
An Open and Platfom-independent Instruction-Set Simulator for

Teaching Computer Architecture

VINCENZO CATANIA, DAVIDE PATTI, MAURIZIO PALESI, ANDREA SPADACCINI
University of Catania

Dipartimento di Ingegneria Elettrica, Elettronica e Informatica
CATANIA, ITALY

{vcatania,dpatti,mpalesi,aspadaccini}@dieei.unict.it

FABRIZIO FAZZINO
NVIDIA Inc.

BRISTOL, UNITED KINGDOM
ffazzino@nvidia.com

Abstract: Instruction-set Simulators (ISS) are commonly used in any computer architecture course as primary tools
for supporting the teaching activity. Although there are several simulation platforms for educational purposes, the
lack of an unified and integrated platform often forces educators to use a range of heterogeneous tools to cover
the different topics of the syllabus. This paper presents EduMIPS64 a free, visual, and platform-independent
MIPS64 Instruction-Set Simulator designed as a learning aid for topics like instruction pipelining, hazard detection
and resolution, exception handling, interrupts, and memory hierarchies. Its dual execution mode – stand-alone
application and web applet – allows for inclusion in distance learning courses.

Key–Words: Instruction-set Simulator, Graphic User Interface, MIPS64, Assembly Interpreter, Pipeline, Stall,
Hazard, Cache, Delay slot, Exception, Interrupt

1 Introduction

Computer Architecture topics represent one of the
most important disciplines which characterize the cur-
riculum of a computer engineer. The canonical topics
treated in any Computer Architecture course include
instruction-set architecture (ISA), pipelining, memory
hierarchies and input/output (I/O). All of them rep-
resent the main basis which is required to be under-
stood for anyone working with architecture or hard-
ware, including architects, chip and computer system
engineers, and compiler and operating system engi-
neers.

The MIPS64 R© architecture [1] represents one of
the most widespread reference architecture in sev-
eral computer architecture courses. The simplicity
which characterizes such an architecture along with
its flexibility in supporting a range of architectural
and microarchitectural features for performance im-
provement, make it an ideal platform for understand-
ing basic principles of computer architecture like ISA,
pipelining, memory hierarchies, etc.. [2].

To better metabolize such topics, the theoretical
study must be coupled with practical activities which
are usually done in a laboratory using Instruction-set
Simulators (ISSs). Such activities are mainly directed

to demonstrate specific phenomena or behavior, and
provide experiences with measuring and studying de-
sired characteristics.

Many ISSs, both free and commercial, are com-
monly used in both academia and industry. A good
survey on simulators currently available and suitable
for teaching courses in computer architecture and or-
ganization is presented by Nikolic et al. [3]. Many of
the simulators discussed in [3] are mainly designed for
application evaluation purposes and architecture cus-
tomization through instruction-set specialization/ex-
tension and micro-architecture parametrization. That
is, using such simulators the user can assess the im-
pact on application performance when several archi-
tectural parameters (e.g., cache configuration, number
of functional units, branch prediction schemes, etc.)
are changed.

This paper focuses on a different aspect which
characterizes any ISS, that is its ability of making
practical the theoretical topics dealt in the course. We
think that there is a lack of tools (ISSs in particular)
which have been specifically designed with the aim of
supporting students of computer architecture course in
understanding the fundamentals of the basic topics of
assembly programming, basic pipeline, and memory

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 42 Volume 11, 2014

hierarchies. In this context, visual representation of
the concepts introduced in the course, platform inde-
pendence, distance learning support and freely avail-
ability of the tools are key factors which determine the
effectiveness of the teaching armaments.

In this paper we present a MIPS64 simulator,
called EduMIPS64 [4]. The project was originally
started in order to make a simulator similar to Win-
MIPS64 [5] available to users of every platform, but
it progressively went beyond the original idea, grow-
ing up quickly and extending the original function-
alities of WinMIPS64 with new and important (un-
der the educational viewpoint) features like the im-
plementation of an interrupt and exception handling
system. Further, the choice of implementing the sim-
ulator in Java gave to the EduMIPS64 project two im-
portant advantages over WinMIPS64: first, the possi-
bility of using the simulator across different operating
systems and platforms, feature of fundamental impor-
tance when dealing with heterogeneous environments
(different universities, teaching laboratories, students
notebooks, etc.) with no deployment issues. Second,
the availability of a Java-applet web interface to the
simulator enables the support for new approaches in
teaching courses such as distance learning. Moreover,
thanks to its licensing policy (GNU General Public
License) EduMIPS64 itself becomes an experimental
laboratory, where every user is able to study the source
code, do research activities and experiments, modify
it and share the contributions back with the commu-
nity. Moreover, the application is available in multi-
ple languages and it is easy to add support for new
languages, making it a good teaching aid for courses
held in countries in which English is not the major
spoken language.

The rest of this paper is organized as follows.
Section 2 provides a brief overview on ISSs mainly
used in educational scenarios and describes how Edu-
MIPS64 compares to them. The basic features of Edu-
MIPS64 and its user interface are presented in Sec-
tions 3 and 4 respectively. The assessment survey and
evaluation is reported in Section 5. Finally, in Sec-
tion 6 we draw our conclusions and discuss possible
future developments.

2 Comparison with Other Simula-

tors

This section provides a brief overview of the most
common simulation platforms used for teaching Com-
puter Architecture topics and analyzes how Edu-
MIPS64 compares to them. In particular, we focus
on simulators designed for beginners courses on com-
puter organization and architecture. Thus, we will ex-

Table 1: Coverage of Computer Engineering Topics

Knowledge Unit Coverage

Fundamentals of Computer Architecture 87.50%

Memory system organization 14.28%

Interfacing and communication 0.00%

Device subsystems 0.00%

Processor systems design 10.00%

Organization of the CPU 72.72%

Overall 30.75%

clude simulators addressing topics such as microar-
chitecture design at RT-level, custom instruction-set,
or tools strictly focused on architectures that demon-
strated to be not so effective for teaching the basic
principles of a computer architecture (e.g. not RISC-
like architectures like x86).

The authors of [3] analyze 28 simulators, classi-
fying them into 2 different groups: those that allow
the user to design a computer environment and those
that allow the simulation of a target architecture. Edu-
MIPS64 fits in the second category, so in this section
we will compare it to the most representative simula-
tors described in the survey. The evaluation criteria
proposed by them are of two types: teaching topics
coverage and simulation features. The first kind of
criteria is meant to assess how much the simulators
are suited to teach the topics of Computer Engineer-
ing, according to the IEEE Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engi-
neering [6]; the second kind is meant to compare some
specific features of the simulators not strictly related
to teaching topics. Each key area defined in the first
group of criteria is composed by several topics, and
each simulator is awarded 1 point if it supports that
topic directly, 0 points if it is not supported and 0.5
points if it is not directly supported but support can be
achieved in some way.

We followed the subjective evaluation protocol
described in [7] to see how EduMIPS64 compares
to the other simulators presented in the survey, and
the results are shown in Table 1. EduMIPS64 is not
meant to be a comprehensive tool for Computer En-
gineering education, but it aims to be a valuable aid
for education in Computer Architecture topics. This
means that some of the topics contained in [6] are not
covered at all (Interfacing and Communication, De-
vice subsystems) or very briefly (Processor systems
design). Instead, the simulator is focused on topics
related to the basic concepts of computer architecture
and CPU organization, usually taught in introductory
Computer Architecture courses, and the coverage val-
ues for those areas obtained through this evaluation
suggest us that EduMIPS64 is a solid teaching aid for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 43 Volume 11, 2014

Table 2: Evaluation results for the Simulation Fea-

tures

Feature Evaluation result

Scope and complexity Basic Architecture

Design Support No

Visual Presentation Yes

Simulation Flow Interactive

Simulation Level Clock level

Implementation Details Yes

Distance Learning Yes

those courses. The survey also compares simulators
according to their features. Table 2 shows the results
of the evaluation of EduMIPS64 according to those
criteria.

In addition to the simulators compared in [3],
there are three other simulators that can be directly
compared to EduMIPS64. The first one is SPIM [8],
an open source MIPS32 simulator with a simple
user interface for interactive execution and debugging,
called QtSpim.

The other simulators that have been a great source
of inspiration for the design and development of Edu-
MIPS64 are WinDLX [9] and WinMIPS64 [5]. They
have a very good user interface, with a visual dynamic
representation of the CPU pipeline, that EduMIPS64
borrowed. EduMIPS64 tries to take the best from
those three simulators, implementing an unique fea-
ture set: it is a cross-platform visual MIPS64 CPU
simulator released under a free license (GNU General
Public License version 2) and suitable for web-based
distance learning. SPIM implements the MIPS32
ISA, is open source and is cross-platform, even if a re-
compilation of the source code might be required, but
its GUI does not offer a graphical representation of the
execution of the program apart from the memory and
register file contents and input/output. WinDLX and
WinMIPS64 offer a richer visual representation of the
CPU state, but they are not cross-platform and they
are not released under a free license.

Finally, none of the three simulators supports dis-
tance learning activities, an important requirement
that also has the nice side effect of making the sim-
ulator’s installation almost effortless. In fact, the only
dependency to satisfy in order to use EduMIPS64 is
the presence of a Java Runtime Environment that sup-
ports Java 5 or later. There are some features of each
of those three simulators that have not yet been imple-
mented in EduMIPS64, but as described in the Com-
puter Engineering topics coverage analysis, all the ba-
sic features are already implemented and the addi-
tional benefits described in the latter part of this sec-

tion are compelling enough to justify its adoption in
introductory Computer Architecture courses.

3 Features of EduMIPS64

In this Section the main features of EduMIPS64 will
be discussed.

3.1 Pipeline architecture

EduMIPS64 implements a parallel pipeline, com-
posed by five stages: Instruction Fetch (IF), In-
struction Decode (ID) Execution / Address Calcula-
tion (EX), Data memory access (MEM), Write Back
(WB).

A colour is associated to each stage of the
pipeline, so during the execution it is easy to visually
recognize the parts of the user interface that represent
information associated to each stage.

The status of the pipeline during program execu-
tion is represented in the Pipeline frame of the simu-
lator interface, described in Section 4.3.

3.2 The Instruction Set

EduMIPS64 offers to users a representative and large
subset of the MIPS64 ISA. Table 3 presents an
overview of the instructions implemented in Edu-
MIPS64, according to the taxonomy presented in [1].

Some instructions have been implemented even
if they do not belong to the MIPS64 instruction set
because other simulators implemented them, and we
wanted to make it easier for users of other simulators
to adopt EduMIPS64. Examples of such instructions
are: DADDUI, BNEZ, BEQZ and HALT.

Instructions are encoded by the simulator with
bit-level accuracy, and follow the formats described
in [1] for I-Type, J-Type and R-Type instructions.

3.3 Forwarding

Forwarding is a technique that allows the reduction of
stalls introduced by dependencies in the data used by
the instructions. EduMIPS64 allows users to run their
programs with or without forwarding, so that they can
experiment with it and understand its impact to the
program flow.

3.4 Exceptions

The simulator supports synchronous exceptions,
namely Division by zero and Integer overflow, and
the user can choose the exception handling policy in
the Settings dialog (Section 4.3). Exceptions can be
silently ignored (masked); if they are not masked, a
pop-up window notifies the user. The user can further

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 44 Volume 11, 2014

Table 3: The EduMIPS64 Instruction Set
Type Implemented instructions

Aligned CPU Load/Store Instructions LB, LBU, LD, LH, LHU, LW, LWU, SB, SD, SH, SW

ALU Instructions with an Immediate ADDI, ADDIU, ANDI, DADDI, DADDIU, LUI, ORI, SLTI, SLTIU,

XORI

Three-operand ALU Instructions ADD, ADDU, AND, DADD, DADDU, DSUB, DSUBU, OR, SLT,

SLTU, SUB, SUBU, XOR

Shift Instructions DSLL, DSLLV, DSRA, DSRAV, DSRL, DSRLV, SLL, SLLV, SRA,

SRAV, SRL, SRLV

Multiply/Divide Instructions DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MFHI, MFLO,

MULT, MULTU

PC-region Unconditional Jump J, JAL, JALR, JR

PC-relative Conditional Branch BEQ, BNE, BGEZ

Miscellaneous SYSCALL, BREAK, NOP

Table 4: File Opening Flags

Name Value Effect

O RDONLY 0x01 Open the file in read-only mode

O WRONLY 0x02 Open the file in write-only mode

O RDWR 0x03 Open the file in read/write mode

O CREAT 0x04 Create the file if it does not exist

O APPEND 0x08 In write mode, append written text

at the end of the file

O TRUNC 0x10 In write mode, delete the content of

the file as soon as it is opened

decide if synchronous exception must be considered
fatal; in this case, the program will terminate when
such an exception occurs.

3.5 System calls

EduMIPS64 implements six system calls, that can be
accessed by the programmers through the SYSCALL
instruction. The system calls that need input param-
eters expect their address to be stored in the register
R14. All the system calls return -1 in case of failure,
except for SYSCALL 0, that cannot fail; their return
value is stored in register R1.

Standard input, standard output and standard er-
ror are represented, respectively, by file descriptors 0,
1 and 2; writing to standard output or to standard er-
ror is implemented by the GUI Input/Output window,
while reading from standard input is implemented by
using an input dialog (see Section 4.1). A short de-
scription of each SYSCALL is as follows:

• SYSCALL 0, exit(), stops the execution of the
simulator;

• SYSCALL 1, open(), opens a file, according to
the user-specified combination of the flags shown
in Table 4, and returns the file descriptor of the
opened file;

• SYSCALL 2, close(), closes an open file;

• SYSCALL 3, read(), reads data from a file and
stores it in memory;

• SYSCALL 4, write(), writes data to a file;

• SYSCALL 5, printf(), prints formatted data to
standard output, replacing each placeholder (%s
for string data, %i or %d for integers) with a pa-
rameter stored by the user in memory following
the format string.

For more details on the SYSCALL syntax, please refer
to [10].

3.6 Cache simulation

EduMIPS64 does not provide a built-in cache simula-
tor. Instead, it offers two features that make it easier
to work with external cache simulators:

• Trace file export, that saves to an external trace
file all the memory accesses attempted by the ex-
ecuted program;

• DineroIV front-end, that makes easier to feed the
trace file to DineroIV [11], a popular cache sim-
ulator, and to get the simulation results without
leaving the EduMIPS64 user interface.

3.7 Source files format

There are two sections in a source file, the data section
and the code section, introduced respectively by the
.data and the .code directives.

Multiple spaces and tabs can be used throughout
the source code to improve its readability, as the parser
ignores multiple spaces and considers them as a single

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 45 Volume 11, 2014

space. Comments are introduced using the “;” charac-
ter; everything that follows that character will be ig-
nored, so comments can be appended to a code line or
inserted on a stand-alone line.

Labels can be used in the code to reference a
memory address or an instruction. They are case in-
sensitive. Only a label for each source code line can
be used.

3.7.1 The .data section

The data section contains commands that specify how
the memory must be filled before program execution
starts. The general form of a .data command is:

[label:] .datatype val1 [, val2 [, ...]]

where label is the optional data label, and
valN are the N values that need to be stored in mem-
ory. EduMIPS64 supports the numeric data types rep-
resented in Table 5.

Table 5: Basic data types

Type Directive Size (bits)

Byte (B) .byte 8

Half word (H) .word16 16

Word (W) .word32 32

Double Word (D) .word 64

In addition to the basic data types, three other
directives can be used in the .data section. The
.space directive is used to allocate some empty
space that can later be used by the program; the
.ascii directive is used to put in memory charac-
ter strings containing any printable ASCII characters
and C-like escaping sequences; the .asciiz direc-
tive behaves exactly like the .ascii command, with
the difference that it automatically ends the string with
a null byte.

3.7.2 The .code section

The code section contains the symbolic instructions
that the simulator will encode and then execute when
the program is started. The general form of a .code
command is:

[label:] instr [p1 [, p2 [, p3]]]

where instruction is the name of the instruc-
tion and p1, p2, and p3 are the three parameters. The
number and type of parameters is specified by the syn-
tax of each instruction.

Instructions can take three types of parameters:

• Registers a register parameter is indicated by an
uppercase or lowercase “r”, or a $, followed by
the number of the register (between 0 and 31), as
in r4, R4 or $4;

• Immediate values an immediate value can be a
number or a label; the number can be specified
in base 10 or in base 16, using in the latter case
the prefix 0x;

• Address an address is composed by an immedi-
ate value followed by a register name enclosed in
brackets. The value of the register will be used
as the offset.

The general purpose registers can also be ad-
dressed using the standard MIPS32 aliases, like
$zero for R0, $t0 for R8 and so on.

The size of immediate values is limited by the
number of bits that are available in the bit encoding of
the instruction. Please see [12] for more details about
how the instructions are actually encoded.

4 The user interface

We have been using WinMIPS64 during the labora-
tory sessions of the Computer Architecture course,
and we found its interface to be functional and use-
ful for making students understand the basic concepts
of the course. So we modelled the Graphical User
Interface (GUI) of EduMIPS64 after the interface of
WinMIPS64. This has also the side-effect to make the
transition from WinMIPS64 easy.

The interface of EduMIPS64 follows the Multi-
ple Document Interface (MDI) paradigm: the main
window contains several children frames, and the user
can choose which frames he wants to display, moving
them or changing their size.

By default, the simulator starts with a full-screen
main window that contains 6 frames (Cycles, Regis-
ters, Statistics, Pipeline, Memory, Code), layed out in
two rows of three frames; a 7th frame (Input/Output)
is hidden by default. The main window also contains
a menu bar and a status bar.

In the rest of the section we will discuss the pur-
pose of the main elements of the user interface of the
simulator. All the screenshots shown in this Section
refer to the same execution cycle of a program, except
for the Input/Output frame, whose screenshot repre-
sents the output presented at the end of the program.

4.1 Frames

The program execution is presented to the user
through seven frames:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 46 Volume 11, 2014

• Cycles: the Cycles frame (Figure 1) shows the
evolution of the program flow over time. The
left section of the frame contains a list of instruc-
tions, updated as they enter in the pipeline, while
the right section contains a plot of the position of
instructions as time goes by.

Figure 1: The Cycles Frame

• Registers: the Registers frame (Figure 2) shows
the content of the 32 General Purpose Registers
(GPRs), floating point registers and the special
registers LO and HI. In the current stable version
of the simulator, floating point registers are not
active. A single click on a register has the effect
to display its (signed) decimal value in the status
bar, while a double click pops up a dialog that
allows to change its value at runtime.

Figure 2: Registers Frame

• Statistics: the Statistics frame (Figure 3) shows
the following real-time statistics about program
execution: cycles ran by the CPU, instructions
executed during those cycles, the number of Cy-
cles Per Instruction (CPI), stalls (RAW, WAR,

WAW, structural, branch taken, branch mispre-
dicted), code size.

Figure 3: The Statistics Frame

• Pipeline: the Pipeline frame (Figure 4) shows a
graphical model of the 5-stages CPU, showing
which instruction is in any of the stages. The FP-
related stages are not active in the current stable
version, but are active in the development ver-
sion.

Figure 4: The Pipeline Frame

• Memory: the Memory frame (Figure 5) shows
the address and contents of memory cells, along
with labels and comments taken from the source
code. The same mouse actions that are available
for registers are enabled also for memory cells.

• Code: the Code frame (Figure 6) shows a rep-
resentation of the source code of the current pro-
gram, with a layout similar to the Memory frame.

• Input/Output: the Input/Output frame (Figure 7)
shows the output of the program when system

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 47 Volume 11, 2014

Figure 5: The Memory Frame

Figure 6: The Code Frame

calls 4 and 5 are used. It is not actually used
for input, as there is a dialog that pops up when a
SYSCALL 3 tries to read data from the standard
input.

Figure 7: The Input/Output Frame

4.2 Menus

The user can interact with EduMIPS64 via six menus:

• File: contains menu items for opening a new
file, resetting the simulator, writing a trace file
in DineroIV format and exiting the simulator.

• Execute: contains menu items for starting and
stopping the simulation, running the program
step-by-step or all in one execution step.

• Configure: contains menu items for opening the
Settings dialog, that is described in 4.3 and for
changing the language of the interface of the sim-
ulator. Currently the English and Italian lan-
guages are supported.

• Tools: allows the user to run the Dinero Frontend
dialog, described in 4.3.

• Window: contains menu items to show, hide and
arrange the frames.

• Help: contains an option (Manual. . .)that runs
the Help dialog, that contains the User Man-
ual, and an option (About us. . .) that shows the
names of the members of the development team.

4.3 Dialogs

Here is a summary of the most important dialogs:

• Settings: this dialog allows the configuration
of many aspects of the simulator, like enabling
forwarding, multi-step execution mode parame-
ters (synchronization with GUI, number of steps,
refresh interval), exception-related settings and
GUI-related options.

• Dinero Frontend: this dialog allows to execute
the DineroIV cache simulator [11] with the trace
file containing the memory accesses generated
by the execution of the current program.

• Parsing errors: if the parser finds any errors in
the input file, the Parsing Errors dialog appears
(see Figure 8) and presents to the user a list of all
the errors that were found, like missing labels,
incorrect syntax, etc.If the user turns warning re-
porting on, this dialog will also be used to notify
minor and non-blocking issues in the code, like
the usage of non-standard MIPS64 instruction

4.4 Running EduMIPS64

EduMIPS64 is distributed both as a source package
and as a binary Java Archive (.jar) file. Typical

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 48 Volume 11, 2014

Figure 8: The Errors Dialog

users will not need the source package and will use
only the .jar file.

The EduMIPS64 .jar file can be used both as a
desktop application and as a web applet. Both meth-
ods need the Java Runtime Environment, version 5 or
later.

Running as a web applet allows the simulator to
be seamlessly embedded in distance learning envi-
ronments, enabling users to use it without having to
download it. An example of this set-up is available in
the EduMIPS64 web site [4].

5 Assessment

In order to assess the effectiveness of EduMIPS64, a
survey was conducted to obtain feedback from a set of
students after completion of their course.

The aim of the survey was to investigate two main
areas:

• Cross-platform usage: investigate to which ex-
tent the possibility of running EduMIPS64 on
different Operating System flavours is perceived
as an added-value.

• Usability: issues regarding the easiness of use,
the user interface, the learning curve to face
when learning the EduMIPS64 environment, the
consistency and readability the simulator be-
haviour.

A form was created online and distributed via
email. At the time this paper is being written, a total of
93 students belonging to 3 different courses answered
to the survey.

5.1 Cross-platform usage

Figure 9 shows the Operating System distribution
among students, comparing the OS used at home
against the platform on which they have been us-
ing EduMIPS64. It can be noticed that the OS frag-
mentation among students of a computer architec-
ture course is more equally distributed over different
platform as compared to the typical OS diffusion on

Figure 9: Operating Systems distribution among stu-

dents

generic, non-academic users. So the cross-platform
nature of EduMIPS64 is certainly an added-value for
GNU/Linux and MacOS X users. Note the slight
difference between EduMIPS64 usage OS and users’
home OS (grey and black bars), showing that not all
GNU/Linux and MacOS X home users could per-
form their examination running EduMIPS64 on their
favourite OS, most likely for lacking of support and
installations of these platforms on laboratory equip-
ments. As for what concerns the cross-platform web
applet usage, 17% of users did know about the web
version of EduMIPS64 and 84% of them found it use-
ful.

5.2 Usability

Usability and easiness of use are one of the main rea-
sons behind the EduMIPS64 project. A first aspect
we investigated was the general speed/responsiveness
of the simulator that, because of running on an high-
level Java virtual machine could suffer some perfor-
mance/memory usage issues. However, 19% of users
evaluated as excellent the performance of the sim-
ulator and 60% of them considered it good, while
18% think that it was sufficient and 3% considered it
poor. The graphical user interface of EduMIPS64 was
evaluated excellent from 60% of users, 20% found
it good while the remaining 19% and 1% sufficient
and poor respectively. Summarizing these results, we
can definitely assume that the choice of using Java
as a cross-platform technology did not penalize the
user-experience from both the performance and visual
points of view, since only a neglegible fraction of the
users rated EduMIPS64 less than sufficient.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 49 Volume 11, 2014

6 Conclusions

As stated before, EduMIPS64 is still actively devel-
oped, and while some features are not available in
the current stable version, they are being developed
and/or tested and will be released to the public.

The most important feature that is only in the de-
velopment release is the support the for the MIPS64
Coprocessor 1, the Floating Point Unit (FPU). It adds
to EduMIPS64 the support for the 32 floating point
registers (FP0 - FP31), adopting the IEEE 754 rep-
resentation of floating point numbers and including
special values like ±0, ±∞, Not a Number (NaN).
Floating point exceptions are represented via a bit-
accurate implementation of the Floating point Con-
trol and Status Register (FCSR). The FPU support
adds 23 instructions to the EduMIPS64 instruction
set and adds three multi-level functional units to the
pipeline, namely the floating point adder (4 sub-
stages), the floating point multiplier (7 sub-stages) and
the floating-point divider (1 sub-stage).

Another important feature that is being tested is
the support for the branch delay slot.

Acknowledgments: The authors hereby acknowl-
edge the fundamental contribution of all the devel-
opers of EduMIPS64, whose names are listed in the
About Us dialog of the simulator itself.

References:

[1] MIPS Technologies Inc. MIPS64 Architec-

ture For Programmers Volume I: Introduction to

MIPS64 Architecture, July 2005.

[2] John L. Hennessy and David A. Patterson. Com-

puter Architecture. Morgan Kaufmann, third
edition, 2002.

[3] Bos̆ko Nikolic, Zaharije Radivojevic, Jovan
Djordjevic, and Veljko Milutinovic. A survey
and evaluation of simulators suitable for teach-
ing courses in computer architecture and or-
ganization. IEEE Transactions on Education,
52(4):449–458, November 2009.

[4] EduMIPS64 official web site.

[5] Michael Scott. WinMIPS64 home page.

[6] Computing Curricula - Computer Engineering
(CCCE) Task Force. IEEE Computer Society /
ACM Computing Curriculum - Computer Engi-
neering, 2005.

[7] Bos̆ko Nikolic, Zaharije Radivojevic, Jovan
Djordjevic, and Veljko Milutinovic. Survey of
Simulators 2008.

[8] James Larus. SPIM – a MIPS32 simulator.

[9] Herbert Grünbacher. WinDLX home page.

[10] Andrea Spadaccini and the EduMIPS64 Team.
EduMIPS64 User Manual, June 2007.

[11] Mark Hill. DineroIV trace-driven uniprocessor
cache simulator.

[12] MIPS Technologies Inc. MIPS64 Architecture

For Programmers Volume II: The MIPS64 In-

struction Set, July 2005.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
Vincenzo Catania, Davide Patti, Maurizio Palesi,
Andrea Spadaccini, Fabrizio Fazzino

E-ISSN: 2224-3402 50 Volume 11, 2014

