
A Novel Feature Extraction Method for Epileptic EEG Based on Degree 
Distribution of Complex Network 

 
1,2FENGLIN WANG, 1,2,*QINGFANG MENG, 1,2YUEHUI CHEN 

1School of Information Science and Engineering 
University of Jinan 

Jinan, Shandong 
CHINA 

2Shandong Provincial Key Laboratory of Network Based Intelligent Computing 
Jinan, Shandong 

CHINA 
*shenkewuhui@gmail.com 

 
 
Abstract: - Automatic seizure detection is significant in relieving the heavy workload of inspecting prolonged 
electroencephalograph (EEG). Feature extraction method for automatic epileptic seizure detection has 
important research significance because the extracted feature seriously affects the detection algorithm 
performance. Recently complex network theory shows its advantages to analyze the nonlinear and non-
stationary signals. In this paper, we propose a novel feature extraction method for epileptic EEG based on a 
statistical property of complex network. The EEG signal is first converted to complex network and the degree 
of every node in the network is computed. By analyzing the degree distribution, the weighted mean value of 
degree distribution is extracted as classification feature. A public dataset was utilized for evaluating the 
classifying performance of the extracted feature. Experimental results show that the extracted feature achieves 
not only higher classification accuracy up to 96.50% but also a very fast computation speed, which indicate the 
extracted feature can clearly distinguish the ictal EEG from interictal EEG and has great potentiality of real-
time epileptic seizures detection. 
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1 Introduction 
Epilepsy, the second most common serious 
neurological disorder in human beings after stroke, 
has a significantly adverse impact on patient daily 
life and work. Symptom of epilepsy attack is that a 
person has repeated seizures or convulsions. In spite 
of available dietary, drug and surgical treatment 
options, nearly one out of three epilepsy patients 
cannot be treated because the epilepsy attacks are 
completely sudden and unforeseen [1]. 
Electroencephalograph (EEG), which is a graphical 
record of electrical activity of the brain, is a low-cost 
but safe and effective technique for examining 
electrical activity of the brain and diagnosing brain 
diseases in clinical setting. However, traditional 
epileptic seizure detection, which needs time-
consuming observation and analysis of the entire 
length of EEG by a neurologist, is a tedious and 
subjective diagnostic process. Recently, automated 
seizure detection system, which can considerably 
reduce the analysis time, has been proposed. 
Automated seizure detection system liberates the 

neurologist from the tedious work and allows them 
treat more patients in a given time, but it still has 
important clinical research significance. 

Feature extraction method, which is primary part 
of epileptic EEG detection algorithm, extracts 
several objective quantitative features. An ideal 
classification feature should contain only intrinsic 
information of the research objects and can clearly 
characterize the fundamental difference between 
them. Brain is composed of a huge amount of nerve 
cells and each nerve cell connects to other nerve 
cells, making brain a complex non-linear system. 
Therefore, non-linear analysis methods could better 
facilitate opening out the characteristics and 
mechanisms of EEG. Andrzejak et al. [2] concluded 
that the EEG segments from epileptogenic zones 
possessed strong indications of non-linear 
determinism, while EEG segments from other 
regions demonstrated linear stochastic dynamics, 
which indicated that non-linear analysis of epileptic 
EEG signal might provide helpful seizure detection 
information. Numerous nonlinear methods have been 
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applied into the analysis of the EEG signals. Yao et 
al [3] the third order cumulant, which highlights the 
nonlinear behaviour, were used to analyze epileptic 
EEG signals and extracted several useful features, 
which could be used to detect epileptic seizures. In 
[4,5] higher order spectral analysis, which is a 
powerful tool for the nonlinear dynamical analysis of 
nonlinear, non-stationary and non-Gaussian 
physiological signals, was used for analyzing 
epileptic EEG signals. Jing et al. [6] analyzed the 
correlation dimensions of epileptic EEGs and 
concluded that the correlation dimension of the 
epileptic EEG is larger than the normal EEG’s. 
Based on largest Lyapunov exponent, Osowski et al. 
[7] discussed the detection and prediction of epileptic 
seizure. The Hurst exponent of the epileptic EEG 
was discussed in [8] and the results shown that the 
normal EEG is uncorrelated whereas the epileptic 
EEG is long range anti-correlated. Spectral entropy 
and embedding entropy, which can be used to 
measure the system complexities, were introduced to 
epilepsy detection in [9,10]. Acharya et al. [11] 
applied the recurrence plot and recurrence 
quantification analysis in the three-class 
classification of epileptic EEG signals. These 
literatures show that the main research direction for 
EEG feature extraction is nonlinear feature extraction 
in the future. Combined with the well-performance 
nonlinear feature, the classifiers, such as artificial 
neural network (ANN) and support vector machine 
(SVM), have also been widely applied into the 
epilepsy detection algorithm [12-17]. However, we 
can conclude that feature extraction method is still 
important, since an excellent classification feature 
not only achieves better classification performance 
but also spends less computational complexity, since 
it can reduce the burden of the classifier or even does 
not need combined with classifier. These advantages 
are significant for the clinical application. 

Recently, complex networks theory shows its 
advantages in analysis of nonlinear time series. In 
2006, Zhang and Small [18] proposed the pioneering 
conversion algorithm that converted the pseudo-
periodic time series into complex network. A bridge 
between nonlinear time series analysis and complex 
networks theory has been built. After that, various 
types of conversion algorithms were proposed, such 
as conversion algorithm for transition network [20], 
correlation network [21], visibility graph [22], 
recurrence network [23], and directed weighted 
complex network [24]. Based on these conversion 
algorithms, different time series, such as periodic, 
pseudo-periodic time series, chaos series, random, 
and fractal series [18,19,22], have been converted to 
complex networks. What more, several statistical 

properties of complex network have been analyzed, 
such as degree distribution [18], joint degree 
distribution, betweenness centrality [25], and super-
family phenomena [26]. All of the above references 
demonstrate that the time series with different 
dynamics reveal dramatically different statistical 
property, such as [19] shown that chaos attractor 
reveals a more heterogeneous structure and exhibits 
small world feature compared with pseudo-periodic 
time series. The complex network method has been 
successfully applied in several practical application 
fields. Yang et al. [21] analyzed the correlation 
network of stock time series. Marwan et al. [23] 
applied the recurrence network in the analysis of 
marine palaeo-climate record and identified the 
subtle changes to the climate regime. Tang et al. [27] 
applied the complex networks theory into the 
analysis of the topology characteristics of the non-
stationary traffic-flow time series network. Through 
the conversion algorithm, time series can be mapped 
into the complex network domain, and then we can 
analyze their different topology structures by plenty 
of statistical properties of the network and 
distinguish between them. Complex networks theory 
that provides us a new perspective for dynamics 
analysis of nonlinear time series should arouse our 
attention. 

In this paper, a novel classification feature 
extracting method for epileptic seizure detection is 
proposed. Firstly, the EEG signal is converted into 
the complex network. Then the degree distribution of 
the resulting complex network is calculated. Through 
the analysis of the shape of degree distribution, the 
weighted mean value of degree distribution is 
extracted as the classification feature at last. A 
classification experiment, which utilizes the 
extracted feature for distinguishing the ictal EEGs 
from the interictal EEGs, is used for evaluating the 
classification performance of the extracted feature. 
The influences of the parameter selection of feature 
extraction method have also been investigated in this 
paper. 

This paper has been organized as follows. Section 
2 presents the algorithm for converting the time 
series into complex network, and focuses on 
describing the feature extraction method for 
automatic epileptic seizure detection. In Section 3, 
the EEG signal benchmark dataset and the evaluation 
parameters used in the classification experiment are 
described. Then the experimental results are 
presented in detail. Finally, some conclusions are 
included in Section 4. 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Fenglin Wang, Qingfang Meng, Yuehui Chen

E-ISSN: 2224-3402 52 Volume 12, 2015



2 Methods 

 
Fig.1 Schematics of the feature extraction method proposed in this paper. 

The main idea of extracting feature based on time 
series’ complex network (TSCN) is: (1) map the 
time series into the complex network domain; (2) 
use the topology structure statistical properties 
provided by the complex network theory to analyze 
this TSCN; (3) extract feature which can clearly 
describe the difference between various kinds of 
time series. 
 
 
2.1 Algorithm for Converting the Time 
Series into Complex Network 
A time series is denoted as [ ]{ }misi ,1| ∈ , where si is 
the ith sampling point in time series and the length of 
series is m. 

A complex network composes of a node set and 
an edge set. 

The node set of TSCN is constructed as 

( ) ( ) ( )( ){ },,...,2,1,...,,
NodeSet
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where nj represents the jth segment divided from the 
time series. Obviously, the number of nodes, N, is 
related to the segment length l (i.e., the dimension of 
TSCN). Few sampling points at the end of the time 
series may be abandoned. 

The edge set of TSCN is constructed as follows: 
Firstly, the similarity between the two nodes, 

denoted as dij, is evaluated by Euclidean distance 
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where ni(k) is the kth point in ni. Two nodes with a 
smaller distance are closer in phase space, which 
means that the two nodes are more similar. After a 
pair-wise high-dimensional distance computing 
between every two nodes in TSCN, a distance 
similarity matrix is obtained, denoted 
as ( )

NNijdD
×

= . 
Then the edge between two nodes is determined 

by 
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where the ε is a predetermined value used to 
construct an edge between the two nodes which 
have larger similarity. There is an edge between the 
ith node and the jth node when aij = 1, whereas aij = 0 
means there is no edge between these two nodes. 
With an appropriate critical value ε selected, matrix 
D is converted into a binary matrix ( )

NNijaA
×

= , 
namely adjacency matrix, which contains the entire 
information of TSCN. 

In the conversion algorithm, the parameter l 
determines the node dimension i.e., the dimension 
of the TSCN. The parameter ε determines whether 
the embedded dynamics of time series can be 
sufficient encoded into the topological structure of 
the TSCN or not. When the ε is extremely large, the 
nodes with weak similarities are also connected, 
which result in that the physically meaningful 
correlations of time series are submerged by the 
noises. With ε decreased, more and more noises can 
be filtered out. The ε cannot be extremely small, 
since some connections with physical significance 
may be filtered out. Moreover, due to a small finite 
number of connections caused by the extremely 
small ε, a strong statistical fluctuations may appear. 
 
 
2.2. Node Degree and Degree Distribution of 
the Time Series’ Complex Network  

 
Fig.2 The sample complex network with 5 nodes and 

5 edges. 
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The node degree k of a node is the number of the 
nodes that directly connected with it. 

[ ].1
1

Niak
N

j
iji ∈=∑

=

                  (4) 

The degree distribution (DDF) is defined by a 
probability function, P(k), which is the probability 
of a randomly-picked node that happen to have 
degree k, where each node has an equal probability 
to be picked. The node degree and degree 
distribution of the sample complex network are 
listed in Table 1. 
Table 1 The node degree and degree distribution of the 

sample complex network shown in Fig.2. 

 Node Degree k Degree Distribution P(k) 

Node 1 3 
3/5 Node 2 3 

Node 3 3 
Node 4 1 1/5 
Node 5 2 1/5 

 
Fig.3 The degree distribution of typical time series: (a) 

periodic time series, (b) the x component of Rössler 
system, and (c) Gaussian noise. The length of each time 

series is 1024 and parameter l is selected as 8. 

The DDFs of periodic time series yn = cos(πn/4), 
the x component of the well-known chaotic Rössler 
system given by: x' = –(y + z), y' = x + 0.398 y, z' = 2 
+ z(x – 4 ), and Gaussian noise, are shown in Fig.3 
(a), (b), and(c), respectively. It can be seen that the 
time series with different dynamic have obviously 
different DDF shape. 
 
 
2.3 Feature Extraction Method Based on 
Degree Distribution 
Time series with different dynamic regimes have 
different node distribution forms in phase space, 
which induces the node degree of every nodes are 

different and the DDFs reveal different shapes. The 
DDF characterizes the heterogeneous property of 
networks and consequently can characterize the 
different dynamics of the networks. In order to 
determine the importance of the P(ki) in DDF, the 
weighted function (WF) is defined as 
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where the parameter R determines the shape of the 
WF. 

According to different shapes of the DDF, an 
appropriate WF can be constructed to maximized 
describe the difference. In order to describe the 
difference between two type signals quantitatively, 
the weighted mean value is defined as 

( ) ,)(
)max(

0
∑
=

⋅=
k

i
ikPiWFwmean                (6) 

and is extracted as a scalar classification feature. 
 
 
3 Results and Discussion 
3.1 Data Description 

 
Fig.4 The typical EEG waveforms corresponding to 

epilepsy: (a) an interictal EEG sample in dataset D, (b) an 
ictal EEG sample in dataset E. The length of each EEG 

sample is 4097. 

In this paper, we utilize the public database [28], 
which came from Department of Epileptology, 
Bonn University, Germany, for evaluating the 
classification performance of the extracted feature. 
The EEG dataset D and dataset E, each of which 
contained 100 single-channel EEG data of 23.6 s 
time duration, are used in the classification 
experiment. The dataset D was composed of 
intracranial EEGs recorded during interictal periods. 
The EEG signals in dataset E were recorded during 
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ictal periods. They were all measured through using 
deep electrodes placed within the epileptogenic zone 
of the brain. The EEGs of two datasets were both 
taken from five epileptic patients experiencing pre-
surgical diagnosis. All EEG signals had 4097 
sampling points and were digitized at 173.6 samples 
per second. Fig.4 (a) and (b) depict example of 
interictal EEG and ictal EEG, respectively. 
 
 
3.2 Performance Evaluation Parameters 
In experiment section, the interictal EEGs and the 
ictal EEGs are regarded as the negative class and the 
positive class, respectively. The classification 
performance of the extracted feature is evaluated by 
using parameters such as sensitivity (SEN), 
specificity (SPE), and overall accuracy (ACC), 
which are shown in equations (7), (8), and (9), 
respectively[14]. 

,
FNTP

TPSEN
+

=                       (7) 

the number of true positives (TP) divided by the 
total number of ictal EEG signals labelled by the 
EEG experts. TP stands for the ictal EEG signals 
recognized by both the detection algorithm and the 
EEG experts. False negative (FN) is the number of 
ictal signals labelled interictal by the detection 
algorithm. 

,
FPTN

TNSPE
+

=                       (8) 

the number of true negatives (TN) divided by the 
total number of interictal EEG signals labelled by 
the EEG experts. TN stands for the interictal EEG 
signals recognized by both the detection algorithm 
and the EEG experts. False positive (FP) is the 
number of interictal signals labelled epileptic by the 
detection algorithm. 

,
2

SPESENACC +
=                    (9) 

the mean value of the SEN and SPE, i.e., the number 
of correctly recognized EEG signals (TP+TN) 
divided by the total number of EEG signals. 
 
 
3.3 Classification Experiment Results and 
Discussion 
For testing the classification performance of the 
extracted feature, two hundred interictal EEG 
samples and 200 ictal EEG samples, which are 
respectively taken out from the dataset D and 
dataset E, constitute a test set. Each original datum 
in the two datasets is divided up into two equal-

length sections of 2048 points and these two 
sections are used as two independent samples. The 
TSCN dimension l is first selected as 8. Then the 
time series’ complex networks (TSCN) of these 400 
test samples are constructed and the degree 
distributions (DDFs) of all the resulting TSCNs are 
calculated. 

 
Fig.5 Examples of degree distribution: (a) degree 

distribution of interictal sample and (b) degree 
distribution of ictal sample. The length of each test 

sample is 2048. 
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Fig.6 The degree distributions of the resulting 
complex networks constructed from: (a) 200 interictal 

samples and (b) 200 ictal samples. The length of each test 
sample is 2048. 

In Fig. 5 (a) and (b), the example of DDFs of 
interictal sample and ictal sample is presented, 
respectively. It can be seen from Fig.5 that, for the 
interictal test sample, mostly node degrees of its 
network are distributed over the intervals [200 255], 
which means that the node degrees of interictal test 
sample are always big. However, the DFF of ictal 
test sample are distributed over intervals [0 50], 
which indicates that there are very small node 
degrees in the TSCN of ictal EEG. The DDFs of the 
resulting complex networks constructed from the 
200 interictal test EEG samples and 200 ictal test 
EEG samples are shown in Fig.6 (a) and (b), 
respectively. It can be clear seen that the node 
degrees of interictal samples are distributed in big 
node degree value interval, whereas the node 
degrees of ictal samples are distributed in small 
degree value interval. From these observation 
results, we can conclude that the DDF shapes are 
different between interictal samples and ictal 
samples. 

 
Fig.7 The weighted function used in this experiment. 

 

Fig.8 The classification result of the extracted feature 
by a straight line. The sample length is 2048 and the 

parameters l and R are 8 and 10000, respectively. The 
classification accuracy is 96.50%. 

In order to calculate the weighted mean value 
(wmean) of every DDF, the Gauss function is 
selected as the WF in this experiment, i.e., 
WF=exp(–(k2/R)), k=0,1,…,255, and R=10000, 
shown in Fig.7. The maximum value of node degree 
is 255, since there are 2048/8=256 nodes in the 
TSCN. In this way, all the degree values and their 
appearing probabilities are analyzed under different 
weights and the wmean is then extracted as the 
feature to classify the epileptic EEGs. 

The distribution of 400 wmean values of DDF is 
depicted in Fig.8. In Fig.8, each ‘x’ represents 
wmean of one interictal test sample and each ‘•’ 
represents wmean of one ictal test sample. It can be 
found from Fig.8 that the wmeans of interictal test 
samples are smaller than the ictal test samples 
except several special samples. Only 11 interictal 
test samples and 3 ictal test samples are put into 
wrong category when the test samples are classified 
by the dotted line (0.4679) shown in Fig.8. The 
classification accuracy is 96.50%. 

 
Fig.9 The classification accuracies of the extracted 
feature were calculated for different TSCN dimensions 

(l). The threshold (ε) varies from 50 to 550 in steps of 5. 

Table 2 The classification performances of the proposed 
feature when sample length is 2048. 

l ε R cth SEN 
(%) 

SPE 
(%) 

ACC 
(%) 

Run 
Time(ms) 

4 105 50000 0.6580 98.50 93.50 96.00 198.4±0.3 

5 120 40000 0.7219 98.50 94.00 96.25 130.1±0.9 

6 155 25000 0.6336 98.50 94.50 96.50 87.2±0.5 

7 180 15000 0.5501 99.00 94.00 96.50 65.2±0.7 

8 215 10000 0.4679 98.50 94.50 96.50 50.0±0.8 

9 230 8000 0.4843 99.00 94.50 96.75 39.0±0.8 
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10 250 5000 0.4952 99.00 94.50 96.75 32.2±0.6 

In order to investigate the feature extraction time, 
the total run time of extracting the feature of the 400 
samples has been recorded, and the average time, 
listed in Table 2, is used as the evaluation of feature 
extraction time. All the simulations were based on a 
2.60 GHz quad-core Inter Pentium processor with 4 
GB memory. The code was executed in environment 
of Matlab 7.0. When the sample length is 2048 and 
the parameters l and R are respectively selected as 8 
and 10000, the feature extraction time for wmean is 
only 50 ms. 

In order to investigate whether the TSCN 
dimension l affects the performance of the extracted 
feature, we perform a similar experiment, 
calculating the wmean of each test sample with the 
method described previously. Plots of classification 
accuracy as a function of threshold (ε) under 
different l are shown in Fig.9. The performances of 
the extracted feature, for the TSCN dimension l 
ranged from 4 to 10 in steps of 1, are listed in Table 
2. The parameter ε, R of the weighted function and 
the classification threshold value (cth) are also 
summarized in Table 2. In Fig.9, we can see that the 
classification accuracies of the wmean under 
different l first increased with the increasing of the 
threshold ε, and then decreased after they reached 
the peak accuracy values. Moreover, through 
analysis of the detail results summarized in Table 2, 
we can conclude that the TSCN dimension l has 
little affect on the performance of the extracted 
feature, and the peak accuracy under each condition 
is no less than 96.00 %. 

 
Fig.10 The classification accuracies of the extracted 
feature were calculated for different TSCN dimensions 

(l). The sample length, the parameters l, and R are 1024, 
8, and 10000, respectively. The threshold (ε) varies from 

50 to 550 in steps of 5. 

We have also analyzed the effects of data length 
on the classification performance. For this propose, 
each datum in the two epileptic EEG datasets (D 
and E) is divided into four equal-length sections of 
1024 points. The 2nd section and the 4th section are 
regarded as two different test samples. In this way, 
200 short ictal samples and 200 short interictal 
samples constitute a new test set. The same analysis 
procedure is then applied to the new test set. The 
classification performances of the proposed feature 
under the various TSCN dimensions are listed in 
Table 3. In Fig.10, plots of classification accuracy 
as a function of threshold ε under different l are 
illustrated. As can be seen from Fig.10, the similar 
result can be obtained that the TSCN dimension l 
has little affect on the performance of the extracted 
feature. Nevertheless, the peak accuracies of wmean 
under different l are distributed over the intervals 
[95.00% 95.75%], which are generally lower than 
the peak accuracies of the wmean under long data 
condition. Since the data length decreased, the 
feature extraction time is much shorter than the run 
time under long data condition in general. 
Table 3 The classification performances of the proposed 

feature when sample length is 1024. 

l ε R cth SEN 
(%) 

SPE 
(%) 

ACC 
(%) 

Run 
Time(ms) 

4 110 10000 0.8807 97.25 93.00 95.13 48.5±0.9 

5 165 8000 0.8425 98.00 93.00 95.50 31.5±0.8 

6 175 6000 0.8647 96.50 94.25 95.37 21.8±0.6 

7 220 4000 0.7631 98.00 93.00 95.50 16.4±0.3 

8 255 3000 0.7198 97.75 93.25 95.63 12.8±0.4 

9 250 2000 0.7734 98.00 93.50 95.50 10.2±0.5 

10 270 1500 0.8030 96.50 95.00 95.75 8.5±0.6 

Table 4 The classification results of the proposed feature 
and two other features for comparison. The sample length 

is 2048. 

Feature Run Time(s) ACC (%) 

Approximate Entropy(2048) 1.9600±0.3600 87.25 

Sample Entropy(2048) 1.8600±0.3400 87.75 

wmean(2048) 0.0322±0.0006 96.50 

In Table 4, the classification performance of the 
approximate entropy and sample entropy, which are 
utilized as extracted feature to classify the same 
long data test set (2048), are used to compare with 
the classification performance of the extracted 
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feature. The average run times of these two feature 
extraction methods are also listed in Table 4. The 
run time taken by wmean is a lot shorter than the run 
times taken by other two entropies. A conclusion 
can be drawn from the Table 4 that the extracted 
feature, wmean, shows the best performance: not 
only highest classification accuracy but also fast 
computation speed.  

Table 5 lists the accuracies of several established 
epilepsy automatic classification algorithms 
recently, which are combined with the support 
vector machine (SVM) classifier and applied to the 
same epileptic EEG dataset. Here, the DFA-α is the 
scaling exponent of the detrended fluctuation 
analysis of epileptic EEG. The results of 
approximate entropy combined with SVM and 
sample entropy combined with SVM are obtained 
based on the results listed in Table 4. Table 5 shows 
that the single feature classification algorithm based 
on the wmean proposed in this study achieves the 
highest classification accuracy compared with other 
established classification algorithms, which 
combined with classifier. 

Table 5 The classification accuracies of different 
epileptic EEG classification algorithms applied into the 

same epileptic EEG dataset. 

Feature ACC (%) 

DFA-α + SVM[10] 82.00 

Hurst + SVM[11] 87.25 

Approximate Entropy + SVM 89.00 

Sample Entropy + SVM 91.00 

Single feature classification based on wmean 96.50 

The above results and conclusions indicate that 
the extracted feature wmean can clearly characterize 
the difference between the dynamics of the EEG 
signals under different brain conditions in TSCN 
domain. Moreover, the short extraction time of 
wmean make it more possible to be applied in clinic. 
 
 
4 Conclusion 
In this paper, we proposed a novel feature extraction 
method that can be applied in detection of epileptic 
seizure. The proposed scheme firstly constructs 
time series’ complex network (TSCN). Then the 
node degrees of all the nodes in TSCN and the 
degree distribution (DDF) are calculated. At 
last, through analyzing the difference between 

the DDFs of various objectives, the weighted 
mean value of the DDF, wmean, is defined and 
extracted as the classification feature. The 
classification performances of wmean under 
different conditions are evaluated by 
distinguishing between interictal EEGs and ictal 
EEGs. 

Experimental results show that the wmean can 
clearly describe the essential difference between the 
two kind signals and achieves higher classification 
accuracy about 96.50% (sample length is 2048 and 
TSCN dimension l is 8). The feature extraction 
times for one EEG sample with 2048 sampling 
points are all less than about 0.2 s, which is much 
shorter than the EEG sample’s time duration (11.8 
s). Higher classification accuracy and fast 
computation speed indicate the proposed feature’s 
huge potentiality for real-time detection of epileptic 
seizure. 
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