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Abstract: A job-shop scheduling problem is one of the classic scheduling problems considered to be NP-hard. 
In this paper, we presenta modified adaptiveevolutionary algorithm (EA) that uses speculative mutations, 
variable fitness functions and a pseudo-random number generator for solving job-shop scheduling problems. 
The algorithm was tested on well-known benchmark datainstances, such as Ft10, La01, Swv01, etc., with the 
goal of achieving the shortest make-span. The results show that using speculative mutations and interval 
placing reduces the number of steps and computational time to achieve a (near) optimal make-span. Some 
testing results on an early version of the proposed algorithm are also added,whichwere used to define the most 
effective types of mutations to generate better offspring.  
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1 Introduction 
In a manufacturing process, planning and 
scheduling are two of the most demanding and 
critical tasks. The difficulty of determining the 
optimal schedule depends on the shop environment, 
the process constraints and the performance 
indicators. One of the most difficult problems in this 
area is the job-shop scheduling problem (JSSP)[1]. 
JSSP has been studied by many authors, and many 
algorithms have been proposed to solve it.  

It is probably impossible to solve it in real time 
using the “brute force” approach, since JSSP is a 
NP-hard problem, which was proven by Garey et al.  
[42]. Problemsofdimensionsof 15×15 are 
stillconsidered to bebeyondthereachoftoday’s exact 
methods[7];therefore, other meta-heuristic 
approaches have beenintroduced: 

• Evolutionary algorithms (EA) [8],[9]; 
• Genetic algorithm [7]; 
• Taboo search [10],[11],[12]; 
• Simulated annealing [14]; 
• Different combinations of methods 

[15],[16]; 
• EA-related techniques, such asparticle 

swarm optimization (PSO), etc.[34], [41]. 

All these methods are capable of finding a (near) 
optimal solution in real time.Evolutionary 
algorithms often perform well in approximating 
solutions to all types of problems. The most popular 
type of EA is the GA [7]. Vidal et al.[36] claim that 
EA solves combinatorial problems effectively, 
because it adapts to search solutions in a large 
search space of possible solutions. 

This paper describes the use of a modified EA to 
effectively solve JSSP in a dynamic environment in 
real time by utilizing speculative mutations, variable 
fitness functions and a pseudo-random generator. 

The rest of the paper is organized as follows. In 
Section 2, we define the problem; in Section 3, we 
present our modified EA approach. In Section 4, 
testing and results performed on benchmark data are 
presented and discussed. Finally, theconclusion with 
future work guidelines isgivenin Section 5. 
 
 
2 Problem Formulation 
There are many types of production processes, e.g. 
Product Layout (Flow Shop) and Process Layout, 
(Job Shop). The Job Shop problem can be defined as 
a set of jobs J = { j1, j2, …, jn }on a set of machines 
M = { m1, m2, …, mm }. Job ji contains a set of 
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koperations Oi = {oi1, oi2, …, oik}, which are 
performed on a subset of machines H⊆M. Operation 
Oik is defined with continuous time tik, which is 
needed for the operation to be completed and 
machine hik, with whichthe operation must be 
executed. The beginning time and ending time of an 
operation Ojk are denoted by tb

jkand te
jk, 

respectively. A sequence of operations at each job 
must be strictly taken into consideration [16].The 
time required to complete all the jobs is called the 
“make-span”Cmax. The objective when solving or 
optimizing this general problem is to determine the 
schedule that minimizes Cmax. Trying to minimize 
the make-span often brings algorithm to some local 
minimums. The algorithm is generally not able to 
determine whether its solution is the best possible or 
merely another local optimum. Every EA can 
reachthe global optimum eventually; however, 
preventing the algorithm from becoming stuck in a 
local optimum to search for other solutions inthe 
defined search spaceseems to be the most difficult 
task. 
 
 
3 Proposed Evolutionary Algorithm 
Evolutionary algorithms are inspired by natural 
mechanisms of natural selection and population 
genetics [19]. Some of the current evolutionary 
approaches include evolutionary programming, 
evolutionary strategies, genetic algorithms, and 
genetic programming [2],[3],[4]. 

Our EA technique essentially consists of the 
following steps: 

1. Initialize the population, 
2. Calculate the fitness of the initial 

population, 
3. Perform mutation(s) on population (using 

speculative mutations and statistics), 
4. Calculate fitness of new population, 

a) If a new population is as good as the 
parent or better, adopt it and delete 
statistics, 

b) If new population is worse, perform de-
mutation to return to the previous state 
andupdate statistics, 

5. Go to Step 3 until some condition is met. 
 
A more detailed explanation of the evolutionary 

process is given in Fig. 1. The algorithm holds a list 
of the top 999 schedules. One of them is selected,for 
which the higher ranked schedules have a better 
chance of being selected. Some mutation(s) are 
performed on this schedule and recorded. Next,an 
evaluation is performed (with the probability of 
0.25, we also change the fitness function), at which 

statistics of the success rate of mutations are 
recorded. If the new schedule is better or equally 
good as it was before the mutations, the statistics are 
deleted, the cycle counter is set to zero, and the 
process is repeated. If the new schedule is worse, 
the mutation statistics areupdated, de-mutations on 
the schedule are performed to set the schedule to the 
previous version, and the counter is increased by 1. 
De-mutations reduce the amount of data that has to 
be held in computer memory;therefore, more 
operations can be done in less time, since there is 
less data traffic. If the counter is lower than 100,000 
we repeat the cycle;otherwise, the schedule is placed 
back to the list of the top 999 (according to the 
initial fitness function),and another one is selected. 
The time needed to put the schedule to the list and 
select a new one is much higher than performing 
operations on one schedule; as a result, the 
algorithm is working with one schedule for at least 
100,000 times. The number of times mutations on a 
single schedule are performed is empirically defined 
through the historic data of our EA being used. For 
example, if the maximum counter number was set to 
500,000 or 1 million, we have discovered that the 
possibility of obtaining a new better schedule was 
too low against the computational time needed to 
achieve such a solution. 

 

 

Fig.1: Evolutionary process flowchart 

 
It is assumed that a system evolves in a mannerto 

provide an individual that is in a way better in the 
next generation, i.e. a mutant with a positive 
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mutation. One of the main advantages of EA is that 
it has no heuristic or similar rules; it works only on 
its internal rules.Internal rules when working with 
JSSP for EA are the same as for JSSP itself. These 
are: 

• An operation cannot be performed on more 
than one machine at the time; 

• The machine cannot perform more than one 
operation at the time; 

• Operations must follow a given order; 
• The smaller the time span (or any other 

criterion), the better the solution. 
 

The algorithm follows only these fundamental 
rules. 
 
 
3.1 Fitness function 
To evaluate the quality of the population, a 
fitnessfunction is needed (cost function, criteria 
function). The fitness function evaluates a solution 
and is determined by the weighted sum of the 
violations of the constraints [33]. 

The fitness function is a measure of how well an 
algorithm has learned to predict the outputs from the 
inputs. Anh,Caldeira, Rosa, Beligiannis et al., 
Manar, Shameem, Cardeira-Pena etal., Birbas et al., 
Gaemperle et al. [22,23,24,25,26,27,40]have all 
described the meaning and the use of the fitness 
function. Birbaset al. [26] are using negative 
weights to minimize bad properties and to define a 
better offspring. Dahaletal.[27] described the 
meaning of a variable fitness function. They are 
claiming that its use is reasonable in the real world, 
where optimization and multiple-goal definition are 
needed. With problems that have a large search 
space of solutions,difficulty occurs when the search 
can become stuck at a local optimum. Therefore, the 
adaptive fitness function is recommended to change 
the search space, enabling the solution to “escape” 
from the local minimum[29],[30],[31],[32].When 
the solution is stuck in a local optimum,to achieve 
further improvement of the offspring, we can use 
the landscape change. This is a form of tabooing or 
advanced tabooing, in which the fitness function 
changes multiple times during the evolution process 
(of a time table or schedule). 

Globally, we distinguish two principal forms of 
setting parameter values in a fitness function: 
parameter tuning and parameter control. Parameter 
tuning sets the parameters before the algorithm is 
run, while the parameter control forms an 
alternative, as the algorithm starts with initial 
parameter values that are changed during the run 
[6]. The historic description was done by 

Eibenetal.[5];they summarize parameter control in 
the following way: 

• Static parameters are not only hard but can 
be impossible to tune: no good static value 
exists for the step-size in Gaussian 
mutation; 

• Adaptive methods use some information 
about the current state of the search, and are 
as good as the information they get: the 
success rate is very raw information, and 
leads to the “easy-to-defeat” one-fifth rule, 
while Parameter Control in Evolutionary 
Algorithms 25 CMA-ES uses high-level 
information to cleverly update all the 
parameters of the most general Gaussian 
mutation; 

• Self-adaptive methods are efficient methods 
when applicable, i.e. when the only 
available selection (based on the fitness) can 
prevent bad parameters from proceeding to 
future generations. They outperform basic 
static and adaptive methods but are 
outperformed by clever adaptive methods. 

Parameter control,which is not commonly used, 
may provide a useful mechanism for increasing the 
performance of the algorithm [6]. 

The fitness function F used in our research is 
given in Eq. 1. We are trying to minimize the make-
span of the schedule and the penalties if the certain 
criteria are violated, such as wrong order of 
operations, length operation overlaps per job and 
length of operations overlaps per machine. 

 

(1) 
 

Where 
• ∆∈ [0,1] – weight, which is randomly 

changed in every step during the evolution. 
• Variables x, y, z and u change in every step 

during the evolution according to:x = 6+∆x, 
y = 3+∆y, z = 3+∆z, u = 0+∆u. 

• Yjk = 1 if operation Ojkis scheduled before 
operation(s) that should be performed prior 
to Ojk in job j; 0 otherwise. 

• Tjkis the time overlap for operation Ojkwith 
the operation *Ojkif te

jk>*tb
jk, on machine k, 

where Tjk = te
jk - *tb

jk. 
• TJ

jk is the time overlap for operation Ojkwith 
the operation +Ojkif te

jk>+tb
jk, within a job j, 

where TJ
jk = te

jk - +tb
jk. 
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• Cmax – length of the whole process. 

Buecheet al.[28]optimize the fitness function or 
define an alternative fitness function, but they never 
bring it back to the initial state. If, after a certain 
number of generations, there is no improvement, the 
algorithm changes the fitness function, creates a 
new branch, works with it; then, after a certain 
number of generations without improvement, the 
new offspring are evaluated and compared with 
generations based on the original values of fitness 
function. If anyschedule amongthe new ones is 
placed on the list of top schedules, we continue with 
the primary branch of schedules (including new 
ones); otherwise, the process is repeated. 
Furthermore, in most cases in the literature, the 
schedule is taken into the next generation only if it 
is strictly better than the best schedule of the 
previous generation. However, we take the 
generation’s best schedule in the next generation if 
the schedule is at least as good as the best schedule 
in the previous generation. Preliminary tests have 
shown that random selection between equally good 
solutions increases the possibility of obtaining a 
new, better solutions.We believe that the new better 
offspring can be found from the generation that is as 
good as others but different. 

Since validating the schedule is time consuming, 
we provide some shortcuts. First, if the difference 
between absolute minimum and maximum fitness 
value has increased, the new schedule is considered 
to be bad, and no further validation is performed. 
Then, machines and operations where no mutations 
occurred are not checked. After that, all other 
validation tasks are performed. 

 
 

3.2 Mutations 
After the initial population is randomly set, our 
algorithm works exclusively with mutations. No 
cross-over is involved, since our tests have proven 
to be computationally too expensive, because of 
computationally expensive schedule validation. 

The algorithm uses seven types of mutations. 
With a random choice of RAND(RAND(7)), the 
algorithm chooses how many mutations it will 
perform inone generation. This number was chosen 
after some initial testing, which will be explained 
later in the paper. The mutations considered in our 
algorithm are the following: 

• Shift operation left or right on one machine; 
• Shift operation left or right on an interval of 

more machines; 
• Swaptwooperations on one machine; 
• Rotatethree operations on one machine(on 

Mn operations O1, O2, O3 are rotated, so the 
new order is O3, O1, O2); 

• Shift left or right one operation on all 
machines; 

• Adjusted rotation (two operations on one 
machine are rotated, and the start time of the 
second one is then corrected, so it starts 
right after first one. The total time of both 
operations summed together remains the 
same); 

• Random set of one operation(place 
operation Onrandomly on the machine). 

 
 

3.3 Co-evolution 
Mohammadi et al. [38] suggest using co-evolution 
to solve the problem of scheduling (school time-
tabling problem), which provided good results in 
real time. They believe that the usual EA 
cannotyieldacceptable results in real time;therefore, 
its use is not preferable. We believe that every 
evolution is a co-evolution. If something evolves in 
an unchanged environment,it is evolution without 
co-evolution, but since the schedule of one machine 
is an environment for another machine, we already 
have co-evolution; furthermore, the results are 
obtained in real time.  
 
 
3.4 Speculative mutations 
If mutationsprovide a schedule that is as good or 
better than the previous one, we consider the 
mutation to be successful. Inside each cycle and 
with a certain probability, the knowledge about 
successful mutations is used to choose more 
successful mutations, since we can expect that the 
success rate of a mutation will drop during 
execution time. The success rate of a mutation 
(statistics) is held in the program’s memory cache, 
between two successive improvements (i.e. a 
generation is better or as good as previous one); 
after which it is deleted. This is used in a so-called 
speculative mutation process and drastically 
improves the speed of algorithm;therefore, itcan 
significantly decrease the calculation time. 

The algorithm decides with aprobability of 0.5 
whether or not it will rely on thestatistics. If it 
decides not to, then each mutation hasa probability 
of p = 1/7of being chosen;however, after it is 
chosen, some additional pre-calculations are made, 
e.g. if the number of mutations in one generation is 
one and the operation, which is the subject of 
mutation, is neither the first or last, it is pointless to 
move (or set) it out of the current intervalat 
whichthe interval is a space between the starting 
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time of the first operation on Mn and the start time of 
the last operation on machine Mn. When we have a 
sequence of mutations in one generation, at least 
one needs to have a potential to decrease the time 
span of out process.In other words, if sixmutations 
are selected and none of them improves or at least 
does not worsen the make-span, that sequence is 
obsolete. 

In addition, we prevent some successive 
mutations on one object from happening, e.g. in a 
sequence of mutations, where we move O1 on M1to 
the left byfive units and then another mutation wants 
to move O1 on M1 to the right by two units. The 
second case is disabled in advance, thus saving 
computational time. 

Another way to save computational time is to 
prevent other unfeasible solutions by narrowing 
intervals, where the set mutation can place an 
operation on a certain machine. An operation cannot 
be set to a location before its ideal place, e.g. 
operation O3 cannot be placed before the end of total 
time of O1 + O2, even in an ideal case.Further, O3 
cannot be placed after total time span minus the sum 
of all operations following O3,including the duration 
of O3. 

 (2) 
 

 (3) 
 

where: 
 C - (current) total make-span, 
 T - starting point of operation. 
 

This rule is applied to mutations of type set, shift 
left and shift right. Furthermore, if we swap two 
operations between two machines (O1 on M1 starts 
when O2 on M2 started, and O2 on M2starts when O1 
on M1has started), this rule is verified for both 
operations on their new place. If the condition is not 
met for only one of them, the mutation is discarded. 

For mutations that are surelynot valid, we apply 
another constraint so that they never occur. For 
example, an interval for an operation where it can 
begin (and end)is known; therefore, they are never 
set outside of this interval and, consequently, we 
drastically reduce the number of trials to obtaina 
valid position for an operation. 

 
 

3.5Random number generator 
The role of the random generation is to insert some 
chaos into the system and consequently reduce the 

time needed to obtain a solution. This is crucial to 
exit local optimum(s). 

One of the key features to improve the speed of 
the algorithm is our random number generator: a 
modified MersenneTwister[39] algorithm;our 
version of the algorithm is optimized for speed. Our 
primary goal is to obtain the random numbers as 
quickly as possible, while the quality (the numbers 
being regularly distributed) of the random generator 
is of secondary meaning, since obtaining those 
numbers is very time consuming with regards to 
theCPU. With one query from theCPU,we obtain 32 
random numbers that our EA can then use for its 
manipulation. We believe that the solution is 
obtained much more quickly this way. 

Although the random number generator is 
optimized for speed, it still represents a large 
bottleneck in the entire process, since speculative 
mutations reject the majority of the random numbers 
received from the CPU, and obtaining them is very 
time consuming, e.g. if the numbers received from 
the CPU are 1, 1, 4, 1, 3...,and 1 turns out to be 
unsuccessful, it skips to number 4;if that turns out to 
be successful, it uses number 1 again since it 
follows in the sequence; otherwise, it skips 1 again 
and uses the next number, i.e. 3. 
 
 
4 Results 
First, we wanted to find the success rate of 
mutations. We tested the following instances and 
performed some analytics on the results: 

• From la01 to la05 – size 10 × 5,proposed by 
Lawrence[35], 

• From la06 to la10 – size 15 × 5, also 
proposed by Lawrence[35], 

• From swv06 to swv10 – size 20 × 15, 
proposed by Storer, Wu and Vaccari[37], 

• Results of all instances together.  

We recorded the time to find the solution that 
matches the best known solution.We also analyzed 
some of the mutations: 

• Number of mutations per generation and 
success; 

• Number of mutations per generation and 
instance and, consequently, the success; 

• Shift operation left or right and, 
consequently, the success; 

• Mutation set and, consequently, the success; 
• Mutations swap two or three operations and, 

consequently, the success. 
Analytics wereperformed with 

SPECTORsoftware (www.algit.eu). Thisis a data-
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mining program that searches for samples in sets of 
data. It transforms data sets to logical implications, 
finds all regularities in data and quantitatively 
evaluates them. We let the EA run for 
30seconds,regardless of the final result, since the 
files with the results would become too large to be 
processed for analytics. Despite the time thatwas 
spent to record all of the mutations, the best known 
results for some instances were achieved. The 
algorithm could choose between seven mutations, 
and the maximum number of mutations per 
generation was between 1 and 16. The results were 
as follows: 

• Instances from La01 to La05 
o If the number of mutations per 

generation (NOMG) equals 1, the 
success rate is above average; 

o If NOMG was greater than 10, the 
success rate was under average; 

o If the NOMG equals 2, the success rate 
was above average for instances la01 
and la03; 

o If the mutation set is used above 
average, the success rate is below 
average. 

• Instances from La06 to La10: 
o If NOMG is 1,8,9,10, the success rate 

is above average; 
o If mutation set is used above average, 

the success rate is below average. 
o If mutations swap 2 or swap 3 are used 

above average, the success rate is 
below average. 

• Instances from Swv06 to Swv10: 
o If NOMG is used above average, the 

success rate is below average; 
o The mutation set turns out to be 

successful under average; 
o Shifting operations to the right 

increases the success rate. 
o Analytics on all instances yield the 

following results: 
o Success rate on instances Swv08 and 

Swv09 is above average; 
o If operations are movedto the right, 

success is above average; 
o Using the mutation swap of two 

elements is successful if it is used 
below average. 

This analysis helped us in the further 
development of our algorithm, because we can 
guide the program to use mutations that are more 
successful than others in producing a better 
offspring. 

The aforementioned analytics yielded sevenof 

the most successful mutations described earlier. 
These mutations were utilized in our tests on the 
following instances: Ft06 (6 × 6), Ft10 (10 × 10), 
La01 (10 × 5), La02 (10 × 5), La11 (20 × 5), La12 
(20 × 5),La30 (20 × 10), La31 (30 × 10), Swv01(20 
× 10), Swv02 (20 × 10). We performed 100 runs per 
each instance, with the following options on the 
program: 

• All optimizations are on (OPT); 
• The program can choose from all mutations, 

the interval setting is on, using statistics is 
off (OPT_noSTAT); 

• The program can choose from all mutations, 
the interval setting is off, using statistics is 
off (NoSTAT_NoINT); 

• The program can choose from all mutations, 
the interval setting is off, using statistics is 
on (OPT_noINT); 

• The program cannot use mutations shift left 
and shift right, the interval setting is on, 
using statistics is off (NoSTAT_NoMUT); 

• The program cannot use mutations shift left 
and shift right, the interval setting is on, 
using statistics is on (NoMUT); 

• The program cannot use mutations shift left 
and shift right, the interval setting is off, 
using statistics is off (NoOPT); 

• The program cannot use mutations shift left 
and shift right, the interval setting is off, and 
using statistics is on (NoINT_NoMUT). 

Computational time was limitedto 
eitherthebestknownsolutionbeingfoundorto a 
maximum of 100,000 generations without 
improvement. 

The results are shown in the following tables. 
Table 1 shows the average number of steps for the 
algorithm to reach its best solution, Table2 
showsaveragetimesfor the analgorithmto 
reachitsbestresult,andTable3shows 
thebestresultthealgorithmhasachieved. 

In Table 1, we can see how many steps 
(improvements) a different version of algorithm 
needed (in average) to achieve its best result for a 
particular benchmark problem. We can see that both 
versionsof the program that did not use the shift left 
or shift right mutations (NoSTAT_NoMUT and 
NoMUT) performed best. NoMUT achieved the 
lowest number of steps 7 times, while the 
NoSTAT_NoMUT achieved it 2 times. It seems like 
the mutation shift left and right is usually 
unsuccessful; therefore, these two algorithms benefit 
from that.  

Table 2 represents the average computational 
time to achieve the best result. Similar to results in 
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Table 1, NoSTAT_NoMUT and NoMUT perform 
best, yielding lowest average times, again benefiting 
from not using the shift left and shift right 
mutations.  
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Table 1: Average number of steps to find a solution 

Instance OPT 
OPT_ 
noINT 

NoMUT 
NoINT_ 
NoMUT 

OPT_ 
noSTAT 

NoSTAT_ 
NoINT 

NoSTAT_ 
NoMUT 

NoOPT 

ft06 59.88 68.61 58.85 68.83 66.61 73.62 56.09 70.09 

ft10 378.97 503.12 298.37 352.25 397.31 535.63 362.61 482.75 

la01 243.73 386.99 183.94 234.07 257.51 368.99 176.60 259.02 

la02 251.37 323.14 164.93 195.29 234.36 347.55 190.47 229.11 

la11 468.54 753.09 312.00 362.73 395.24 709.46 323.07 405.98 

la12 415.32 606.18 314.88 344.26 403.68 664.84 343.58 409.97 

la30 801.64 1012.77 674.88 906.96 818.74 1165.46 713.72 810.46 

la31 1177.67 1409.36 930.34 849.98 1083.61 1379.83 905.97 972.37 

swv01 718.83 1078.21 595.39 642.75 778.91 1084.95 631.07 644.06 

swv02 744.70 1030.10 590.59 598.73 776.56 1050.12 693.30 630.80 

 
Table 2a: Average computational time 

Instance OPT 
OPT_ 
noINT 

NoMUT 
NoINT_ 
NoMUT 

OPT_ 
noSTAT 

NoSTAT_ 
NoINT 

NoSTAT_ 
NoMUT 

NoOPT 

ft06 0.54 0.46 0.33 0.43 0.94 0.61 0.26 0.51 

ft10 4.03 3.67 3.13 4.03 5.84 6.35 5.27 5.77 

la01 0.7 0.71 0.67 0.74 0.99 1.21 0.65 0.7 

la02 1.14 1.3 0.72 1.21 1.8 1.97 1.67 1.57 

la11 1.12 1.11 0.91 1 1.42 1.37 1.4 1.38 

la12 1.26 1.28 1.2 1.24 1.74 1.67 1.79 1.75 

la30 24.92 22.71 20.18 26.18 25.9 29.86 23.41 30.96 

la31 29.78 27.93 19.3 19.1 33.3 33.81 30.61 31.15 

swv01 19.15 24.12 16.6 20.25 26.24 29.33 31.42 30.24 

swv02 22.97 19.9 18.94 21.45 29.48 28.72 25.72 25.7 

 
Table 3a: The best make-span result 

Instance OPT 
OPT_ 
noINT 

NoMUT 
NoINT_ 
NoMUT 

OPT_ 
noSTAT 

NoSTAT_ 
NoINT 

NoSTAT_ 
NoMUT 

NoOPT 

ft06 55 55 55 55 55 55 55 55 

ft10 978 987 971 1017 971 992 992 978 

la01 666 666 666 666 666 666 666 666 

la02 655 655 655 655 655 655 655 655 

la11 1222 1222 1222 1222 1222 1222 1222 1222 

la12 1039 1039 1039 1039 1039 1039 1039 1039 

la30 1355 1355 1355 1355 1355 1355 1355 1355 

la31 1784 1784 1784 1784 1784 1784 1784 1784 

swv01 1570 1542 1556 1540 1556 1537 1558 1569 

swv02 1585 1574 1580 1614 1577 1620 1624 1573 

 
In Table3 the best make-span results are 

presented. It is worth noticing that for problem 
instances ft06, la01, la02, la11, la12, la30 and la31 

all algorithms yielded the same results. The 
difference is in the instances ft10, sww01 and 
sww02, where NoMUT, NoSTAT_NoINT and 
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NoOPT yielded the best results, respectively.Again, 
in general, NoMUT algorithm achieved good 
results. It seems that using statistics is not a major 
benefit for these benchmarks.  

We can see that, without using statistics, the 
computational times are longer, and the number of 
steps needs to obtain the best results ishigher. In 
addition, using interval placementgenerallyresultsin 
achieving a smaller number of steps to obtaina 
better result, while that is not true for 
shortercomputational time, since it will not yield 
better results. If we want a good comparison of all 
methods,the following considerations must be taken 
into account. Not only the best solution matters, but 
also the time needed to achieve this solution. If we 
look at Table 1, where the number of steps is shown, 
we have to compare them with the best results these 
methods have achieved. For some problem 
instances, some methods seem to be better, but 
when examining the computational time and best 
result, we can see that the NoMUTalgorithm 
yieldsthe best results in 7 out of 10 cases. The best 
result is usually achieved with two of the most 
optimized methods. If also considering 
NoSTAT_NoMUTalgorithm, it is obvious that 
shift left and/or shift right mutations do not 
contribute in achieving the best results. 
Moreover, to obtainonly a slightly better result, the 
number of times required is considerably higher, 
meaning that an algorithm performing computations 
several times faster does not necessarily provide us 
with results that are several times better.  
 
 
5Conclusion 
Examining the results achieved with the 
proposedevolutionaryalgorithm, we can see that 
using speculative mutations (statistics) and interval 
placing aid in achieving better results in a shorter 
amount of time.Using SPECTOR, we have defined 
how many mutations per generations and which 
ones to use, running it on early versions of the 
algorithm.It was shown that using shift left and/or 
shift right mutations did not contribute in achieving 
better results. Also, a very important feature of our 
EA is the ability to exit local optimums in case it is 
stuck in one of them. This is achieved with a 
variable fitness function and pseudo-random 
number generator that enables all available numbers 
to be selected (from 1 to 7, since there are 
seventypes of mutations).  

This algorithm, with some modifications, is also 
used in the program for calculating school time 
tables (iTimeTable) and worker schedules (WoShi), 

where the number of combinations between 
teachers, students, lessons and classrooms exceeds 
1054 and brute force cannot be used;our algorithm 
achieves quality results in a reasonable amount of 
time. 

Future research will be focused on the influence 
of de-mutation, co-evolution and pseudo random 
generator on algorithm performance. We assume 
that using a pseudo-random number generator 
reduces the time to obtain the random numbers that 
are essential for our evolutionary algorithm. Further, 
our research will pay attention to implement this 
algorithm inreal-world production scheduling. We 
also see its usage in worker scheduling on all areas 
from production industry to hospitals, etc., where 
even more constraints are included.There is also 
some room for algorithm improvement and with the 
improvement of CPU speed and the number of 
cores;the results will be achieved more rapidly, 
since our algorithm is capable of using multiple 
cores for calculation; it is also capable of running on 
multiple computers; each computer sends its results 
to the server and with a certain probability decides 
whether or not it will use the best known solution on 
the server and continue the evolution from that point 
onward. 
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