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Abstract: - We propose an algorithm Cubeminer-MBC*, to extract maximal biclique patterns from a 3D 
symmetric adjacency matrix only once.  In this paper, we introduce (i) a novel enumeration strategy and (ii) a 
new pruning strategy, which results 50% reduction in search space and maximal biclique patterns are generated 
only once, i.e., zero duplicates are generated.   On the basis of experiments conducted, we observed 
Cubeminer-MBC* outperforms Cubeminer in terms of running time. 
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1 Introduction 
Finding web communities from online social 
networks can be modeled by maximal bicliques [1].  
Online social networks have connected many 
people.  Interacting people on social network is 
denoted by vertices and the interaction among them 
is denoted by edges.  The social network can be 
represented as a 2-dimensional dataset in boolean 
context.  If one more dimension like period (days, 
week, month or year) is added to the existing 2D 
dataset, that becomes 3-dimensional dataset, then 
we are able to extract pattern of communication 
between these social communities w.r.t. time, which 
would be commercially more useful [5].  
Enumerating maximal bicliques is a highly 
challenging task and the running time of the 
algorithm increases exponentially with respect to the 
number of vertices [4].  The maximal biclique 
patterns occur twice in a symmetric adjacency 
matrix.  Extensive study has been carried out to 
enumerate maximal bicliques only once in LCM-
MBC [1] and Twinblade [6] algorithms on 2D 
symmetric adjacency dataset.  In 3D symmetric 
context, Cubeminer-MBC [5] extends Cubeminer 
[3] to enumerate large maximal bicliques.  With the 
help of a pruning strategy, it eliminates duplicate 
patterns to a certain extent, i.e., not all duplicate 
patterns are eliminated.  Hence, we propose an 
efficient algorithm Cubeminer-MBC* in 3D 
symmetric context, to enumerate maximal biclique 
patterns only once, i.e., to eliminate duplicate 
patterns completely. We introduce a novel 

enumeration strategy and new pruning technique to 
achieve this.  We have compared our algorithm with 
Cubeminer [3] on synthetic datasets.   

Extensive study has been already carried out to 
enumerate maximal bicliques from boolean 
adjacency matrix in DCI-Closed [8], LCM [9], and 
Bimax [10] algorithms.  Datapeeler [7] algorithm 
enumerates maximal biclique patterns in n-
dimension context from an n-dimension dataset.  
Biclustering algorithms find maximal patterns from 
gene expression matrix [11], and work on real value 
datasets and not in boolean context. 

These algorithms generally fit into any one of the 
following two straregies namely 1) grouping of 
‘1’contained rows and columns and 2) eliminating 
‘0’ contained rows and columns.  Most of the 
algorithms like DCI-Closed [8], LCM[9], Bimax 
[10], Datapeeler [7], LCM-MBC [1], Twinblade [6], 
Apriori [12], FP-Growth [13] , and Closet+ [14], fall 
in the first category. DMiner [15] in 2D context, and 
Cubeminer[3] and Cubeminer-MBC[5] in 3D 
context fall in the second category.  Our proposed 
algorithm Cubeminer-MBC* also fall in the second 
category.  Anyhow, Bimax[10] algorithm alters row 
with some fellow rows, or columns with fellow 
columns so that finally maximal patterns are 
grouped. 

The rest of the paper is organized as follows: 
section 2 presents the preliminaries, section 3 deals 
with the novel enumeration technique and pruning 
methodology adopted, section 4 analyzes the 
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experimental results and section 5 concludes the 
paper. 
 
 
2 Preliminaries 
In this section, we present the basic definitions with 
the problem definition.  Let A= (H, R, C) be a 3D 
dataset.  Let R = {r1, r2, r3, . . . , rm} be set of row 
vertices, and C  = {c1, c2, c3, . . . , cm} be set of 
column vertices, where ri = ci, 1 ≤ i ≤ m.  Let H = 
{h1, h2, . . . , hn}, represents the height set or third 
dimension, where each hi is a symmetric adjacency 
matrix (R, C) with diagonal elements ‘0’, indicating 
there are no self loops.  Each cell is represented by 
either ‘0’ that represents no interaction, or ‘1’ that 
represents interaction between the corresponding 
row vertex and column vertex.  We now provide the 
definitions of bicliques and maximal bicliques in 3D 
context. Let H ⊆ H, R ⊆ R  and C ⊆ C. (H, R, C) is 
said to be 3D biclique iff ∀ h ∈ H , ∀ r ∈ R , ∀ c ∈ C, 
h x r  x c is ‘1’ and R ∩ C = null.  In Table 1, we 
have an example of 3D symmetric adjacency matrix 
(h1, h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5).  (h1, h2, 
h3: r2, r5 : c4) is a biclique, whereas (h1, h2, h3: r2, r5 : 
c3, c4) is not a biclique, because h3:r5:c3 contains ‘0’.  
A 3D biclique (H, R, C) is said to be maximal, iff ∄ 
h ∈ H\H, such that ∀ r ∈ R, ∀ c ∈ C, h x r  x c is ‘1’, 
∄ r ∈  R\R, such that ∀ h ∈ H, ∀ c ∈ C, h x r  x c is 
‘1’, and ∄ c ∈ C\C, such that ∀ h ∈ H,∀ r ∈ R, h x r  
x c is ‘1’.  Continuing with the example, (h1, h2, h3: 
r1, r2, r5 : c4) is a maximal biclique.  (h1, h2 : r1, r2 : c3, 
c4) is a biclique, but not maximal because there is an 
element r5 such that (h1, h2 : r1, r2, r5: c3, c4) forms a 
biclique.  Biclique is also called as complete 
bipartite subgraph.  Let |R| refers to cardinality of 
the R.   

The cutter is represented by (h′, r′, C′) where C′ 
is a zero contained columns w.r.t. height h′and row 
r′.  (h1 : r1: c1, c2, c5) is a cutter, since ‘0’ contained 
columns are c1, c2 and c5 w.r.t. h1 and r1.  In 
symmetric context, each maximal biclique will be 
generated twice.  One among the two is a duplicate 
pattern and defined as follows:  a 3D maximal 
biclique (H, R, C) is a duplicate pattern if min(R) > 
min(C).  min(R) denotes minimum element of row 
vertices.  For example, (h1, h2, h3: r4 : c1, c2, c5) is 
duplicate pattern of (h1, h2, h3: r1, r2, r5 : c4).  Readers 
may refer [5] for Cubeminer-MBC and [3] for 
Cubeminer algorithms respectively. In this paper, 
the problem is to enumerate all maximal biclique 
patterns only once from 3D symmetric matrix 
without generating duplicates.  

 
Table 1 

An Example for 3-D Symmetric Matrix 
 
 

h1 
 
 
 
 
 
 

h2 
 
 
 
 
 
 

h3 
 
 

 

 c1 c2 c3 c4 c5 
r1 0 0 1 1 0 
r2 0 0 1 1 0 
r3 1 1 0 0 1 
r4 1 1 0 0 1 
r5 0 0 1 1 0 

 c1 c2 c3 c4 c5 
r1 0 1 1 1 0 
r2 1 0 1 1 1 
r3 1 1 0 1 1 
r4 1 1 1 0 1 
r5 0 1 1 1 0 

 c1 c2 c3 c4 c5 
r1 0 1 0 1 1 
r2 1 0 1 1 1 
r3 0 1 0 1 0 
r4 1 1 1 0 1 
r5 1 1 0 1 0 

 
3  3-D Maximal Biclique Enumeration 
This section discusses a novel enumeration strategy 
and a new pruning technique.  We strictly follow the 
elements in its lexicographic order while processing 
the element from H, R and C [2].  Let (H, R, C) be 
any node.  If (h′, r′, C′) is a cutter, then the left son 
is generated as (H\h′, R, C), middle as (H, R\r′, C) 
and the right son as (H, R, C\C′) [3] [5].  Consider 
the example dataset given in Table 1.  (h1, h2, h3: r1, 
r2, r3, r4, r5 : c1, c2, c3, c4, c5) is the root node.  (h1: r1 : 
c1, c2, c5) is the cutter.  Generally, the left node is 
generated as (h2, h3: r1, r2, r3, r4, r5 : c1, c2, c3, c4, c5), 
middle as (h1, h2, h3: r2, r3, r4, r5 : c1, c2, c3, c4, c5) and 
the right as (h1, h2, h3: r1, r2, r3, r4, r5 : c3, c4). 

  
3.1  Novel Enumeration Technique 
We do not use the subtree pruning of Cubeminer-
MBC algorithm, instead introduce a new 
enumeration strategy to generate zero duplicate 
patterns.  Let (H, R, C) be any node.  Let us assume 
min(R) is same as min(C).  Let min(R)=ri and 
min(C)=ci , 1 ≤ i ≤ m.  Since ri=ci, there exists a 
cutter (h′, r′, C′) such that ri=r′ and ci ∈ C′, for some 
h ∈ H, because h′ x ri x ci contains ‘0’.  While 
enumerating, additionally ci is removed in both left 
and middle son.  Obviously, ci is removed in right 
son generation.  Hence, the left son is generated as 
(H\h′, R, C\min(C)), middle as (H, R\r′, C\min(C)) 
and right son as (H, R, C\C′), whenever min(R) = 
min(C).  This new enumeration strategy takes care 
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of non occurrence of duplicate patterns and lemma 1 
justifies it. 

 

 
 
Fig. 1. Tree enumeration at the root level that follows the novel enumeration technique  
 
 
Lemma 1. Let O = (H, R, C) be any node such that 

min(R) = min(C).  Let there exists a cutter Z = 
(h′, r′, C′) such that, h′ ∈ H, min(R) ∈ r′, min(C) 
∈ C′.  If the cutter Z is applied on O to generate 
left son as (H\h′, R, C\min(C)) and middle son as 
(H, R\r′, C\min(C)), then it leads to enumeration 
of the patterns only with min(R) < min(C). 

Proof. Let O = (H, R, C) be any node such that 
min(R) = min(C).  Let there exists a cutter Z = 
(h′, r′, C′) such that, h′∈ H, min(R) ∈ r′, min(C) ∈ 
C′.  The cutter Z is applied on O to generate left 
son as LS = (H\h′, R, C\min(C)), say LS = (HL, 
RL, CL), middle son as MS = (H, R\r′, C\min(C)), 
say MS = (HM, RM, CM), and right son as RS = (H, 
R, C\C′), say RS = (HR, RR, CR).  Considering LS, 
min(RL)<min(CL).  Considering RS, min(RR) < 
min(CR). Considering MS, min(RM)=min(CM), 
then there exists cutter Z′ = (h′′, r′′, C′′) such that 
left son and right son satisfy min(R) < min(C), 
and middle son as (HM, RM\r′′, CM\min(CM)), say 
OM = (HM2, RM2, CM2).  If there exists no more 
cutter w.r.t. OM, then both RM2 and CM2 will be 
empty.  Hence, it leads to enumeration of the 
patterns only with min(R) < min(C).                   

 
Considering Table 1 dataset, (h1, h2, h3: r1, r2, r3, r4, 
r5 : c1, c2, c3, c4, c5) is the root node.  According to 
lemma 1, (h2, h3: r1, r2, r3, r4, r5 : c2, c3, c4, c5) is left 
son, (h1, h2, h3: r2, r3, r4, r5 : c2, c3, c4, c5) is middle 
and (h1, h2, h3: r1, r2, r3, r4, r5 : c3, c4) the right son as 
shown in Fig. 1.  min(r1, r2, r3, r4, r5 ) = r1, min(c1, c2, 
c3, c4, c5 ) = c1  and r1 = c1 .  Hence, c1 is removed 
both in left node and middle node w.r.t. the novel 
enumeration technique.  On middle son again 
lemma 1 will be applied.  In this way, no duplicate 
patterns are generated. 
 
 
3.2  New Pruning Technique 

The new enumeration strategy has led to the 
occurrence of some additional biclique patterns 
which are not maximal.  These non-maximal 
biclique patterns occur as left/middle son of a node, 
and are not eliminated by left track check, right 
track check, closed height set check and closed row 
set check.  For detailed information on left track 
check, right track check, closed height set check, 
closed row set check readers may refer [5] and [3] 
(Short discussions are provided in section 3.4).  
Hence, we introduce the new pruning technique, 
closed column set check in lemma 2.  This check is 
similar to closed height set check/closed row set 
check, but w.r.t. column elements and performed on 
left/middle son of any node.    
 
Lemma 2. Closed Column Set Check:  Let OLM = 

(HLM, RLM, CLM) be the left/middle son of any 
node O = (H, R, C).  If  ∃ c′ ∈ (C\CLM) (C is the 
full column set), such that ∀ h′∈ HLM, ∀ r′ ∈ RLM, 
h′ x r′ x c′ is ‘1’, then OLM is not a maximal 
pattern in the column set and can be pruned off. 

Proof. Since  ∃ c′ ∈ (C \CLM), such that ∀ h′∈ HLM, ∀ 
r′∈ RLM, h′ x r′ x c′ is ‘1’, there exists OS = (HLM, 
RLM, CLM ∪ {c′}), which is a superset of (HLM, 
RLM, CLM).  Hence, OLM is not a maximal pattern 
in the column set and can be pruned off.    
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Fig. 2.  Left node is pruned due to new pruning 
technique - closed column set check 

For example, if the ternary tree is constructed for 
the dataset given in Table 1, the node (h2: r2, r3 : c4, 
c5) occur as the left son of a node (h2 h3 : r2, r3 : c4, 
c5), whose cutter is (h3 : r3 : c1, c3, c5).  (h2: r2, r3 : c4, 
c5) is not a maximal pattern and pruned by closed 
column set check w.r.t. c1, as stated in lemma 2.  
Fig. 2 clearly depicts the left node (h2: r2, r3 : c4, c5) 
being pruned due to closed column set check w.r.t. 
c1, i.e., (h2: r2, r3 : c4, c5) is a subset of (h2: r2, r3 : c1, 
c4, c5).  Moreover, (h2: r2, r3 : c1, c4, c5) is a duplicate 
maximal biclique pattern and has not occurred due 
to lemma 1.  Similarly (h1, h2, h3 : r3, r4 : c5) occur as 
middle son of the node (h1, h2, h3 : r3, r4, r5: c5) 
whose cutter is (h1 : r5 : c1, c2, c5) and is pruned w.r.t. 
c2, by closed column set check (as depicted in Fig. 
3), since as seen in Table 1, h1 x r3 x c2, h1 x r4  x c2, 
h2 x r3 x c2, h2 x r4  x c2, h3 x r3 x c2, and h3 x r4  x c2, 
contain ‘1’. 

 
 
 

 
Fig. 3.  Middle node is pruned due to new pruning 
technique - closed column set check 
 
 
3.3  3D Maximal Biclique Algorithm 
 
Algorithm 1:   Cubeminer-MBC* 
H- set of heights, R – set of rows, C- set of columns 
TL – height elements – meant for left track check 
TM – row element – meant for middle track check 
h′ – cutter height, r′ – cutter row, C′ – cutter 
columns 
INPUT: 3D Symmetric matrix M with n heights, m 
rows and m columns 
OUTPUT: set of maximal bicliques 
TL = TM = null 
h′, r′, and C′ are computed from M 
 
Cubeminer-MBC*(H, R, C, TL, TM) 
1. if cutter (h′,r′,C′) exists w.r.t. (H, R, C) 
2.    if( min(R) = min(C) ) // lemma 1 
3.       C = C\min(C) 

4.       C′ = C′\min(C) 
5.    end 
6.    /* left son generation */ 
7.    if(∄ h′ ∈ TL) 
8.       if (! closed row set Check) 
9.          if (! closed column set Check)  // lemma 2 
10.              Cubeminer-MBC*(H\h′, R, C, TL, TM) 
11.          endif 
12.       endif 
13.    endif 
14.    /* middle son generation */ 
15.    if(∄ r′ ∈ TM) 
16.       if(! closed height set Check) 
17.          if (! closed column set Check)//lemma 2 
18.             Cubeminer-MBC*(H, R\r′, C, TL ∪ h′, TM) 
19.          endif 
20.       endif 
21.    endif 
22.    /* right son generation */ 
23.    if(! closed height set Check) 
24.       if(! closed row set Check) 
25.          Cubeminer-MBC*(H, R, C\C′,TL ∪h′, TM ∪ r′) 
26.       endif 
27.    endif 
28. else 
29.    Output (H, R, C) as maximal biclique pattern 
30. endif 
 
 
3.4  Description 
The Cubeminer-MBC* algorithm works in a depth 
first search manner.  It generates a ternary tree, 
where the left son is generated as (H\h′, R, C), 
middle son as (H, R\r′, C), and the right son as (H, 
R, C\C′) of a node (H, R, C) where (h′,r′,C′) is a 
cutter (line nos.10, 18, & 25).  According to lemma 
1 (novel enumeration strategy), line nos. 2-5 remove 
min(C) from C as well as C′, which results in the 
generation of left son as (H\h′, R, C\min(C)), middle 
son as (H, R\r′, C\min(C)), and the right son as (H, 
R, C\C′), that leads to non-occurrence of duplicate 
patterns.   

Left track check and middle track check are done 
in line nos. 7 & 15 respectively.  Left track check is 
performed as follows:  if the height element h′ of  
the cutter does intersect with TL, then the left node 
can be pruned.  Middle track check is performed as 
follows:  if the row element r′ of the cutter does 
intersect with TM, then the middle node can be 
pruned.   TL w.r.t. left track check is updated during 
left and right son generation and TM w.r.t. middle 
track check is updated during right son generation.  
Closed height set check on middle son and right son, 
closed row set check on left son and right son are 
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performed respectively to eliminate biclique 
patterns which are not maximal.  Closed height set 
check is performed as follows:  Let OMR = (HMR, 
RMR, CMR) be the middle/right son of any node O = 
(H, R, C).  If  ∃ h′ ∈ (H\HMR) (H is the full height 
set), such that ∀ r′ ∈ RMR, ∀ c′∈ CMR, h′ x r′ x c′ is 
‘1’, then OMR is not a maximal pattern in the height 
set and can be pruned off.  Closed row set check is 
performed as follows:  Let OLR = (HLR, RLR, CLR) be 
the left/right son of any node O = (H, R, C).  If  ∃ r′ 
∈ (R\RLR) (R  is the full row set), such that ∀ h′ ∈ HLR, 
∀ c′∈ CLR,  h′ x r′ x c′ is ‘1’, then OLR is not a 
maximal pattern in the row set and can be pruned 
off.  In a similar fashion, as per lemma 2 (new 
pruning strategy), closed column set check is 
performed on left son and middle son.  Some nodes 
are not maximal bicliques and still not eliminated by 
left track check, middle track check, closed height 
set check, and closed row set check.  Hence, the 
additional closed column set check leads to 
elimination of non maximal biclique patterns.  The 
cutter generation technique followed is discussed in 
[5].  Once there are no more cutters, we arrive at 
leaf node and is a maximal biclique pattern.  Hence, 
due to the novel enumeration strategy, and new 
pruning techniques maximal biclique patterns occur 
only once, i.e., zero duplicate patterns are generated. 
 
 
3.5  User Specified constraints 
In order to include user specified constraints, we 
include the following definition w.r.t. maximal 
biclique, with an assumption that p ≤ q always hold:  
A 3D maximal biclique (H, R, C) is said to be 
(w,p,q)-large if |H|≥ w, and  |R|≥ p or |C|≥ p, and 
the other is atleast q.  Hence, we enumerate all 
(w,p,q)-large maximal bicliques from 3D symmetric 
matrix without generating duplicates.  In the 
simplest form (w,p,q)-large constraint can be added 
on all the leaf node. 
 
 
4 Experimental Results and Analysis 
We have implemented and compiled both 
Cubeminer-MBC* and Cubeminer algorithms using 
32-bit Microsoft VC++ compiler, with Windows 7 
operating system, in 3 GB RAM and Intel Core i3 
processor environment.  The datasets used in Table 
2 are from [5].  It is very well observed in 
experiment section of [5] that Cubeminer-MBC 
generates duplicate patterns for all datasets except 
the last.  It is inappropriate to compare the running 
time of Cubeminer-MBC* with Cubeminer-MBC, 

since the later generate duplicate patterns.  
Moreover, Cubeminer-MBC algorithm works 
correctly only when the row and column constraints 
are equal.  If they are not equal, it may miss out 
many patterns.   Hence, we compare the running 
time of Cubeminer-MBC* with Cubeminer.  
 

Table 2 
Running time in seconds on various datasets 
between Cubeminer-MBC* and Cubeminer without 
minimal size constraints 
 

Dataset 

Running time (in seconds) 

Cubeminer-
MBC* Cubeminer 

4-300-300 27.0844 38.0822 

3-1000-
1000 277.0252 377.7922 

9-200-200 84.7764 120.073 

5-500-500 694.0542 969.6448 
 
Table 2 compares the running time of two 
algorithms Cubeminer and Cubeminer-MBC* in 
seconds without any size constraints, i.e., minimum 
count of height elements is 1, minimum count of 
row elements is 1, and minimum count of column 
elements is 1, and observed that Cubeminer-MBC* 
outperform the other on all datasets. 
 
 

                     (a)                                              (b) 
  

                      (c)                                            (d) 
Fig. 4. Running time comparison on synthetic 
datasets with user specified constraints.  a) 4-300-
300 b) 3-1000-1000 c) 9-200-200 and d) 5-500-500 
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Fig. 4 shows the running time of Cubeminer and 

Cubeminer-MBC* with minimum w = 1, and p and 
q range from 2 to 6.  For all the datasets we 
compared, Cubeminer-MBC* outperform the other.  
The comparison was done for the datasets 
mentioned in Table 2. 
 
 
 

 
Fig. 5. Running time comparison with number of 
heights vary from 6 to 30   
 

In Fig. 5, we make the number of heights vary 
from 6 to 30 and we constrain every maximal 3D 
pattern to involve atleast 2 heights (w), p = 2 and q 
= 2 elements.  The density of the dataset is 14.9% 
w.r.t. each height element.  The results are 
represented in Fig. 2, and clearly depict the better 
performance of Cubeminer-MBC*. 
 
 
5  Conclusion 
We have introduced a novel algorithm Cubeminer-
MBC*, inspired by Cubeminer-MBC and 
Cubeminer, to completely prune the duplicate 
maximal bicliques in 3D symmetric context.  This 
100% elimination of duplicate patterns is achieved 
with the new enumeration technique and 
corresponding pruning technique proposed in this 
paper.  This pruning has led to fifty percent 
reduction in search space, and thus performance of 
Cubeminer-MBC* is better than Cubeminer on 
symmetric datasets.  In this paper, Cubeminer-
MBC* is discussed in 3D context, and may also be 
extended in n-dimensional context. 
 
References: 
[1] J. Li, G. Liu, H. Li, L. Wong, “Maximal 

Biclique Subgraphs and Closed Pattern Pairs of 
the Adjacency Matrix: A One-to-One 
Correspondence and Mining Algorithms,” 
IEEE Transactions on Knowledge and Data 
Engineering, vol. 19,  no. 12,  pp. 1625-1637,  
Dec. 2007. 

[2] V.M. Dias, C.M. de Figueiredo, J.L. 
Szwarcfiter, “Generating bicliques of a graph in 
lexicographic order,” Journal of Theoretical 
Computer Science, vol. 337, pp. 240–248, 
2005. 

[3] L. Ji, K.L. Tan and A.K.H. Tung, “Mining 
Frequent Closed Cubes in 3D datasets,” Proc. 
32nd Intl’. Conference on Very Large Data-
bases, 2006. 

[4] R. Peeters, “The maximum edge biclique 
problem is NP-complete,” Discrete Applied 
Mathematics, 131(3), pp. 651-654, 2003. 

[5] S. Selvan, R.V. Nataraj, “Efficient Mining of 
Large Maximal Bicliques from 3D Symmetric 
Adjacency Matrix,” IEEE Transactions on 
Knowledge and Data Engineering, vol. 22, iss. 
12, pp. 1797-1802, Dec. 2010. 

[6] M.D. Savio, A. Sankar, R.V. Nataraj, “A Novel 
Algorithm to Enumerate Maximal Bicliques 
from a Symmetric Matrix,” Proc. of the third 
Int. Conf. on Emerging Applications of 
Information Technology,  pp. 456- 467, 
Kolkata, India, Nov. – Dec. 2012. 

[7] L. Cerf, J. Besson, C. Robardet, J.F. Boulicaut, 
“Closed patterns meet n-ary relations,” ACM 
Transactions on Knowledge Discovery from 
Data, 3(1), 2009. 

[8] C. Lucchese, S. Orlando, R. Perego, “Fast and 
Memory Efficient Mining of Frequent Closed 
Itemsets,” IEEE Transactions on Knowledge 
and Data Engineering, vol. 18, no. 1, pp. 21-
36, January 2006. 

[9] T. Uno, M. Kiyomi, and H. Arimura, “LCM 
ver.2: Efficient mining algorithms for 
Frequent/closed/maximal itemsets,” In Proc. 
IEEE ICDM’04 Workshop FIMI’04, 2004. 

[10] A. Prelic, S. Bleuler, P. Zimmermann, A. 
Wille, P. Buhlmann, W. Gruissem, L. Hennig, 
L. Thiele, and E. Zitzler, “A Systematic 
Comparison and Evaluation of Biclustering 
Methods for Gene Expression Data,” 
Bioinformatics, 22(9):1122-1129, 2006. 

[11] S.C. Madeira , A.L. Oliveira, “Biclustering 
Algorithms for Biological Data Analysis: A 
Survey,” IEEE/ACM Transactions on 
Computational Biology and Bioinformatics 
(TCBB), vol.1 no.1, pp.24-45, Jan. 2004. 

[12] R. Agrawal, R. Srikant, “Fast Algorithms for 
Mining Association Rules in Large Databases,” 
Proc. Int’l Conf. Very Large Data Bases, pp. 
487-499, Sept. 1994. 

[13] G. Grahne and J. Zhu, “Fast Algorithms for 
Frequent Itemset Mining Using FP-Trees,” 
IEEE Trans. Knowledge and Data Eng., vol. 
17, no. 10, pp. 1347-1362, Oct. 2005. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 66 Volume 12, 2015

http://www.dblp.org/db/indices/a-tree/a/Agrawal:Rakesh.html
http://www.dblp.org/db/indices/a-tree/s/Srikant:Ramakrishnan.html
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94
http://www.dblp.org/db/conf/vldb/vldb94.html#AgrawalS94


[14] J. Wang, J. Han, J. Pei, “CLOSET+: searching 
for the best strategies for mining frequent 
closed itemsets,” Proc. of the ninth ACM 
SIGKDD Int’l Conf. on Knowledge discovery 
and data mining, p. 24-27, Aug. 2003. 

[15] J. Besson, C. Robardet, J.F. Boulicaut and S. 
Rome, “Constraint Based Concept Mining and 
its Application to Microarray Data Analysis,” 
Journal of Intelligent Data Analysis, pp. 59-82, 
2005. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS M. Dominic Savio, A. Sankar, R. V. Nataraj

E-ISSN: 2224-3402 67 Volume 12, 2015




