
ONE TIME ENUMERATION OF MAXIMAL BICLIQUE
PATTERNS FROM 3D SYMMETRIC MATRIX

1M DOMINIC SAVIO, 2A SANKAR, 3R V NATARAJ

1Department of Applied Mathematics and Computational Sciences, 2Department of Computer
Applications, 3Department of Information Technology

1,2PSG College of Technology, 3Bannari Amman Institute of Technology
1,2Coimbatore, 3Sathyamangalam

INDIA
1mds@ity.psgtech.ac.in, 2dras@mca.psgtech.ac.in, 3rv.nataraj@bitsathy.ac.in

Abstract: - We propose an algorithm Cubeminer-MBC*, to extract maximal biclique patterns from a 3D
symmetric adjacency matrix only once. In this paper, we introduce (i) a novel enumeration strategy and (ii) a
new pruning strategy, which results 50% reduction in search space and maximal biclique patterns are generated
only once, i.e., zero duplicates are generated. On the basis of experiments conducted, we observed
Cubeminer-MBC* outperforms Cubeminer in terms of running time.

Key-Words: - Data Mining – Maximal Bicliques – Algorithms – Symmetric matrix – Duplicate pattern

1 Introduction
Finding web communities from online social
networks can be modeled by maximal bicliques [1].
Online social networks have connected many
people. Interacting people on social network is
denoted by vertices and the interaction among them
is denoted by edges. The social network can be
represented as a 2-dimensional dataset in boolean
context. If one more dimension like period (days,
week, month or year) is added to the existing 2D
dataset, that becomes 3-dimensional dataset, then
we are able to extract pattern of communication
between these social communities w.r.t. time, which
would be commercially more useful [5].
Enumerating maximal bicliques is a highly
challenging task and the running time of the
algorithm increases exponentially with respect to the
number of vertices [4]. The maximal biclique
patterns occur twice in a symmetric adjacency
matrix. Extensive study has been carried out to
enumerate maximal bicliques only once in LCM-
MBC [1] and Twinblade [6] algorithms on 2D
symmetric adjacency dataset. In 3D symmetric
context, Cubeminer-MBC [5] extends Cubeminer
[3] to enumerate large maximal bicliques. With the
help of a pruning strategy, it eliminates duplicate
patterns to a certain extent, i.e., not all duplicate
patterns are eliminated. Hence, we propose an
efficient algorithm Cubeminer-MBC* in 3D
symmetric context, to enumerate maximal biclique
patterns only once, i.e., to eliminate duplicate
patterns completely. We introduce a novel

enumeration strategy and new pruning technique to
achieve this. We have compared our algorithm with
Cubeminer [3] on synthetic datasets.

Extensive study has been already carried out to
enumerate maximal bicliques from boolean
adjacency matrix in DCI-Closed [8], LCM [9], and
Bimax [10] algorithms. Datapeeler [7] algorithm
enumerates maximal biclique patterns in n-
dimension context from an n-dimension dataset.
Biclustering algorithms find maximal patterns from
gene expression matrix [11], and work on real value
datasets and not in boolean context.

These algorithms generally fit into any one of the
following two straregies namely 1) grouping of
‘1’contained rows and columns and 2) eliminating
‘0’ contained rows and columns. Most of the
algorithms like DCI-Closed [8], LCM[9], Bimax
[10], Datapeeler [7], LCM-MBC [1], Twinblade [6],
Apriori [12], FP-Growth [13] , and Closet+ [14], fall
in the first category. DMiner [15] in 2D context, and
Cubeminer[3] and Cubeminer-MBC[5] in 3D
context fall in the second category. Our proposed
algorithm Cubeminer-MBC* also fall in the second
category. Anyhow, Bimax[10] algorithm alters row
with some fellow rows, or columns with fellow
columns so that finally maximal patterns are
grouped.

The rest of the paper is organized as follows:
section 2 presents the preliminaries, section 3 deals
with the novel enumeration technique and pruning
methodology adopted, section 4 analyzes the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 61 Volume 12, 2015

mailto:mds@ity.psgtech.ac.in

experimental results and section 5 concludes the
paper.

2 Preliminaries
In this section, we present the basic definitions with
the problem definition. Let A= (H, R, C) be a 3D
dataset. Let R = {r1, r2, r3, . . . , rm} be set of row
vertices, and C = {c1, c2, c3, . . . , cm} be set of
column vertices, where ri = ci, 1 ≤ i ≤ m. Let H =
{h1, h2, . . . , hn}, represents the height set or third
dimension, where each hi is a symmetric adjacency
matrix (R, C) with diagonal elements ‘0’, indicating
there are no self loops. Each cell is represented by
either ‘0’ that represents no interaction, or ‘1’ that
represents interaction between the corresponding
row vertex and column vertex. We now provide the
definitions of bicliques and maximal bicliques in 3D
context. Let H ⊆ H, R ⊆ R and C ⊆ C. (H, R, C) is
said to be 3D biclique iff ∀ h ∈ H , ∀ r ∈ R , ∀ c ∈ C,
h x r x c is ‘1’ and R ∩ C = null. In Table 1, we
have an example of 3D symmetric adjacency matrix
(h1, h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5). (h1, h2,
h3: r2, r5 : c4) is a biclique, whereas (h1, h2, h3: r2, r5 :
c3, c4) is not a biclique, because h3:r5:c3 contains ‘0’.
A 3D biclique (H, R, C) is said to be maximal, iff ∄
h ∈ H\H, such that ∀ r ∈ R, ∀ c ∈ C, h x r x c is ‘1’,
∄ r ∈ R\R, such that ∀ h ∈ H, ∀ c ∈ C, h x r x c is
‘1’, and ∄ c ∈ C\C, such that ∀ h ∈ H,∀ r ∈ R, h x r
x c is ‘1’. Continuing with the example, (h1, h2, h3:
r1, r2, r5 : c4) is a maximal biclique. (h1, h2 : r1, r2 : c3,
c4) is a biclique, but not maximal because there is an
element r5 such that (h1, h2 : r1, r2, r5: c3, c4) forms a
biclique. Biclique is also called as complete
bipartite subgraph. Let |R| refers to cardinality of
the R.

The cutter is represented by (h′, r′, C′) where C′
is a zero contained columns w.r.t. height h′and row
r′. (h1 : r1: c1, c2, c5) is a cutter, since ‘0’ contained
columns are c1, c2 and c5 w.r.t. h1 and r1. In
symmetric context, each maximal biclique will be
generated twice. One among the two is a duplicate
pattern and defined as follows: a 3D maximal
biclique (H, R, C) is a duplicate pattern if min(R) >
min(C). min(R) denotes minimum element of row
vertices. For example, (h1, h2, h3: r4 : c1, c2, c5) is
duplicate pattern of (h1, h2, h3: r1, r2, r5 : c4). Readers
may refer [5] for Cubeminer-MBC and [3] for
Cubeminer algorithms respectively. In this paper,
the problem is to enumerate all maximal biclique
patterns only once from 3D symmetric matrix
without generating duplicates.

Table 1

An Example for 3-D Symmetric Matrix

h1

h2

h3

 c1 c2 c3 c4 c5
r1 0 0 1 1 0
r2 0 0 1 1 0
r3 1 1 0 0 1
r4 1 1 0 0 1
r5 0 0 1 1 0

 c1 c2 c3 c4 c5
r1 0 1 1 1 0
r2 1 0 1 1 1
r3 1 1 0 1 1
r4 1 1 1 0 1
r5 0 1 1 1 0

 c1 c2 c3 c4 c5
r1 0 1 0 1 1
r2 1 0 1 1 1
r3 0 1 0 1 0
r4 1 1 1 0 1
r5 1 1 0 1 0

3 3-D Maximal Biclique Enumeration
This section discusses a novel enumeration strategy
and a new pruning technique. We strictly follow the
elements in its lexicographic order while processing
the element from H, R and C [2]. Let (H, R, C) be
any node. If (h′, r′, C′) is a cutter, then the left son
is generated as (H\h′, R, C), middle as (H, R\r′, C)
and the right son as (H, R, C\C′) [3] [5]. Consider
the example dataset given in Table 1. (h1, h2, h3: r1,
r2, r3, r4, r5 : c1, c2, c3, c4, c5) is the root node. (h1: r1 :
c1, c2, c5) is the cutter. Generally, the left node is
generated as (h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5),
middle as (h1, h2, h3: r2, r3, r4, r5 : c1, c2, c3, c4, c5) and
the right as (h1, h2, h3: r1, r2, r3, r4, r5 : c3, c4).

3.1 Novel Enumeration Technique
We do not use the subtree pruning of Cubeminer-
MBC algorithm, instead introduce a new
enumeration strategy to generate zero duplicate
patterns. Let (H, R, C) be any node. Let us assume
min(R) is same as min(C). Let min(R)=ri and
min(C)=ci , 1 ≤ i ≤ m. Since ri=ci, there exists a
cutter (h′, r′, C′) such that ri=r′ and ci ∈ C′, for some
h ∈ H, because h′ x ri x ci contains ‘0’. While
enumerating, additionally ci is removed in both left
and middle son. Obviously, ci is removed in right
son generation. Hence, the left son is generated as
(H\h′, R, C\min(C)), middle as (H, R\r′, C\min(C))
and right son as (H, R, C\C′), whenever min(R) =
min(C). This new enumeration strategy takes care

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 62 Volume 12, 2015

of non occurrence of duplicate patterns and lemma 1
justifies it.

Fig. 1. Tree enumeration at the root level that follows the novel enumeration technique

Lemma 1. Let O = (H, R, C) be any node such that

min(R) = min(C). Let there exists a cutter Z =
(h′, r′, C′) such that, h′ ∈ H, min(R) ∈ r′, min(C)
∈ C′. If the cutter Z is applied on O to generate
left son as (H\h′, R, C\min(C)) and middle son as
(H, R\r′, C\min(C)), then it leads to enumeration
of the patterns only with min(R) < min(C).

Proof. Let O = (H, R, C) be any node such that
min(R) = min(C). Let there exists a cutter Z =
(h′, r′, C′) such that, h′∈ H, min(R) ∈ r′, min(C) ∈
C′. The cutter Z is applied on O to generate left
son as LS = (H\h′, R, C\min(C)), say LS = (HL,
RL, CL), middle son as MS = (H, R\r′, C\min(C)),
say MS = (HM, RM, CM), and right son as RS = (H,
R, C\C′), say RS = (HR, RR, CR). Considering LS,
min(RL)<min(CL). Considering RS, min(RR) <
min(CR). Considering MS, min(RM)=min(CM),
then there exists cutter Z′ = (h′′, r′′, C′′) such that
left son and right son satisfy min(R) < min(C),
and middle son as (HM, RM\r′′, CM\min(CM)), say
OM = (HM2, RM2, CM2). If there exists no more
cutter w.r.t. OM, then both RM2 and CM2 will be
empty. Hence, it leads to enumeration of the
patterns only with min(R) < min(C). 

Considering Table 1 dataset, (h1, h2, h3: r1, r2, r3, r4,
r5 : c1, c2, c3, c4, c5) is the root node. According to
lemma 1, (h2, h3: r1, r2, r3, r4, r5 : c2, c3, c4, c5) is left
son, (h1, h2, h3: r2, r3, r4, r5 : c2, c3, c4, c5) is middle
and (h1, h2, h3: r1, r2, r3, r4, r5 : c3, c4) the right son as
shown in Fig. 1. min(r1, r2, r3, r4, r5) = r1, min(c1, c2,
c3, c4, c5) = c1 and r1 = c1 . Hence, c1 is removed
both in left node and middle node w.r.t. the novel
enumeration technique. On middle son again
lemma 1 will be applied. In this way, no duplicate
patterns are generated.

3.2 New Pruning Technique

The new enumeration strategy has led to the
occurrence of some additional biclique patterns
which are not maximal. These non-maximal
biclique patterns occur as left/middle son of a node,
and are not eliminated by left track check, right
track check, closed height set check and closed row
set check. For detailed information on left track
check, right track check, closed height set check,
closed row set check readers may refer [5] and [3]
(Short discussions are provided in section 3.4).
Hence, we introduce the new pruning technique,
closed column set check in lemma 2. This check is
similar to closed height set check/closed row set
check, but w.r.t. column elements and performed on
left/middle son of any node.

Lemma 2. Closed Column Set Check: Let OLM =

(HLM, RLM, CLM) be the left/middle son of any
node O = (H, R, C). If ∃ c′ ∈ (C\CLM) (C is the
full column set), such that ∀ h′∈ HLM, ∀ r′ ∈ RLM,
h′ x r′ x c′ is ‘1’, then OLM is not a maximal
pattern in the column set and can be pruned off.

Proof. Since ∃ c′ ∈ (C \CLM), such that ∀ h′∈ HLM, ∀
r′∈ RLM, h′ x r′ x c′ is ‘1’, there exists OS = (HLM,
RLM, CLM ∪ {c′}), which is a superset of (HLM,
RLM, CLM). Hence, OLM is not a maximal pattern
in the column set and can be pruned off. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 63 Volume 12, 2015

Fig. 2. Left node is pruned due to new pruning
technique - closed column set check

For example, if the ternary tree is constructed for
the dataset given in Table 1, the node (h2: r2, r3 : c4,
c5) occur as the left son of a node (h2 h3 : r2, r3 : c4,
c5), whose cutter is (h3 : r3 : c1, c3, c5). (h2: r2, r3 : c4,
c5) is not a maximal pattern and pruned by closed
column set check w.r.t. c1, as stated in lemma 2.
Fig. 2 clearly depicts the left node (h2: r2, r3 : c4, c5)
being pruned due to closed column set check w.r.t.
c1, i.e., (h2: r2, r3 : c4, c5) is a subset of (h2: r2, r3 : c1,
c4, c5). Moreover, (h2: r2, r3 : c1, c4, c5) is a duplicate
maximal biclique pattern and has not occurred due
to lemma 1. Similarly (h1, h2, h3 : r3, r4 : c5) occur as
middle son of the node (h1, h2, h3 : r3, r4, r5: c5)
whose cutter is (h1 : r5 : c1, c2, c5) and is pruned w.r.t.
c2, by closed column set check (as depicted in Fig.
3), since as seen in Table 1, h1 x r3 x c2, h1 x r4 x c2,
h2 x r3 x c2, h2 x r4 x c2, h3 x r3 x c2, and h3 x r4 x c2,
contain ‘1’.

Fig. 3. Middle node is pruned due to new pruning
technique - closed column set check

3.3 3D Maximal Biclique Algorithm

Algorithm 1: Cubeminer-MBC*
H- set of heights, R – set of rows, C- set of columns
TL – height elements – meant for left track check
TM – row element – meant for middle track check
h′ – cutter height, r′ – cutter row, C′ – cutter
columns
INPUT: 3D Symmetric matrix M with n heights, m
rows and m columns
OUTPUT: set of maximal bicliques
TL = TM = null
h′, r′, and C′ are computed from M

Cubeminer-MBC*(H, R, C, TL, TM)
1. if cutter (h′,r′,C′) exists w.r.t. (H, R, C)
2. if(min(R) = min(C)) // lemma 1
3. C = C\min(C)

4. C′ = C′\min(C)
5. end
6. /* left son generation */
7. if(∄ h′ ∈ TL)
8. if (! closed row set Check)
9. if (! closed column set Check) // lemma 2
10. Cubeminer-MBC*(H\h′, R, C, TL, TM)
11. endif
12. endif
13. endif
14. /* middle son generation */
15. if(∄ r′ ∈ TM)
16. if(! closed height set Check)
17. if (! closed column set Check)//lemma 2
18. Cubeminer-MBC*(H, R\r′, C, TL ∪ h′, TM)
19. endif
20. endif
21. endif
22. /* right son generation */
23. if(! closed height set Check)
24. if(! closed row set Check)
25. Cubeminer-MBC*(H, R, C\C′,TL ∪h′, TM ∪ r′)
26. endif
27. endif
28. else
29. Output (H, R, C) as maximal biclique pattern
30. endif

3.4 Description
The Cubeminer-MBC* algorithm works in a depth
first search manner. It generates a ternary tree,
where the left son is generated as (H\h′, R, C),
middle son as (H, R\r′, C), and the right son as (H,
R, C\C′) of a node (H, R, C) where (h′,r′,C′) is a
cutter (line nos.10, 18, & 25). According to lemma
1 (novel enumeration strategy), line nos. 2-5 remove
min(C) from C as well as C′, which results in the
generation of left son as (H\h′, R, C\min(C)), middle
son as (H, R\r′, C\min(C)), and the right son as (H,
R, C\C′), that leads to non-occurrence of duplicate
patterns.

Left track check and middle track check are done
in line nos. 7 & 15 respectively. Left track check is
performed as follows: if the height element h′ of
the cutter does intersect with TL, then the left node
can be pruned. Middle track check is performed as
follows: if the row element r′ of the cutter does
intersect with TM, then the middle node can be
pruned. TL w.r.t. left track check is updated during
left and right son generation and TM w.r.t. middle
track check is updated during right son generation.
Closed height set check on middle son and right son,
closed row set check on left son and right son are

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 64 Volume 12, 2015

performed respectively to eliminate biclique
patterns which are not maximal. Closed height set
check is performed as follows: Let OMR = (HMR,
RMR, CMR) be the middle/right son of any node O =
(H, R, C). If ∃ h′ ∈ (H\HMR) (H is the full height
set), such that ∀ r′ ∈ RMR, ∀ c′∈ CMR, h′ x r′ x c′ is
‘1’, then OMR is not a maximal pattern in the height
set and can be pruned off. Closed row set check is
performed as follows: Let OLR = (HLR, RLR, CLR) be
the left/right son of any node O = (H, R, C). If ∃ r′
∈ (R\RLR) (R is the full row set), such that ∀ h′ ∈ HLR,
∀ c′∈ CLR, h′ x r′ x c′ is ‘1’, then OLR is not a
maximal pattern in the row set and can be pruned
off. In a similar fashion, as per lemma 2 (new
pruning strategy), closed column set check is
performed on left son and middle son. Some nodes
are not maximal bicliques and still not eliminated by
left track check, middle track check, closed height
set check, and closed row set check. Hence, the
additional closed column set check leads to
elimination of non maximal biclique patterns. The
cutter generation technique followed is discussed in
[5]. Once there are no more cutters, we arrive at
leaf node and is a maximal biclique pattern. Hence,
due to the novel enumeration strategy, and new
pruning techniques maximal biclique patterns occur
only once, i.e., zero duplicate patterns are generated.

3.5 User Specified constraints
In order to include user specified constraints, we
include the following definition w.r.t. maximal
biclique, with an assumption that p ≤ q always hold:
A 3D maximal biclique (H, R, C) is said to be
(w,p,q)-large if |H|≥ w, and |R|≥ p or |C|≥ p, and
the other is atleast q. Hence, we enumerate all
(w,p,q)-large maximal bicliques from 3D symmetric
matrix without generating duplicates. In the
simplest form (w,p,q)-large constraint can be added
on all the leaf node.

4 Experimental Results and Analysis
We have implemented and compiled both
Cubeminer-MBC* and Cubeminer algorithms using
32-bit Microsoft VC++ compiler, with Windows 7
operating system, in 3 GB RAM and Intel Core i3
processor environment. The datasets used in Table
2 are from [5]. It is very well observed in
experiment section of [5] that Cubeminer-MBC
generates duplicate patterns for all datasets except
the last. It is inappropriate to compare the running
time of Cubeminer-MBC* with Cubeminer-MBC,

since the later generate duplicate patterns.
Moreover, Cubeminer-MBC algorithm works
correctly only when the row and column constraints
are equal. If they are not equal, it may miss out
many patterns. Hence, we compare the running
time of Cubeminer-MBC* with Cubeminer.

Table 2
Running time in seconds on various datasets
between Cubeminer-MBC* and Cubeminer without
minimal size constraints

Dataset

Running time (in seconds)

Cubeminer-
MBC* Cubeminer

4-300-300 27.0844 38.0822

3-1000-
1000 277.0252 377.7922

9-200-200 84.7764 120.073

5-500-500 694.0542 969.6448

Table 2 compares the running time of two
algorithms Cubeminer and Cubeminer-MBC* in
seconds without any size constraints, i.e., minimum
count of height elements is 1, minimum count of
row elements is 1, and minimum count of column
elements is 1, and observed that Cubeminer-MBC*
outperform the other on all datasets.

 (a) (b)

 (c) (d)
Fig. 4. Running time comparison on synthetic
datasets with user specified constraints. a) 4-300-
300 b) 3-1000-1000 c) 9-200-200 and d) 5-500-500

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 65 Volume 12, 2015

Fig. 4 shows the running time of Cubeminer and

Cubeminer-MBC* with minimum w = 1, and p and
q range from 2 to 6. For all the datasets we
compared, Cubeminer-MBC* outperform the other.
The comparison was done for the datasets
mentioned in Table 2.

Fig. 5. Running time comparison with number of
heights vary from 6 to 30

In Fig. 5, we make the number of heights vary
from 6 to 30 and we constrain every maximal 3D
pattern to involve atleast 2 heights (w), p = 2 and q
= 2 elements. The density of the dataset is 14.9%
w.r.t. each height element. The results are
represented in Fig. 2, and clearly depict the better
performance of Cubeminer-MBC*.

5 Conclusion
We have introduced a novel algorithm Cubeminer-
MBC*, inspired by Cubeminer-MBC and
Cubeminer, to completely prune the duplicate
maximal bicliques in 3D symmetric context. This
100% elimination of duplicate patterns is achieved
with the new enumeration technique and
corresponding pruning technique proposed in this
paper. This pruning has led to fifty percent
reduction in search space, and thus performance of
Cubeminer-MBC* is better than Cubeminer on
symmetric datasets. In this paper, Cubeminer-
MBC* is discussed in 3D context, and may also be
extended in n-dimensional context.

References:
[1] J. Li, G. Liu, H. Li, L. Wong, “Maximal

Biclique Subgraphs and Closed Pattern Pairs of
the Adjacency Matrix: A One-to-One
Correspondence and Mining Algorithms,”
IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 12, pp. 1625-1637,
Dec. 2007.

[2] V.M. Dias, C.M. de Figueiredo, J.L.
Szwarcfiter, “Generating bicliques of a graph in
lexicographic order,” Journal of Theoretical
Computer Science, vol. 337, pp. 240–248,
2005.

[3] L. Ji, K.L. Tan and A.K.H. Tung, “Mining
Frequent Closed Cubes in 3D datasets,” Proc.
32nd Intl’. Conference on Very Large Data-
bases, 2006.

[4] R. Peeters, “The maximum edge biclique
problem is NP-complete,” Discrete Applied
Mathematics, 131(3), pp. 651-654, 2003.

[5] S. Selvan, R.V. Nataraj, “Efficient Mining of
Large Maximal Bicliques from 3D Symmetric
Adjacency Matrix,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, iss.
12, pp. 1797-1802, Dec. 2010.

[6] M.D. Savio, A. Sankar, R.V. Nataraj, “A Novel
Algorithm to Enumerate Maximal Bicliques
from a Symmetric Matrix,” Proc. of the third
Int. Conf. on Emerging Applications of
Information Technology, pp. 456- 467,
Kolkata, India, Nov. – Dec. 2012.

[7] L. Cerf, J. Besson, C. Robardet, J.F. Boulicaut,
“Closed patterns meet n-ary relations,” ACM
Transactions on Knowledge Discovery from
Data, 3(1), 2009.

[8] C. Lucchese, S. Orlando, R. Perego, “Fast and
Memory Efficient Mining of Frequent Closed
Itemsets,” IEEE Transactions on Knowledge
and Data Engineering, vol. 18, no. 1, pp. 21-
36, January 2006.

[9] T. Uno, M. Kiyomi, and H. Arimura, “LCM
ver.2: Efficient mining algorithms for
Frequent/closed/maximal itemsets,” In Proc.
IEEE ICDM’04 Workshop FIMI’04, 2004.

[10] A. Prelic, S. Bleuler, P. Zimmermann, A.
Wille, P. Buhlmann, W. Gruissem, L. Hennig,
L. Thiele, and E. Zitzler, “A Systematic
Comparison and Evaluation of Biclustering
Methods for Gene Expression Data,”
Bioinformatics, 22(9):1122-1129, 2006.

[11] S.C. Madeira , A.L. Oliveira, “Biclustering
Algorithms for Biological Data Analysis: A
Survey,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics
(TCBB), vol.1 no.1, pp.24-45, Jan. 2004.

[12] R. Agrawal, R. Srikant, “Fast Algorithms for
Mining Association Rules in Large Databases,”
Proc. Int’l Conf. Very Large Data Bases, pp.
487-499, Sept. 1994.

[13] G. Grahne and J. Zhu, “Fast Algorithms for
Frequent Itemset Mining Using FP-Trees,”
IEEE Trans. Knowledge and Data Eng., vol.
17, no. 10, pp. 1347-1362, Oct. 2005.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 66 Volume 12, 2015

http://www.dblp.org/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.dblp.org/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94

[14] J. Wang, J. Han, J. Pei, “CLOSET+: searching
for the best strategies for mining frequent
closed itemsets,” Proc. of the ninth ACM
SIGKDD Int’l Conf. on Knowledge discovery
and data mining, p. 24-27, Aug. 2003.

[15] J. Besson, C. Robardet, J.F. Boulicaut and S.
Rome, “Constraint Based Concept Mining and
its Application to Microarray Data Analysis,”
Journal of Intelligent Data Analysis, pp. 59-82,
2005.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 67 Volume 12, 2015

