
A Network Differential Backup and Restore System based on a Novel 
Duplicate Data Detection algorithm 

 
GUIPING WANG 1, SHUYU CHEN 2*, AND JUN LIU 1 

1 College of Computer Science 
Chongqing University 

No. 174 Shazhengjie, Shapingba, Chongqing, 400044 
CHINA 

{w_guiping, liujun_314}@cqu.edu.cn 
2 College of Software Engineering 

Chongqing University 
No. 174 Shazhengjie, Shapingba, Chongqing, 400044 

CHINA 
*Corresponding author: netmobilab@cqu.edu.cn 

 
Abstract: - The ever-growing volume and value of data has raised increasing pressure for long-term data 
protection in storage systems. Moreover, the redundancy in data further aggravates such pressure in these 
systems. It has become a serious problem to protect data while eliminating data redundancy, saving storage 
space and network bandwidth as well. Data deduplication techniques greatly optimize storage systems through 
eliminating or reducing redundant data in these systems. As an improved duplicate data detection algorithm, 
SBBS (a sliding blocking algorithm with backtracking sub-blocks) enhances duplicate detection precision 
through attempting to backtrack the left/right quarter and half sub-blocks of matching-failed segments. Based 
on the SBBS algorithm, this paper designs and implements a network differential backup and restore system. It 
designs the structures of full and differential backup images. In addition, in order to fulfill the communication 
requirements of backup/restore on the Internet, this paper designs a protocol in Application Layer, referred as 
NBR (Network Backup and Restore Protocol). The experimental results show that, for three typical files, the 
designed backup and restore system respectively saves 9.7%, 11%, and 4.5% storage space compared with a 
differential backup system based on the traditional sliding blocking (TSB) algorithm. 
 
Key-Words: - Full backup; Differential backup; Duplicate data detection; Sliding blocking algorithm; 
Matching-failed segment; NBR 
 
1 Introduction 
With the development of information technology, 
data become increasingly important for enterprises 
in various domains. However, computer systems 
may be destroyed by natural disasters (e.g., 
earthquake, flood, etc.) or human factors (e.g., mal-
operation, virus, etc.), which causes data loss in 
these systems. 

Backup is an effective measure to protect data. 
Data can be restored using backed up copies in case 
of data loss. Full backup [1-2], incremental backup 
[1-4], and differential backup [5-9] are three 
common backup strategies. 

However, with the rapid growth of data, the 
backup of these massive data brings great pressure 
to storage systems, as well as network bandwidth in 
case of remote backup. Moreover, redundancy in 
data further aggravates such pressure in storage 
systems. It has become a serious problem to protect 
data while eliminating data redundancy, saving 
storage space and network bandwidth as well. 

In order to eliminate or reduce redundant data in 
storage systems, deduplication techniques [3, 10-17] 
emerge and work well. These techniques detect 
duplicate data and eliminate redundant copies of 
same data, thus optimizing storage systems through 
only storing unique data. Since redundant data in 
storage systems are usually caused by duplicate 
copies or regions of files, the terms “redundant 
data/chunk” and “duplicate data/chunk” can 
therefore be interchanged. 

The traditional sliding blocking (TSB) algorithm 
[18-20] is a typical chunk level duplicate detection 
algorithm. It divides the files into chunks and 
introduces a block-sized sliding window to move 
along the detected file and to find redundant chunks. 

In order to enhance the duplicate detection 
precision of the TSB algorithm, Wang et al. [21] 
proposes a novel improved sliding blocking 
algorithm, called SBBS. For matching-failed 
segments, SBBS continues to backtrack the 
left/right quarter and half sub-blocks. Based on 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 139 Volume 11, 2014



SBBS, this paper designs and implements a network 
differential backup and restore system. To evaluate 
the performance of the proposed system, this paper 
conducts experiments on three typical files. The 
experimental results show that, compared with a 
differential backup system based on the TSB 
algorithm, the designed backup and restore system 
saves 9.7%, 11%, and 4.5% storage space for these 
three files respectively. 

The main contributions of this paper are 
summarized as follows: 1) It designs and 
implements a network differential backup and 
restore system based on the SBBS algorithm; 2) In 
order to effectively represent backup data, it 
presents the structures of full and differential 
backup images; 3) It proposes a protocol in 
Application Layer, NBR (Network Backup and 
Restore Protocol), for communication between the 
clients and the backup server. 

The rest of the paper proceeds as follows. 
Section 2 summarizes related work. Section 3 
introduces the rationale of the TSB algorithm and 
the SBBS algorithm. Section 4 designs and 
implements a network differential backup and 
restore system based on the SBBS algorithm. 
Section 5 presents experiments and analyses. 
Finally, section 6 gives conclusions and looks into 
future work. 
 
2 Related work 
This section summarizes research work related to 
backup and restore, deduplication and duplicate data 
detection. 
 
2.1 Backup and Restore 
The ever-growing volume and value of data has 
raised an increasing demand for long term data 
protection through backup and restore systems. 
According to the backup contents, time, and mode, 
backup techniques can be classified into three 
categories: full backup, incremental backup, and 
differential backup. 

Full backup [1-2] is a backup in which every 
object (e.g., a file) in a defined set of data objects is 
copied, regardless of whether they have been 
modified since the last backup. Full backup can be 
implemented easily. But there exists much 
redundancy between backup copies, especially for 
the scenarios that the files are modified slightly. 
Therefore, full backup is seldom adopted solely, but 
it is the basis of the other two backup techniques. 

Incremental backup [1-4] is a type of data 
backup that provides a backup of files that have 
been changed or are new since the last incremental 
backup. It only backs up the data that are changed 

since the last backup - be it a full backup (for the 
first incremental backup) or incremental backup, as 
shown in Fig. 1. This backup strategy takes less 
time to complete a backup, saving storage space at 
the same time. After several times of incremental 
backup, the backups at a given point in time include 
a full backup image and several incremental backup 
images. However, once one or more incremental 
backup images are damaged, the original objects 
cannot be restored. Moreover, the complex 
dependencies between incremental backup images 
increase the instability of backup and restore 
operations. 

 

 
Fig. 1 Incremental backup 
 

The overhead of an incremental backup increases 
in proportion to the total amount of updated files 
since last full backup. Therefore, it is necessary to 
determine when to make full backups. Nakamura et 
al. [1] propose a stochastic model with incremental 
and full backups to solve an optimal full backup 
interval. The optimal interval minimizes the costs 
incurred for these two backups. 

 

 
Fig. 2 Differential backup 

 
Differential backup [5-9] is one which preserves 

data and saves only the difference in the data since 
the last full backup, as shown in Fig. 2. The backups 
at a given point in time include a full backup image 
and the last differential backup image. The 
underlying rationale of differential backup is that, 
since changes to data are generally few compared to 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 140 Volume 11, 2014



the entire amount of data in the data repository, the 
amount of time required to complete the backup will 
be quite smaller than that in full backup. Another 
advantage, at least as compared to incremental 
backup, is that when restoring a set of data objects, 
at most two backup media (i.e., a full backup and 
the last differential backup) are needed. This 
advantage simplifies data restores, at the same time 
increases the likelihood of shortening data 
restoration time. 
 
2.2 Duplicate data detection 
Redundant data in storage systems waste much 
storage space, thus aggravating pressure in storing 
massive data. Data deduplication techniques detect 
redundancies between data objects to reduce either 
storage needs or network traffic [3]. Therefore, 
deduplication techniques play an important role in 
improving the utilization of storage systems. Many 
studies in literature (e.g., [3], [10-24]) address this 
issue in various storage environments. 

Duplicate data detection is the foremost step for 
deduplication techniques. Among various duplicate 
detection techniques, chunk level techniques [3, 18-
24] are the most common ones. For the old version 
and the new version of a same set of data objects 
(usually, files), these techniques divide them into 
chunks, and further detect redundant chunks through 
computing and checking hash values of these 
chunks. Chunk level techniques make a well trade-
off between performance and efficiency [21]. In 
addition, these techniques can be classified into 
three typical categories: fixed-sized partition, 
variable-sized partition, and sliding blocking. 

Among these chunk level techniques, the 
traditional sliding blocking (TSB) algorithm [18-20] 
can be implemented without much effort, and its 
duplicate detection precision is relatively high. 
Therefore, it is widely adopted in deduplication 
systems. But it cannot effectively deal with resulting 
matching-failed segments, which will be analyzed in 
the next section. 

Deduplication and duplicate data detection are 
always continuously concerned issues in literature, 
regardless that new storage techniques have been 
introduced (e.g., [16]) or new application 
environments are confronted (e.g., virtualization and 
cloud environments [17, 22]). For example, 
virtualization techniques implement multiple 
logically separate execution environments. 
Therefore, these techniques are widely adopted in 
servers. However, these techniques still consume 
large amounts of storage due to separate disk image 
(up to GB bytes) of each virtual machine (VM) 
instance. Jin and Miller [17] introduce deduplication 

techniques into virtualization. Their study shows 
that the combination of these two techniques not 
only reduces the total storage required for VM disk 
images, but increases the ability of VMs to share 
disk blocks. 

Compared with the above researches, this paper 
mainly focuses on differential backup. Especially, it 
designs and implements a differential backup and 
restore system based on an improved sliding 
blocking algorithm, i.e., SBBS [21]. 

 
3 The rationale of the TSB and the 
SBBS algorithms 
This section first summarizes the rationale of the 
TSB algorithm. Then it introduces the concept of 
matching failed segment. Finally, it summarizes the 
improved TSB algorithm, i.e., SBBS [21], which is 
the prior work of this paper. 
 
3.1 The rationale of the TSB algorithm 
The TSB algorithm [18-20] introduces a block-sized 
sliding window which moves along the detected file 
to check each block. It calculates the checksum and 
the hash value of every overlapping block-sized 
segment in the detected file to determine duplicate 
blocks. 

Note that, a chunk is the detection granularity for 
chunk level techniques, while a block is a data 
segment covered by the sliding window. But in TSB 
and SBBS, “block” and “chunk” are identical 
concepts and therefore can be interchanged. 

 

A Duplicate block
detected

Slide
windowMatch found?

Yes

New file

Old file......chunk chunk chunk

a byte

(a) the sliding window

sliding

Compute Rsync Checksum of a block in the new file;
Compare with stored Rsync checksum values.

No

Match found?

Compute SHA-1 hash value;
Compare with stored SHA-1 hash values.

(b) detecting duplicate block

No

Yes

dc_size

 
Fig. 3 The rationale of the TSB algorithm 
 

The rationale of the TSB algorithm is concreted 
as that: the old file is divided into non-overlapping 
chunks with equal length, as illustrated in Fig. 3(a) 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 141 Volume 11, 2014



(dc_size is the size of a data chunk); then the 
checksum and the hash value of each chunk are 
computed and stored in a table; when the sliding 
window moves from the head of the detected file to 
the end byte by byte, the checksum and the hash 
value of each block covered by the sliding window 
are computed in turn and compared with stored 
values to detect a duplicate block, as detailed in Fig. 
3(b). 
 
3.2 The rationale of the SBBS algorithm 
Although the precision of the TSB algorithm is 
relatively high, it cannot effectively deal with 
matching-failed segments caused by inserting, 
deleting, or modifying data in a chunk. Due to the 
space limitation, this subsection only analyzes the 
scenario of inserting a data segment into a chunk. 
As Fig. 4(a) shows, a data segment with length d is 
inserted into chunk Di. Accordingly, the right 
boundaries of chunk Di and all the subsequent 
chunks are moved backward distance of d. 

For simplicity, assume that the chunks, Di-1 and 
Di+1, have no any change. This simplicity does not 
affect the correctness of the analyses below and the 
SBBS algorithm [21]. Therefore, after the checking 
process of the TSB algorithm, the chunks, Di-1 and 
Di+1, are identified and marked as duplicate chunks. 
While the chunk Di, which is lengthened to 
dc_size+d, fails to be matched, as illustrated in Fig. 
4(a). The lengthened chunk Di is marked as a 
matching-failed segment [21]. 

In order to match unmodified data in matching-
failed segments, SBBS attempts to backtrack sub-
blocks. Each chunk contains 4 sub-blocks, as 
illustrated in Fig. 4(b). For clear illustration, the 
chunk Di, including the inserted data segment of 
length d, is stretched four times in Fig. 4(b). 

 
dleft_boundary right_boundary

Di+1Di-1
dc_sizeNew file Di

sliding window

  

matched matched
matching-failed 

segment

dc_size + d

Di+1Di-1

left ¼ sub-block right ¼ sub-blockInserted data
 segment

left ½ sub-block right ½ sub-block  

  

(b) sub-block partition

(a) matching-failed segment

 
Fig. 4 Matching-failed segment and sub-block 
partition 
 

Although the chunk Di fails to be matched, there 
are much redundant data in Di. As illustrated in Fig. 
4(b), the left quarter and right half sub-blocks are 
both redundant data segments. If these redundant 
data can be further detected, the duplicate detection 
precision will be undoubtedly enhanced. The 
rationale of SBBS is derived from this intuitive idea. 
The rationale can be concreted as that, for each 
matching-failed segment, SBBS continues to 
backtrack the left/right quarter and half sub-blocks. 

SBBS combines weak hash check and strong 
hash check to determine redundant chunks. For 
chunk A and B, only when they satisfy weakhash(A) 
= weakhash(B) and stronghash(A) = stronghash(B), 
SBBS determines that these two data chunks are 
identical ones. 

When matching the sliding block, SBBS adopts 
the Rsync rolling checksum for weak hash check. 
While when backtracking sub-blocks, SBBS uses 
the Adler-32 checksum as weak hash check. For 
both the sliding block and the sub-blocks, SBBS 
uses the MD5 hash algorithm as strong hash check 
[21]. 
 
4 The design and implementation of 
the SBBS-based network differential 
backup and restore system 
This section first describes the architecture of the 
designed system. Then it introduces the structure of 
backup images. Lastly, it designs NBR protocol for 
communication on the Internet. 
 
4.1 System architecture 
The designed network backup and restore system, 
which is deployed as Fig. 5, is composed of a 
backup server and several clients. The server and 
the clients are connected through the Internet. 
 

 
Fig. 5 The deployment of the designed network 
backup and restore system 
 

The clients can login to the backup server via the 
Internet, and back up local files to the server. Before 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 142 Volume 11, 2014



backup, the software on the clients first detects 
differential data between local files and the backup 
image on the server. After deduplication, the 
software packs the differential data into a backup 
image, and transfers the image to the backup server. 
Alternatively, the clients can restore local files via 
backup images transferred from the server. The 
server responds to the clients’ backup/restore 
request. 

The software architecture of the designed backup 
and restore system is shown in Fig. 6. 

 

Network Communication

Backup/Restore 
Control

Backup

Central 
Control

Restore

Internet

Client Server

NBR Protocol

Duplicate 
detection

file 
management

Encryption 
& 

compression

Network Communication
NBR Protocol

Backup/Restore 
Response

file 
management

Encryption & 
compression

 
Fig. 6 The software architecture of the designed 
network backup and restore system 
 

The most important modules are detailed below. 
(1) The modules in the client 
Backup/Restore Control module: it receives the 

instructions from users; completes backup/restore 
functions cooperating with the backup/restore 
modules; sends various requests to the backup 
server via network communication module; etc. 

Network communication module: it constructs a 
NBR message; parses messages from the server and 
sends the received data to the corresponding 
modules for further processing; manages Socket 
connections; etc. 

Backup module: it constructs the full backup 
images and the differential backup images; when 
constructing a differential backup image, it detects 
duplicate data in the backed up file, and only 
constructs the differential data segments into the 
image file. 

Duplicate detection module: it includes the TSB 
and the SBBS duplicate detection algorithms, which 
are invoked by the backup module. 

Restore module: it restores the local files by the 
backup image transferred from the server. 
 

(2) The modules in the server 
Central Control module: it is responsible for 

receiving, parsing, and dealing with all requests 
(including login/logout, backup/restore, etc.) from 
the clients. 

Network Communication module: it receives the 
NBR messages from the clients, and sends these 
messages to the central control module; it packs the 
data from other modules; etc. 

Backup/Restore Response module: it completes 
the concrete backup/restore functions; when 
responding to a backup request from a client, it 
receives the backup image from the client and stores 
in the server; when responding to a restore request 
from a client, it reads the specified image file and 
sends to the client; etc. 
 
4.2 The structures of backup images 
In order to effectively represent backup data, this 
paper designs the structures of backup images. The 
backup images include the full backup image and 
the differential backup image. 
 

(1) The full backup image 
The structure of the full backup image, shown in 

Fig. 7(a), includes the header of image, and image 
data. The former includes backup parameters, and 
backup files list; the backup parameters describe 
such information as backup type, backup time, etc; 
the backup files list includes the list of files in the 
full backup image, as well as their offsets in the 
image data part. The latter includes effective data of 
the files in full backup image. 
 

(2) The differential backup image 
The structure of the differential backup image, 

shown in Fig. 7(b), also includes the header of 
image, and image data. Unlike the backup files list 
in full backup image, the one in differential backup 
image designates the list of differential backups; for 
each differential backup, it also designates its 
differential index’s offset in the header. In virtue of 
this offset, the differential index of a file determines 
the differential images’ position in the image data. 
 
4.3 NBR protocol 
In order to satisfy the need of backup and restore 
functions, this paper designs a protocol in 
Application Layer, NBR (Network Backup and 
Restore Protocol), for communication between the 
clients and the backup server on the Internet. The 
format of NBR protocol message is shown in Fig. 8. 

A NBR message includes the header of message 
and the body of message. The former occupies 8 
bytes. The length of the latter depends on the type of 
message. 

Several most important fields in a NBR message 
are described in detail below. 

(1) Length of message body 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 143 Volume 11, 2014



This field occupies 4 bytes. It designates the 
length of message body. Therefore, the length can 
be up to 232 bytes (4GB) theoretically. 
 

(2) The type of message 
According to the initiator of a NBR message, it 

can be classified into two categories, i.e., client 
message and server message. The client message is 
initiated in the client end and is processed in the 
server end. Its type code is between 1 and 127. 
While the server message is initiated in the server 
end and is processed in the client end. Its type code 
is between 128 and 255. 

Each type of message has a unique code. The 
types of client messages and server messages are 
listed in Table 1 and 2, respectively. 
 

(3) The format of message body 
The content of message body depends on the 

types of message. If the content contains several 
fields, these fields are separated by a colon, “:”. The 

formats of message body of several types of 
message are listed below. 

a) Login – userid : password. 
b) Logout – userid. 
c) Backup Request – the length list of fields in 

the message body : the backed up files list : the 
expected size of image file. 

d) Restore Request – the restored files list. 
e) File Transfer – the length list of fields in the 

message body : identifiers : data of files. 
f) User-Defined Message – the contents of the 

user-defined message. 
g) Hash Table Request – the files list of the 

requested hash table. 
h) Backup Request Refuse – the reason of 

refusing backup request. 
i) Restore Request Refuse – the reason of 

refusing restore request. 
j) Backup Fails – the cause of backup failure. 
k) Restore Fails – the cause of restore failure. 

 

Header of Image

Image 
Offset
Entry 1

Entry 2

......

Segment ID

Segment Offset

Segment Length

Backup 
parameters

Entry n

Backup 
Files 
List

Differential 
Index of 

File 1

Differential 
Index of 

File n
......

Differential 
Data 

Segment

Differential 
Data 

Segment

Differential 
Data 

Segment
......

Differential Data Image of File 1

Image Data

......

(b) The structure of differential backup image

Backup 
parameters

Backup 
Files 
List

Image Data

Header of Image Image Data

(a) The structure of full backup image

 
Fig. 7 The structures of the full and differential backup images 

 

Length of Message Body

Body of Message

Version 8 
Bytes

Length of 
Head Type of Message Option of 

Packing Reserved Field
0 3 7 15 19 31

 
Fig. 8 The format of NBR protocol message 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 144 Volume 11, 2014



 
Table 1 The types of Client Messages 

Type of Message Macro definition Code Description 
Login C_LOGIN 1 A user logins to backup server. 
Logout C_LOGOUT 2 A user logouts. 
Backup Request C _BACKUP_REQUEST 3  
Restore Request C _RESTORE_REQUEST 4  

File Transfer C_FILE_TRANSFER 5 Transferring backup image, checklist, 
etc. 

Cancel Transfer C_CANCEL_FILETRANS 6  
User-Defined 
Message C_MESSAGE 7 Sending out user-defined message. 

Hash Table Request C_HASHTABLE_REQUEST 8 Requesting the server to access the hash 
table of a specified file. 

Restore Successes C_RESTORE_SUCCSSES 9 Notifying the server that restore 
finishes. 

Backup Fails C_BAKUP_FAILS 10 Backup fails. 
Restore Fails C_RESTORE_FAILS 11 Restore fails. 
Keep Alive C_KEEPALIVE 12 Keeping heartbeat message alive. 

 
Table 2 The types of Server Messages 

Type of Message Macro definition Code Description 
Login Confirms S_LOGIN_REPLY 128 Replying to a user’s login. 
Logout Confirms S_LOGOUT_REPLY 129 Replying to a user’s logout. 
Backup Request 
Response 

S_BAKUP_RESPONSE 130 Responding to a user’s backup request. 

Backup Request Refuse S_BAKUP_REFUSE 131 Refusing a user’s backup request. 
Restore Request 
Response 

S_RESTORE_RESPONSE 132 Responding to a user’s restore request. 

Restore Request Refuse S_ RESTORE_REFUSE 133 Refusing a user’s restore request. 
Backup Fails S_BAKUP_FAILS 134 Backup fails. 
Restore Fails S_RESTORE_FAILS 135 Restore fails. 
Backup Success S_BAKUP_SUCCSSES 136 Notifying the client that backup 

finishes. 
User-Defined Message S_MESSAGE 137  

 

5 Experiments and analysis 
In order to evaluate the performance of the proposed 
SBBS-based backup and restore technique, this 
section compares it with the full backup technique 
and the TSB-based differential backup techniques. 
 
5.1 Experimental environment and test files 
The experimental environment is composed of one 
backup server and five backup clients. The backup 
server runs the server program of the backup/restore 
system, while the backup clients run the client 
program. Both these programs are implemented by 
C language. 

The configuration of the server and the clients is 
listed as follows. 

CPU: Intel i5 2400, 3.1 GHz. 
Memory: 4G DDR3 1600MHz. 
Disk: 500G SATA. 

Network Interface Card: Intel 9301 CT, PCI-E, 
1000Mbps. 

OS: the server, Fedora 17 (Linux 3.3.4); the 
clients, Ubuntu 12.04 (Linux 3.2.12). 

In order to evaluate the performance of these 
backup and restore techniques, this paper chooses 
three typical files as test files: the log file, syslog; 
the database file of mysql, mysql.myd; and source 
code of linux-2.6.11, linux-src. 

For the original versions of these test files, this 
paper modifies the contents randomly to obtain the 
new files. The differential data of the original and 
new files are calculated by diff. The description of 
these three test files is listed in Table 3, where 
duplicate data ratio is defined as the ratio between 
the size of actual duplicate data and the size of the 
original file. Therefore, the size of each new file 
equals the size of duplicate data plus the size of 
differential data. 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 145 Volume 11, 2014



Table 3 Three test files 

Test file Size of the 
original file 

Differential 
data 

Duplicate 
data ratio 

syslog 29,748 KB 7,482 KB 75% 
mysql.myd 62,464 KB 4,456 KB 93% 
linux-src 189,440 KB 71,721 KB 65% 

 
5.2 Performance testing and analysis 
This subsection evaluates the proposed SBBS-based 
differential backup technique from three aspects 
below. 
 

(1) Duplicate detection rate 
For the above three test files, the SBBS and TSB 

algorithms are used to detect duplicate data. The 
results are shown in Fig. 9. 

This figure shows that the SBBS algorithm 
outperforms the TSB algorithm. For these three test 
files, SBBS detects 1450 KB (6.5%), 6390 KB 
(11%), 8619 KB (7%) more duplicate data than the 
TSB algorithm respectively. Comparatively 
speaking, for both algorithms, the duplicate 
detection rate in mysql.myd is highest, while that in 
linux-src is lowest. The higher the duplicate rate in a 
test file, the better the detection algorithms perform; 
moreover, the more promotion the SBBS algorithm 
brings. 

The detection rate in linux-src is relatively low. 
The underlying reason is that there exist so many 
small files in Linux source code. Nevertheless, the 
SBBS algorithm improves detection rate in this file 
through sub-block backtracking. 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

syslog mysql.myd linux-src

(D
et

ec
te

d)
 D

up
lic

at
e 

da
ta

 (K
B

) Original duplicate data
SBBS
TSB

 
Fig. 9 The detected duplicate data of three test files 
for two duplicate detection algorithms (SBBS and 
TSB) 
 

(2) Storage overhead and bandwidth ratio 
For full backup, the SBBS-based and the TSB-

based differential backup techniques, the image 
sizes of the three test files are illustrated in Fig. 10. 

The results in this figure show that, for three 
typical files, the designed SBBS-based backup 
technique respectively saves 9.7%, 11%, and 4.5% 
storage space compared with TSB-based technique; 
and respectively saves 38%, 75%, and 34% storage 
space compared with full backup technique. The 
higher the duplicate rate in a test file, the more 
storage space these techniques save. 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

syslog mysql.myd linux-src
Im

ag
e 

siz
e 

(K
B

)

Full Backup
SBBS-based
TSB-based

 
Fig. 10 The image sizes of three test files for three 
backup techniques 
 

In the aspect of bandwidth saving, this paper 
introduces the term of bandwidth ratio, which is 
defined as the next equation. 
 

backup fullin  data ed transferrofamount  the
backup aldifferentiin  data ed transferrofamount  the

ratiobandwidth =
 (1) 

 
For the three test files, the bandwidth ratios of 

SBBS-based and TSB-based backup techniques are 
illustrated in Fig. 11. As this figure shows, the 
bandwidth ratios of these two backup techniques are 
also proportional to the detection rate of test files. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

syslog mysql.myd linux-src

B
an

dw
id

th
 r

at
io

 .

SBBS-based

TSB-based

 
Fig. 11: The bandwidth ratios of three test files for 
two backup techniques (SBBS-based and TSB-
based) 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 146 Volume 11, 2014



 
(3) Backup time 
The backup time includes the time for detecting 

duplicate data, reading differential data, and packing 
differential data into an image, excluding the time 
for transferring network data. 

SBBS backtracks sub-blocks based on TSB. For 
sub-blocks, SBBS needs to further calculate and 
compare hash values, which causes a slight increase 
in the number of computations compared with TSB. 
In addition, compared with TSB, SBBS itself needs 
more extra memory storage to store the hash values 
of sub-blocks. In order to improve detection 
precision, as well as control additional storage 
overhead, SBBS chooses a larger block size, 8 kB, 
for files larger than 1024 kB. 

For three backup techniques, the backup time of 
three test files are shown in Fig. 12. 

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000
110,000

syslog mysql.myd linux-src

B
ac

ku
p 

tim
e 

(m
s)

Full Backup
SBBS-based
TSB-based

 
Fig. 12 The backup time of three test files for three 
backup techniques 
 

The results in this figure show that, for syslog, 
the proposed SBBS-based technique spends 8.5% 
more time compared with the TSB-based technique, 
but the former saves 9.7% more storage space; for 
mysql.myd, the proposed SBBS-based technique 
spends 5.9% more time compared with the TSB-
based technique, but the former saves 11% more 
storage space. More importantly, in the proposed 
SBBS-based technique, the calculations for backup 
are mainly fulfilled on the client end. In sum, the 
proposed SBBS-based technique saves storage 
space and alleviates storage pressure for the backup 
server through introducing little more calculations in 
the client end. 
 

Based on above experiments, some implications 
are concluded as follows. 

1) The SBBS algorithm [21] improves the 
duplicate detection precision by 6.5% to 11% 
compared with the TSB algorithm. 

2) The proposed SBBS-based differential backup 
technique decreases the image size, thus reducing 
network bandwidth occupation and saving storage 
space of the backup server. Compared with TSB-
based technique, the proposed differential backup 
technique saves 4.5% to 11% storage space. 
 
6 Conclusion and future work 
For duplicate detection in differential backup, the 
SBBS algorithm enhances duplicate detection 
precision through backtracking the left/right quarter 
and half sub-blocks of matching-failed segments. 
Based on the SBBS algorithm, this paper designs 
and implements a differential backup and restore 
system. Compared with TSB-based technique, the 
proposed SBBS-based differential backup technique 
saves up to 11% storage space. 

However, for the scenario where the set of data 
objects includes so many small files, the proposed 
SBBS-based backup technique behaves not as good 
as expected, which is a direction of the future efforts 
of this paper. In addition, the deduplication and 
backup techniques under virtualization and cloud 
environments are still challenging currently, which 
is another direction of the future efforts of this paper. 
 
Acknowledgments 
The authors would like to thank both the editor and 
anonymous reviewers for their valuable feedback 
comments. 

The work of this paper is mainly supported by 
National Natural Science Foundation of China 
(Grant No. 61272399), and Research Fund for the 
Doctoral Program of Higher Education of China 
(Grant No. 20110191110038). 
 
References: 
[1] S. Nakamura, C. Qian, S. Fukumoto, and T. 

Nakagawa, Optimal backup policy for a 
database system with incremental and full 
backups, Mathematical and Computer 
Modelling, vol. 38, no. 11-13, pp. 1373-1379, 
2003. 

[2] C. H. Qian, Y. Y. Huang, X, F. Zhao, and T. 
Nakagawa, Optimal backup interval for a 
database system with full and periodic 
incremental backup, Journal of Computers, vol. 
5, no. 4, pp. 557-564, 2010. 

[3] D. Meister, A. Brinkmann, Multi-level 
comparison of data deduplication in a backup 
scenario, In: Proceedings of the Israeli 
Experimental Systems Conference, Article no. 
8, 2009. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 147 Volume 11, 2014



[4] C. H. Qian, S. Nakamura, and T. Nakagawa, 
Optimal backup policies for a database system 
with incremental backup, Electronics and 
Communications in Japan Part III - 
Fundamental Electronic Science, vol. 85, no. 4, 
pp. 1-9, 2002. 

[5] J. Nie, Design the desktop backup system 
based on cloud computing, In: Proceedings of 
the 8th International Conference on 
Computational Intelligence and Security, pp. 
183-185, 2012. 

[6] R. J. T. Morris and B. J. Truskowski, The 
evolution of storage systems, IBM Systems 
Journal, vol. 42, no. 2, pp. 205-217, 2003. 

[7] G. Pluta, L. Brumbaugh, W. Yurcik, and J. 
Tucek, Who Moved My Data? A Backup 
Tracking System for Dynamic Workstation 
Environments, In: Proceedings of 18th 
USENIX Large Installation System 
Administration Conference (LISA), pp. 177-
186, 2004. 

[8] W. Xu, M. Wang, X. He, and Z. J. Liu, BM-
CVI: A backup method based on a cross-
version integration mechanism, In: Proceedings 
of International Conference on Convergence 
Information Technology, pp. 781-788, 2007. 

[9] J. Velvizhi, C. G. Balaji, Fingerprint lookup-an 
effective and efficient backup using 
deduplication technique, Journal of Theoretical 
and Applied Information Technology, vol. 38, 
no. 1, pp. 49-54, 2012. 

[10] D. N. Simha, M. H. Lu, T. C. Chiueh, A 
scalable deduplication and garbage collection 
engine for incremental backup, In: Proceedings 
of the 6th International Systems and Storage 
Conference, Article no. 16, 2013. 

[11] D. T. Meyer and W. J. Bolosky, A study of 
practical deduplication, ACM Transactions on 
Storage, vol. 7, no. 4, Article 14, 2012. 

[12] Y. Zhang, Y. W. Wu, and G. W. Yang, 
Droplet: A Distributed Solution of Data 
Deduplication, In: Proceedings of the 13th 
ACM/IEEE International Conference on Grid 
Computing, pp. 114-121, 2012. 

[13] K. Srinivasan, T. Bisson, G. Goodson, and K. 
Voruganti, iDedup: latency-aware, inline data 
deduplication for primary storage, In: 
Proceedings of the 10th USENIX conference on 
File and Storage Technologies, 2012. 

[14] M. Kaczmarczyk, M. Barczynski, W. Kilian, 
and C. Dubnicki, Reducing impact of data 
fragmentation caused by in-line deduplication, 
In: Proceedings of the 5th Annual International 
Systems and Storage Conference, Article no. 
15, 2012. 

[15] C. Kim, K. W. Park, and K. H. Park, GHOST: 
GPGPU-offloaded high performance storage 
I/O deduplication for primary storage system, 
In: Proceedings of International Workshop on 
Programming Models and Applications for 
Multicores and Manycores, pp. 17-26, 2012. 

[16] B. Debnath, S. Sengupta, and J. Li, 
ChunkStash: speeding up inline storage 
deduplication using flash memory, In: 
Proceeding of USENIX annual technical 
conference, pp. 1-16, 2010. 

[17] K. Jin, E. L. Miller, The effectiveness of 
deduplication on virtual machine disk images, 
In: Proceedings of the Israeli Experimental 
Systems Conference, Article no. 7, 2009. 

[18] T. E. Denehy and W. W. Hsu, Duplicate 
management for reference data, IBM Research 
Report, RJ 10305 (A0310-017). 2003 

[19] C. Policroniades and I. Pratt, Alternatives for 
Detecting Redundancy in Storage Systems 
Data, In: Proceedings of the USENIX Annual 
Technical Conference, pp. 73-86, 2004. 

[20] J. T. Ma, A Deduplication-based Data 
Archiving System, In: Proceedings of 
International Conference on Image, Vision and 
Computing, 2012. 

[21] G. P. Wang, S. Y. Chen, M. W. Lin and X. W. 
Liu, SBBS: A sliding blocking algorithm with 
backtracking sub-blocks for duplicate data 
detection, Expert Systems with Applications, 
Vol. 41, Issue 5, pp. 2415-2423, 2014. 

[22] C. H. Ng, M. C. Ma, T. Y. Wong, P. P. C. Lee, 
and J. C. S. Lui, Live deduplication storage of 
virtual machine images in an open-source 
cloud, In: Proceedings of the 12th International 
Middleware Conference, pp. 80-99, 2011. 

[23] D. Meister, J. Kaiser, and A. Brinkmann, Block 
locality caching for data deduplication, In: 
Proceedings of the 6th International Systems 
and Storage Conference, Article no. 15, 2013. 

[24] Y. W. Ko, H. M. Jung, W. Y. Lee, M. J. Kim, 
and C. Yoo, Stride Static Chunking Algorithm 
for Deduplication System, IEICE Transactions 
on Information and Systems, vol. E96D, no. 7, 
pp. 1544-1547, 2013. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Guiping Wang, Shuyu Chen, Jun Liu

E-ISSN: 2224-3402 148 Volume 11, 2014




