuscated code (b)

Despite the movement of the cryptographic key
to the code segment is effective against string
analysis, such method is not effective against
entropy analysis. To perform the entropy analysis,
we created a script in the IDA PRO to calculate for
each code block of 1024 bytes the shannon entropy
[17]. After calculate the entropy for all code blocks,
we calculate the entropy mean and the entropy
variance. Finally, if the entropy of a code block is
greater than the entropy mean more the entropy
variance. Then the first program address of such
code block is returned.

The Figure 2 shows the program addresses where
the cryptographic key could be located, which are
the program addresses of the code block whose
entropy is greater than the entropy mean
(0,13040864204) more the entropy variance
(0,0181771936). After examining the results of the
script, we are able to find out the cryptographic key
since one of program addresses returned by the
script is the program address 0x020234C8, i.e. the
program address where the dead execution spot
were created to store the cryptographic key.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 78 Volume 12, 2015

Figure 2. Entropy Calculation

The effort to disclosure the cryptographic key
using the entropy analysis strategy is 𝐸 = 𝑇!×𝛼!,
where 𝑇! is the time to examine each program
address returned by the script and 𝛼! is a constant
factor related to the number of program addresses
returned by the script to calculate the entropy
regardless the effort to create such script. Notice
that if the attacker has performed the string analysis
before the entropy analysis, then the total effort to
disclosure the desired cryptographic key is
𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼! and so on.

The second countermeasure proposed in this
paper, described in the subsection 3.2, is split the
cryptographic key and store its parts in a distinct
dead execution spots, which is randomly disposed in
the code segment. In this case, the script that
calculates the entropy does not return any possible
candidate program address. Thus, the cryptographic
key could not been disclosure by entropy analysis.

If the entropy analysis could not help attackers,
they could use other strategy, such as the junky
bytes examination, i.e. examine the code segment
for junky bytes. Such bytes appear in the code
segment because disassemblers could not make the
correspondence between these bytes with a certain
program instruction. However, such bytes could also
be incorrectly translated as program instructions. It
happens when an assumption used by disassemblers
are not followed. For example, when disassemblers
detect a call instruction, they assume that the return
address is the subsequent address after the call
instruction. However, since the return address is
manipulated to redirect the control flow to other
program address, disassemblers still translates the
bytes located at return address that they consider as
real program instructions.

The effort to disclosure cryptographic key using
junky bytes examination is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼!,
where 𝑇! is the time to find out one junky byte, 𝛼!
the total number of junky bytes, 𝑇! the time to

combine the junky bytes in a certain order and 𝛼!
dictate the number of combinations, which depends
on the number of junky bytes found in the code
segment. Notice that some parts of the
cryptographic key will not be translated as garbage
instructions. Thus such strategy could not be
absolutely effective.

Next, to counter the attacker to find out junky
bytes, it is applied the method described in the
subsection 3.3. Then, the cryptographic key parts,
which before were translated as junky bytes, now
are operand of false instructions, making difficult to
attackers to use junky bytes investigation to find out
cryptographic keys.

Assuming that attackers know that the
cryptographic key parts are camouflaged as false
instructions, they could try to identify such
instructions in the code segment. However,
distinguish false instructions from actual
instructions is difficult because false instructions do
not have a standard format that differentiate it from
actual instructions. Thus, attackers should try to
identify all the dead execution spots in the code
segment (dead execution investigation).

One way to identify dead execution spots is by
analyzing the software control flow. However, to
perform such analysis, it is necessary to generate the
Control Flow Graph (CFG) of the program and
since the CFG depends on the assembly code
created by disassemblers and the method to create
dead execution spots could infringe certain
disassembler assumptions, the CFG created could
not be reliable, making difficulty to identify such
dead execution spots.

The effort to find out cryptographic keys by dead
execution investigation is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼!.
Such effort depends on the identification of dead
execution spots among all program instructions and
the time to combine the cryptographic key parts
(𝑘1, 𝑘2, 𝑘3, …, 𝑘n) since the false instructions could
be disorderly arranged in the code segment. For so,
𝑇! is the time to find out one dead execution spot,
𝛼! depends on the number of dead execution spots
regardless of the attacker’s capacity to identify dead
execution spots. 𝑇! is the time to combine the
operand bytes of each false instruction in a certain
order and 𝛼! dictate the number of combinations,
which depends on the number of dead execution
spots found in the code segment.

If an attacker discovers all the dead execution
spots, and consequently, the false instructions, the
proposed solution to counter such attacker was
inserting garbage instructions in dead execution
spots too in order to increase the number of
combinations to disclosure the cryptographic key.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 79 Volume 12, 2015

The effort to do this is 𝐸 = 𝑇!×𝛼! + 𝑇!×𝛼! +
 𝑇!×𝛼!. Beyond such effort must to consider the
time to find out false instructions, it has to consider
the time to find out garbage instructions (𝑇!) and its
respective constant factor (𝛼!). Similarly as the
distinction between false instructions from actual
instructions is difficulty, the distinction between
false and garbage instructions is even more difficult.
For instance, to reconstruct the cryptographic key
𝒦, the attacker must to discover the false
instructions among n + m dead execution spots
whereas m is the number of garbage instructions and
n the number of false instructions.

In order to prevent against program diffing and
recurrent attacks, it is applied the last method,
described in the subsection 3.5. Since the
obfuscation engine changes randomly the software
running on each device, thus making program
diffing could be considered impossible. This is
because each copy of software has different code,
since the n parts of the cryptographic key are
arranged in different places and in different false
instructions. Notice that if only the false instructions
are changed, the obfuscation engine could give
indications of the location of these keys. However,
the obfuscation engine also generates garbage
instructions at runtime. Thus when comparing
copies of two different devices, it does not help the
attacker to locate a cryptographic key as the copies
are very different and the effort to understand the
differences between them makes it almost
impossible.

Software diversity provided by the obfuscation
engine is also useful to counter recurrent attacks.
This is because the software is constantly changing
and therefore cannot take advantage of an earlier
analysis to compromise the same device in the
future or other devices that have the same software.

The Table 4 presents an example showing how an
application could changes due the obfuscation
engine operation at two different times T1 and T2
respectively shown in column (a) and (b). At T1, the
cryptographic key part (0xE0C7) is camouflaged in
the false instruction ‘addeq r8, r4, # 199’ on dead
execution spot created by call obfuscation. In T2,
0xE0C7 is camouflaged within the false instruction
‘subne r8, r4, # 199’. Such instruction is stored in a
dead exexcution spots created with return
obfuscation. For this, the ret instruction of the
function bar is replaced by the instructions ‘add r3,
lr, # 4' and ‘b r3’, which manipulate the control flow
in order to create a dead execution spot between the
call instruction ‘bl foo’ and the instruction ‘mul r1,
r2, #2’.

.text
main:
1. add lr,pc,#4
2. ldr pc,=foo
3. addeq r8,r4,#199
4. mul r1, r0,#2
5. bl bar
6. div r1,0,#3
foo:
7. stmdb sp!,{r4-­‐r11}
8. add r0,r0,#1
9. ldmia sp!, {r4-­‐r11}
10. ret

.text
main:
1. add lr,pc,#4
2. bl foo
3. subne r8,r4,#199
4. mul r1, r0,#2
5. bl bar
6. div r1,0,#3
foo:
7. stmdb sp!,{r4-­‐r11}
8. add r0,r0,#1
9. ldmia sp!, {r4-­‐r11}
10. add r3,lr,#4
11. b r3

(a) (b)
Table 4 code examples that show two samples created by

obfuscation engine operation at two different times T1 (a) and
T2 (b)

5 Conclusion
Security of cryptographic mechanisms is ultimately
based on the assumption that cryptographic keys are
kept secret. This assumption is very difficult to
accommodate because with time and creativity, and
attacker always could achieve his goal. However, in
this work, we presented methods to hinder script
kiddies and slow down skilled attackers. Such
methods could be considered appropriate for safety-
critical systems because it decreases the risk of
disclosure cryptographic keys by reverse
engineering, without financial costs and with little
impact against resource consumptions, such as
memory and processing.

5.1 Future Works
For future works, we intend to improve the
evaluation of proposed methods by analyzing the
effectiveness and efficiency of human analysis
through forms that subjectively measure the weights
of alphas used to measure the effort to perform the
attacks to disclosure cryptographic keys [21] [22].

Acknowledgment:
This work is partly supported by P&D Eletrobrás
through the process DR/069/2012 for Luiz Fernando
Rust; by the National Council for Scientific and
Technological Development (CNPq) through
processes 477223/2012-5, 473851/2012-1,
4781174/2010-1, 309270/2009-0 for Luci Pirmez;
563096/2010-1 for Davidson Boccardo;
550125/2012-4 for Cleber Gomes; by the Financier
of Studies and Projects (FINEP) through processes
01.10.0549.00 and 01.10.0064.00 for Luci Pirmez;

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 80 Volume 12, 2015

References:

[1] P. Marwedel, Embedded System Design:
Embedded Systems Foundations of Cyber-
Physical Systems, 2nd ed. Springer Netherlands,
2011.

[2] J. Knight, “Safety Critical Systems: Challenges
and Directions,” in International Conference on
Software Engineering, 2002, pp. 547–550.

[3] H. Dong, B. Ning, B. Cai, and Z. Hou,
“Automatic train control system development
and simulation for high-speed railways,” IEEE
Circuits and Systems Magazine, vol. 10, no. 2,
pp. 6–18, 2010.

[4] A.-L. Carter, “Safety-critical versus security-
critical software,” 2010.

[5] A. Akhunzada, M. Sookhak, N. B. Anuar, A.
Gani, E. Ahmed, M. Shiraz, S. Furnell, A. Hayat,
and M. Khurram Khan, “Man-At-The-End
attacks: Analysis, taxonomy, human aspects,
motivation and future directions,” J. Netw.
Comput. Appl., vol. 48, pp. 44–57, 2015.

[6] K. Fysarakis, G. Hatzivasilis, K. Rantos, A.
Papanikolaou, and C. Manifavas, “Embedded
Systems Security Challenges,” in Measurable
security for Embedded Computing and
Communication Systems (MeSeCCS 2014),
within the International Conference on Pervasive
and Embedded Computing and Communication
Systems (PECCS 2014), 2014, pp. 1–12.

[7] A. Shamir and N. Van Someren, “Playing ‘hide
and seek’ with Stored Keys,” in Proceedings of
the Third International Conference on Financial
Cryptography, 1999, pp. 118–124.

[8] S. L. Kinney, Trusted Platform Module Basics:
Using TPM in Embedded Systems (Embedded
Technology). Newnes, 2006.

[9] J. Nagra and C. Collberg, Surreptitious Software:
Obfuscation, Watermarking, and
Tamperproofing for Software Protection, 1st ed.
Pearson Education, 2009.

[10] J. P. McGregor and R. B. Lee, “Protecting
cryptographic keys and computations via virtual
secure coprocessing,” ACM SIGARCH Comput.
Archit. News, vol. 33, no. 1, pp. 16–26, 2005.

[11] J. Hu, Q. Wen, W. Tang, and A.-F. Sui, “A
Key Hiding Based Software Encryption
Protection Scheme,” in International Conference
on Communication Technology (ICCT), 2011,
pp. 719–722.

[12] I. Azhar, N. Ahmed, A. G. Abbasi, A.
Kiani, and A. Shibli, “Keeping Secret Keys
Secret in Open Systems,” in International
Conference on Open Source Systems and
Technologies (ICOSST), 2014, pp. 100–104.

[13] S. Sanjeev, J. Lodhia, R. Srinivasan, and P.
Dasgupta, “Protecting cryptographic keys on
client platforms using virtualization and raw disk
image access,” in Proceedings - 2011 IEEE
International Conference on Privacy, Security,
Risk and Trust and IEEE International
Conference on Social Computing,
PASSAT/SocialCom 2011, 2011, pp. 1026–1032.

[14] G. Bansod, A. Gupta, A. Ghosh, G. Bishnoi,
C. Sawhney, and H. Ankit, “Experimental
analysis and implementation of bit level
permutation instructions for embedded security,”
WSEAS Trans. Inf. Sci. Appl., vol. 10, no. 9, pp.
303–312, 2013.

[15] E. Elizabeth, S. Subasree, and S. Radha,
“Enhanced Security Key Management Scheme
for MANETS,” WSEAS Trans. Commun., vol.
13, pp. 15–25, 2014.

[16] R. Costa, D. Boccardo, C. Gomes, L. F. R.
C. Carmo, and L. Pirmez, “Sensitive Information
Protection for Advanced Metering
Infrastructure,” in 10th International Congress
on Electrical Metrology (SEMETRO’13), 2013,
pp. 6–9.

[17] G. J. Croll, “BiEntropy-The Approximate
Entropy of a Finite Binary String,” eprint
arXiv:1305.0954, Presented at ANPA 34,
Rowland’s. pp. 1–16, 2013.

[18] G. E. Suh and S. Devadas, “Physical
Unclonable Functions for Device Authentication
and Secret Key Generation,” in Proceedings of
the 44th Annual Design Automation Conference,
2007, pp. 9–14.

[19] M. N. Gagnon, S. Taylor, and A. K. Ghosh,
“Software Protection through Anti-Debugging,”
Secur. Privacy, IEEE, vol. 5, no. 3, pp. 82–84,
2007.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst,
T. M. Austin, T. Mudge, and R. B. Brown,
“MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” in
Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International
Workshop, 2001, pp. 3–14.

[21] M. Ceccato, “On the Need for More Human
Studies to Assess Software Protection,” in
Workshop on Continuously Upgradeable
Software Security and Protection, 2014, pp. 55–
56.

[22] M. Ceccato, M. Di Penta, P. Falcarin, F.
Ricca, M. Torchiano, and P. Tonella, “A family
of experiments to assess the effectiveness and
efficiency of source code obfuscation
techniques,” Empir. Softw. Eng., vol. 19, pp.
1040–1074, 2014.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Rafael Costa, Davidson Boccardo
Luci Pirmez, Luiz Fernando Rust

E-ISSN: 2224-3402 81 Volume 12, 2015

