
Online Filtering and Uncertainty Management Techniques
for RFID Data Processing

RAZIA HAIDER, FEDERICA MANDREOLI, RICCARDO MARTOGLIA
FIM - University of Modena and Reggio Emilia

Via Campi 213/b, 41125 Modena
ITALY

<name.surname>@unimo.it

Abstract: RFID is one of the emerging technologies for a wide-range of applications, including supply chain and
asset management, healthcare and intruder localization. However, the nature of an RFID data stream is noisy,
redundant and unreliable, making it unsuitable for direct use in applications. In this paper, we propose specific
RFID Online Filtering and Uncertainty Management techniques that operate on unreliable and imprecise data
streams in order to transform them into reliable probabilistic data that can be meaningful to the applications. Our
proposal makes use of an Hidden Markov Model (HMM) that continuously infers hidden variables (locations,
in case of above example) based on sensor readings. The resulting data can be directly stored in a probabilistic
database table for further analysis. All the techniques presented in this paper are implemented in a complete
framework and succesfully evaluated in real-world object tracking scenarios.
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1 Introduction

Data streams are possibly infinite sources of data that
stream continuously while observing a physical phe-
nomenon, e.g. temperature or humidity levels, tele-
phone call records or audio video streaming, and so
on. Data streams could be generated in different sce-
narios by different devices, such as audio and video
devices, Global Positioning System (GPS), Radio Fre-
quency Identification (RFID) and other types of sen-
sors. Among these, RFID is one of the emerging tech-
nologies for a wide-range of applications, including
supply chain and asset management [11, 30], health-
care [21], monitoring the location and status of pa-
tients in hospital environment [18], localizing intrud-
ers for alerting services [5] and so on. RFIDs offer
a promising alternative to barcode identification sys-
tems. In an RFID system, an environment is deployed
with the RFID readers and antennas while users and
objects carry RFID tags. RFID readers detect the pres-
ence of tags in their vicinity and generate streams of
low-level observations in the form of TREs (Tag Read
Events): (tag id, antenna id, time) that show when
and where tags are being sighted. These low-level ob-
servations must be transformed into high-level events
meaningful to applications. For example, “Tag 101
was seen at antenna 12 at 10:00” must be transformed
into meaningful relation instance such as “ Alice was
in her office at 10:00”.

Nevertheless, the management of RFID data in
transforming low-level streams in to high-level events
poses a number of challenges [4, 14]. In particular,
the nature of an RFID data stream is noisy, redun-
dant and unreliable, making it unsuitable for direct use
in applications. RFID deployments, generally, pro-
duce imprecise data mainly because of the following
reasons: (a) Missing Readings: Loss of reading in-
stances in which RFID tags are not detected by the
antenna while actually being present within its cover-
age area. This is a phenomenon whose causes are en-
tirely separate from the specific application scenario
and the technologies used in the construction of the
devices; the incidence of this phenomenon is, how-
ever, high and not negligible: recent studies report
that an RFID reader is usually able to detect only 60%
-70% of tags that are in its vicinity [9, 15]; (b) Data-
Information Mismatch: Mismatch between the infor-
mation to which the application is concerned and the
data produced by the sensors. Typically an applica-
tion is particularly interested in high-level information
such as “who is in a certain place at a given time”, “the
place where he can be”, for example, a room, a spe-
cific area, or near by an object. The sensors are lim-
ited to providing data in form of low-level signaling
i.e., “when a tag is detected by a certain antenna”.

For all of these reasons the generated stream of
raw data becomes unreliable for RFID applications
and makes them not suitable to be directly used for
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further analysis. To this end, in this paper we propose
specific RFID Online Filtering & Uncertainty Man-
agement techniques that operate on unreliable and
imprecise data streams in order to transform them
into reliable probabilistic data that can be meaning-
ful to the applications. A common way of dealing
with such kind of imprecise data is to build a model
of the data and use stream of raw readings as input
to the model. Our proposal makes use of a tempo-
ral graphical model [19], a Hidden Markov Model
(HMM) [27] that continuously infers hidden variables
(locations, in case of above example) based on sen-
sor readings. Such a relation, becomes a probabilis-
tic relation At(tagID,location,time,prob)
that can be directly stored, for instance, in a (proba-
bilistic) database table and queried to detect complex
events meaningful to applications [29]. An example
tuple is (101,O1,10:00,0.7), which indicates
that tag 101 at time 10:00 was in office O1 with prob-
ability 0.7.

All the techniques presented in this paper are im-
plemented in a complete framework and evaluated
under real-cases in the context of location tracking.
However, they can be applicable in other contexts of
RFID data management applications. The rest of the
paper is organized in the following way: Section 2
describes some background notions about probabilis-
tic graphical models, Section 3 describes the filtering
and uncertainty management techniques we propose,
Section 4 contextualizes the techniques in a complete
RFID data acquisition and management framework,
while in Section 5 we present extensive experiments
in real object tracking scenarios, showing a very good
reliability of the proposed techniques. Finally, Section
6 analyzes related works and gives some concluding
remarks.

2 Background: Probabilistic Graph-
ical Models

2.1 Representation

Graphical models [20] are the combination of prob-
ability theory and graph theory. They provide a nat-
ural tool for dealing with uncertainty and complexity
problems that exist in many real world applications.
The graphical models basically work on the concept
of modularity; a complex system is built by combin-
ing simpler parts. Probabilistic graphical models [19]
are graphs in which nodes represent random variables.
Arcs, or the lack of arcs, represent conditional in-
dependence assumptions. Therefore, they provide a
compact representation of joint probability distribu-
tions.

There are two types of probabilistic models: undi-
rected and directed graphical models. DBNs are the
example of directed graphical models of stochastic
processes. They are used to compactly represent the
stochastic evolution of a set of variables over time,
where the graph structure captures the complex in-
terdependencies between the variables of the pro-
cess. DBNs generalize HMMs and linear dynamic
systems (LDSs) [13] by representing the hidden (and
observed) state in terms of state variables, which can
have complex interdependencies. The graphical struc-
ture provides an easy way to specify these conditional
independencies, and hence, to provide a compact pa-
rameterizations of the model.

Since the solutions we present in this paper are
based on HMMs, we will now focus on HMMs.

2.1.1 Hidden Markov Models

HMMs have one discrete hidden node variable and
one discrete or continuous observed node variable per
slice. HMMs are an often used model for time series
data. They are used in various applications such as
image recognition, pattern recognition, data compres-
sion and speech recognition. They represent probabil-
ity distributions over sequences of observations.

Definition: An HMM is formally defined as a fi-
nite set of discrete states (it can be multidimen-
sional), each of which is associated with a prob-
ability distribution. Since the states are discrete,
transitions among states are controlled by set of
probabilities called transition probabilitiesAij =

P (St+1 = S(i)|St = S(i)). In particular, state
observations can be generated according to the
associated probability distributions. Only the ob-
served value, not the state, is visible to an exter-
nal observer; hence, states are hidden.

Parameters of HMMs: In order to define an HMM,
the following parameters are required:

• N , the number of states in model S =
{S1, S2, . . . , SN};
• M , the number of possible observations;

• The initial state distribution Π = {Πi}
where Π = P {q0 = Si} , 1 ≤ i ≤ N ;

• The state transition probabilities {Aij}
where Aij = P {qt+1 = Sj |qt = Si} 1 ≤
i, j ≤ N , where qt denotes the current
state;

• The observation/emission probabilities
B = bi(j):
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bi (j) = P {ot = vk|qt = j} ,
1 ≤ j ≤ N, 1 ≤ k ≤M,

where Vk denotes the kth observation and
Ot the current parameter vector.

Given an HMM, there are two basic problems of
interest that must be solved for the model to be useful
in real-world applications:

• Inference: Given the observation sequence
O = o1, o2, ..., ot and a model λ =
(N,M,Πi, Aij , bi(j)), how to choose a corre-
sponding state sequence S = s1, s2, ...st which
is optimal in some meaningful sense (i.e. best
explain the observation);

• Learning: Given the observation sequence
O = o1, o2, ..., ot and a model λ =
(N,M,Πi, Aij , bi(j)), how to adjust the model
parameters in order to maximize P (O|λ).

2.2 Inference

In various real-world data streams, the elements of in-
terest may not be directly observable (e.g. location
information in a raw data stream coming from RFID
tracking application [29, 16, 31]), or it may be very
expensive to measure them. A common way to pro-
cess such kind of data streams is to continuously infer
the value of the hidden variables by using observed
data. Different types of methods allow us to combine
prior domain knowledge about the system behavior
with the actually observed variables to compute the
best possible estimate of the hidden variables. This
task is known as “inference”.

While “exact inference” algorithms can be effec-
tively used in simple cases, such as linear dynamic
systems (LDSs), most of them face severe challenges
for large, densely connected models with high up-
date rates. In order to handle the intractability in
real-world scenarios “approximate inference” algo-
rithms have been developed. In particular, recursive
estimate techniques such as Particle Filtering [8] are
memoryless inferencing techniques which are partic-
ularly effective in such contexts. They are Monte
Carlo sampling based techniques implementing recur-
sive Bayesian filters. The basis of the method is to
represent the posterior density by a set of random par-
ticles with associated weights and then compute esti-
mates based on these samples and weights. The higher
weights specify more probable states.

2.3 Learning

A probabilistic graphical model is usually represented
by the Conditional Probability Distributions (CPD),

which are referenced as parameters of the model.
These CPDs are used to define the transition model
P (St|St−1) and the observation model P (Ot|St).
“Learning” is the process of estimating these parame-
ters from training data.

Maximum Likelihood Estimation (MLE) [26] is
one of the most widely used statistical techniques to
learn the parameters of a CPD. From the training data,
this provides an estimate of the values of the param-
eter θ of the CPD, which maximizing the likelihood
of observing that data. Specifically, given a data sam-
ple X1, ..., Xn, assumed to be independent and iden-
tically distributed (iid) from a parametric distribution
with unknown parameters, the purpose of MLE is to
estimate the value of the unknown parameters.

In particular, the MLE method allows us to de-
rive the joint probability distribution P (Ot, St). Fi-
nally, by applying Bayes’ Theorem, we can obtain
the conditional probability distribution of the obser-
vations P (Ot|St).

3 Online Filtering & Uncertainty
Management

In this section, we will present in detail the techniques
we exploit in order to provide filtering and uncertainty
management to RFID data. The reference scenario
will be location tracking. The techniques will then be
put in context in Section 4, where they will be shown
as being at the heart of a complete RFID data manage-
ment framework.

3.1 Representation

The detailed block diagram of the involved process
is shown in Figure 1. In the reference scenario, the
interest of the application is to infer the positions of
people and/or objects over time on the basis of the
RFID readings collected by the reader. Positions are
not being directly observable and are considered as the
hidden variables, while the readings are our observ-
able events, or simply our “observations”. Thus, this
process uses an HMM to produce, at each timestamp,
a distribution over each tag location (i.e. the hidden
variables or states) based on observations, i.e. sen-
sor readings. These observations include four types
of information: 1) the identifier of the tag the read-
ing concerns to; 2) the identifier of the antenna(s) the
tag is seen by; 3) the Received Signal Strength Indica-
tor(s) (RSSIs) of the reading; 4) the timestamp of the
reading. The employed model allows us to combine
prior domain knowledge about the system behavior
with the actual observations, so to compute the most
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RFID Data Online Filtering & Uncertainty 
Management  

<TagID, AntID, RSSI,Timestamp> 
<tag1,ant1,-23,ant2,-78,……,antn,-60,t1> 
 ……………….!

(Person, LocID, Timestamp, Prob) !
(Bob, L1, t1, 0.8) !

…………!

Hidden&Markov&
Model&(HMM)&

Figure 1: Block Diagram of the Online Filtering and
Uncertainty Management process

likely values of the hidden variables. While observa-
tions are directly evaluable, the prior knowledge about
the system is represented by Conditional Probability
Distributions (CPDs) which are referenced as the pa-
rameters of the HMM.

A graphical representation of designed HMM is
shown in Figure 2. The nodes of the graph represent
the variables (hidden states and observations) of the
modeled system, while the directional arcs represent
the concept of “causality”, whose degree is indicated
by the corresponding CPD. Specifically, square nodes
in the graph represent the observationsO and thus cor-
respond to measurements collected by RFID antennas,
while round nodes represent states and thus coincide
with the location of people (for these reason, in the
following we will denote each of these states as L).
It is noted that, according to the well-known Markov
principle, the model assumes that the variables at time
t directly depend on the variables at time t and t − 1
only and, hence, two consecutive time instances are
sufficient for completely representing the whole sys-
tem. The other parameters of the HMM, or the CPD
that describe the relationship between the variables
that are represented as directional arcs in Figure 2, are
listed below:

1. the initial states distribution P (L0) encodes
knowledge about the initial state of the system
(i.e. at the time instant 0);

2. the transition probability distribution
P (Lt+1|Lt) encodes the knowledge of how
the state of the hidden variables at time instant
t+ 1 depends on the state at time instant t;

T!=0! T=t! T=t+1! T=t+n!

L0!

O0!

…!

…!

Lt!

Ot!

Lt+1!

Ot+1!

…!

…!

Lt+n!

Ot+n!

P(Ot|Lt )!

P(Lt+1|Lt )!P(L0 )!

Figure 2: Graphical Representation of the Hidden
Markov Model Used

3. the observation probability distribution
P (Ot|Lt) encodes the knowledge of how
the observations at time instant t depend on the
state of the hidden variables at time instant t.

3.2 Learning

In order to maximize the effectiveness of the filtering
and uncertainty management techniques in the con-
sideed location tracking context, the above discussed
CPDs are modeled as follows:

1. the initial states probability P (L0): it is as-
sumed to be a uniform distribution among all the
possible locations;

2. the transition probability P (Lt|Lt−1): it is mod-
eled as a matrix whose rows ad columns are as-
sociated to the available locations so that each
cell [i, j] contains the probability value of having
a movement from location i to location j (as an
example, if two locations are separated by a wall
the corresponding cell will contain the value 0);

3. finally, the observation probability P (Ot|Lt):
this information is typically not available and,
thus, has to be learned from training data. To
this end, we adopt a Maximum Likelihood Es-
timation (MLE) approach: given learning data,
we estimate the value of the probability function
parameter that maximizes the likelihood of the
observed data (i.e. that makes the learning data
“most likely”). Actually, MLE allows us to com-
pute the conjunctive probability P (Ot, Lt), from
which observation probability P (Ot|Lt) can be
easily computed by applying the Bayes theorem.

3.3 Inference

Our final aim of modeling a stochastic process with
an HMM is to obtain the posterior probability dis-
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Figure 3: Detail of the steps performed for RFID On-
line Filtering & Uncertainty Management inference

tribution P (Lτit ) over the hidden variable Lτit (loca-
tion of tag τi at time instant t) given the observed
measurements (“inference” task). Among the others,
we decided to exploit the popular Monte Carlo al-
gorithm called Particle Filtering [3], usually adopted
in sample-based inference processes. The algorithm
works by computing and constantly maintaining sets
of particles to describe the historical and present states
of the model. Figure 3 represents a schema of the
steps executed by the algorithm at each time instant
t. Specifically, given the observed values oτit for each
identified tag τi, the algorithm works by iteratively ex-
ecuting the following steps:

Initialization: during this phase, an initial set of
particles is created by randomly sampling from the
initial states probability P (L0);

Prediction: during this phase, the state of hidden
variables at time t is estimated by using their state at
time t−1 and exploiting the parameters of the HMM.
More precisely, for each existing particle pit−1 at time
t− 1 a new particle pit is created for time t by sam-
pling from P (Lt|Lt−1);

Filtering: in this phase, the observation ot ar-
rived at time t are used to update the states previously
estimated for time t. More precisely, each particle
pit is assigned a weight based on the values of the
observed variables at time t and on the observation
probability P (Ot|Lt). This weight is proportional to
P (Ot = oτit |Lt = λ) where λ is the location of pit;

Re-sampling: in this phase, the particles created
in the Filtering step are re-sampled in order to gener-
ate a new set of particles, all with the same weight.
This task is necessary in order to avoid degeneracy,
i.e. the case where a single particle has all the weight.

Broadly speaking, each particle pit represents a
guess about the location of tag τi. Then, after a
number of iterations, the inference task is performed:
to compute the posterior probability P (Lτit ) we just
need to count the number of particles in each location
and divide it by the total number.

4 Filtering Techniques in Context:
the Complete RFID Data Manage-
ment Framework

In this section, we will contextualize the filtering and
uncertainty management techniques presented in this
paper in a complete RFID Data Management Frame-
work, the one we exploited in order to verify their ef-
fectiveness in a location tracking application.

• At the lowest part of the framework, RFID read-
ers and tags, managed in a Data Acquisition
Layer (see Section 4.1), provide raw RFID data;

• Raw data is the input to a Data Filtering Layer,
at the heart of the framework, which imple-
ments the techniques discussed in the previous
sections. The results of their application is the
transformation of the raw data into a stream
of “filtered” tuples, according to the schema
(Person, Location, T ime, Probability);

• such filtered probabilistic tuples can then be
managed, queried and stored in a standard proba-
bilistic database, as will be briefly discuss in Sec-
tion 4.2.

4.1 RFID Data Acquisition

At the lowest level of the framework is the Data
Acquisition Layer, which is populated by RFID de-
vices including RFID tags and readers. RFID tags
are attached to the objects and people that have to be
tracked, while RFID readers receive data from these
tags in the form of radio signals and convert them in
digital form to pass it to the upper levels of the frame-
work. In the following, we will give some details on
the hardware configuration that we exploited (and to
which the results presented in Section 5 will refer).

Figures 4, 5 and 6 present the RFID reader, anten-
nas and tags we employed in instantiating our frame-
work. These are some specifications that can be useful
in order to better understand how the proposed tech-
niques work and perform:

• Reader: we used a fixed reader that can interro-
gate tags at distances of up to 300 feet (100 me-
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Figure 4: A fixed reader of our framework

Figure 5: An Elliptical Polarized Antenna of our
framework

ters) (Figure 4). The reader establishes the con-
nection to the host system by using the RS422 in-
terface. For data exchange, a simple master/slave
protocol is used by the reader. The protocol
also gives us some additional information such as
time of data reception, signal strength and num-
ber of times the tag has been read by the reader;

• Antennas: the choice of antennas depended on
the type and requirement of the application. An
Elliptical Polarized Antenna (Figure 5) has a
wide apex angle of (120◦), which enables it to
cover large read zone. Therefore, it is capable
of reading a large number of tags at one time
even at fast speeds. The orientation of the tags
relative to the antenna is not important. On the
other hand, a Linear Polarized Antenna is more
suitable for applications in which read zones are
restricted and data collection must be selective.

Figure 6: An active tag exploited in our framework

This antenna has smaller apex angle of (60◦).
The field of antenna is either horizontally or ver-
tically polarized depending on the mounting di-
rection, thus requiring the tag to have the same
orientation. Elliptical antennas are the ones most
suited to our purposes and have been used for fi-
nal experimentation;

• Tags: we employed active RFID tags based on
UHF radio frequency (Figure 6). The tags are
capable of providing long range for wireless ap-
plications and can transmit data at distances of up
to 300 feet (100 meters) to readers. The tags con-
tinuously send static data written in their memory
at pre-programmed intervals known as ping rate.
Ping rate can be one second to four minutes (one
second in our setup). Due to the ultra-low power
consumption of the active tags, an operational
lifetime of up to 6 years can be expected mak-
ing them suitable for identification and tracking
applications.

4.2 RFID Data Storage and Querying

.
Even if not at the focus of this paper, we will

complete the description of the framework by provid-
ing a short description of how the tuples produced by
the data filtering layer can be stored and queried in
the context of a full RFID location tracking applica-
tion. Since the output of our filtering and uncertainty
management techniques are filtered probabilistic tu-
ples, they can be directly and effectively stored in a
probabilistic database management system (an exam-
ple is MayBMS [1]). A probabilistic database stores
data by means of special U-relational tables, provid-
ing a complete and concise representation of the large
number of possible worlds that are generated in the
presence of probabilistic tuples [2]. It also provides an
expressive query language that supports the entire set
of capabilities offered by SQL and extends it with fea-
tures designed to support the probability and to work
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--Who was at ‘L1’ in first minute?

SELECT tagId, conf()

FROM Pw 

WHERE LocationId='L1' 

AND instant<=(select starttime()

+ interval '00:01:00') 

GROUP BY TagId;

--Where was ‘P1’ in the last 20 seconds? 

SELECT LocationID, conf()

FROM Pw

WHERE TagId=‘P1' 

AND instant >= (select endtime()) - '00:00:20' 

GROUP BY LocationId;

--In the last 2 minutes was it that the

‘P1’ and ‘P2’ were simultaneously

present at ‘L2’? If so, when?

SELECT p1.instant,conf() 

FROM Pw p1, Pw p2

WHERE p1.TagId=‘P1‘

AND p2.TagId=‘P2'

AND p1.LocationId= 'L2‘

AND p1.LocationId=p2.LocationId

AND p1.instant = p2.instant

AND p1.instant>= (select endtime()) - '00:02' 

group by p1.instant

--Was ‘P1'at ‘L1’ 1 minute ago?

SELECT conf() 

FROM Pw

WHERE LocationId ='L1' 

AND tagId= ‘P1' 

AND instant = '17:18:49' - interval '00:01:00' ;

Q1 Q2

Q3 Q4

Figure 7: Example of probabilistic queries

with uncertainty. Due to its compatibility with the re-
lational algebra and standard SQL, a comprehensive
set of constructs for data transformation can be easily
exploited. Figure 7 shows some examples of possible
temporal probabilistic queries that could be issued on
the probabilistic data we generate.

5 Experimental Evaluation

In this section, we discuss the different experiments
that we conducted in order to evaluate the effective-
ness of the proposed techniques.

5.1 Experimental Setup

We performed experiments in different scenarios, col-
lecting data from people wearing RFID tags. The
experimental scenarios are set in three indoor loca-
tions (denoted by L1, L2, and L3) and capture dif-
ferent possible movement behaviors. Figure 8 shows
the overview of the testbed, where locations are rep-
resented by bounded areas and the antenna by a black
box. In this setup, we have collected data from RFID
tags in two different scenarios: 1) “Stay”, where peo-
ple move between locations and spend some time on
each of them; 2) “No Stay”, where people rapidly
move between locations without staying on any spe-
cific one; Both types of scenarios have been tested
with one/multiple tags.

During the training phase, we used a single per-
son as a probe to collect RSSI samples for each of
three locations (L1, L2, and L3). Then, we performed
MLE on them in order to map the locations and to
learn the observation probability. During the testing
phase, instead, we applied the proposed techniques to
infer/track the location of the RFID tags attached to
people. Particle filtering has been initialized with 500

 

L1 

 

 

L3 

 
 

L2 

 

Figure 8: An Overview of the testbed used detailing
the mapped locations

particles where the initial probability distribution for
each location is uniform. Regarding the prediction,
we defined a uniform transition matrix according to a
map of locations; more specifically, the probability of
moving from one location to others is uniform for all
but the cases of two locations which are not directly
connected to each other or are separated by some bar-
rier (e.g. a wall, in this case probability is set to zero).

5.2 Experimental Results

For each experiment, we evaluated the results on the
basis of a location error criteria. In order to estimate
the location error, we proceeded in two steps: first of
all we computed a value we call the “estimated vs
ground truth error”: it is calculated at each time in-
stant by means of an Euclidean distance between the
ground truth and the estimated value. Then, we com-
puted the actual location error, which is devised to
ultimately quantify what we care about in a location
tracking application: how long and how much the es-
timated value differs from the ground truth, when the
actual estimated location is wrong. More specifically,
it coincides with the estimated vs ground truth error
but only for those time instants when a “wrong” lo-
cation is reported; in the other instants, location error
is 0. The values of location error (and estimated vs
ground truth error) are between 0 and 1, where the
lower the value the better the estimate. In the follow-
ing, we will show for each experimental case a graph
of the trend of the location error over the whole time
span of the experiment; for completeness, we will also
present the associated estimated vs ground truth error
graphs. Moreover, we will complement this data with
a single summarizing value, i.e. the average precision,
computed as the percentage of time for which the esti-
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Figure 9: Case 1: Stay with 1 Tag

mated answer reports the same location as the ground
truth (the higher the value the better).

In the following, there is description of each case
and the obtained results from these cases.

Case 1: Stay with 1 Tag: this case considers one
person with an RFID tag moving between locations
but staying for some time on each of the location. Fig-
ures 9 (a,b) show the achieved results for this case.
The average precision is 96.95%, which is a very sat-
isfying figure.

Case 2: Stay with 2 Tags: in this case, two peo-
ple wearing RFID tags walk side by side and stay on
each location. Figures 10 (a,b) show the results of ex-
periments done in this case. Both persons were walk-
ing together and change their locations on the same
time instants and, again, this behavior is shown by all
graphs in overlapping results for both tags. The aver-
age precision is 95.39%.

Case 3: No Stay with 1 Tag: in this case, a per-
son wearing an RFID tag that transmits every second
rapidly moves between L1, L2 and L3 and does not
stay at any of them. Please note that the movement
scenario of this case (and case 4) could potentially be
a difficult situation for capturing the exact locations,
due to the fact that people move rapidly and do not
stay on one particular point. Therefore, it could not be
easy to produce stable RSSI values from the RFID an-
tennas. Figures 11 (a,b) show the estimated vs ground
truth error and location error for this case, respec-

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 51 101 151 201

Er
ro

r 

Time[s] 

Avg. Location Error 

Tag 1

Tag 2

(a) Estimated vs Ground truth Error

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 51 101 151 201

Er
ro

r 
Time[s] 

Estimated Vs Ground truth Error 

Tag 1

Tag 2

(b) Location Error

Figure 10: Case 2: Stay with 2 Tags

tively. As we can see from Figure 11 (b), our tech-
niques reported a wrong estimated location at only
one second. Similarly, if we consider estimated vs
ground truth error, it is clear from Figure 11 (a) that
the highest peak of error is nearly 0.008 which is a
wrong location according to ground truth, while all
other values are lower and correspond to correct loca-
tions. The resulting average precision for this case is
99%, again a very satisfying result.

Case 4: No Stay with 2 Tags: this case considers
the same movement scenario of case 3 but the num-
ber of involved people is two, holding RFID tags and
walking side by side. Figure 12 (a,b) show the ob-
tained results for this case. Both persons were walk-
ing side by side and changing their locations together
and this behavior of movement is very clear from the
resulting graphs. In this case, the average precision is
87.05%.

6 Related Works and Concluding
Remarks

In last few decades, RFID technology has emerged
significantly with many real time applications, such
as product tracking and asset management, object and
people authentication, health care etc. Nevertheless,
data management in these RFID applications poses a
number of challenges [4]. Among the issues that need
to be effectively faced in most RFID deployments,
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Figure 11: Case 3: No Stay with 1 Tag

avoiding missing/wrong readings and being able to
extract high-level complex events from the huge vol-
umes of low-level atomic events acquired by the sen-
sors are particularly critical and challenging tasks.

Several techniques have been proposed for the
analysis and processing of raw noisy RFID data
[28]. A number of techniques propose to clean data
streams deterministically. For instance, [10] proposes
a declarative framework for RFID data cleaning and
processing which makes use of a window-based adap-
tive smoothing filter, producing more reliable RFID
data streams by interpolating missed readings.

Other techniques, instead, exploit the probabilis-
tic nature of RFID data and manage their inherent
uncertainty in the form of probabilities and correla-
tions, so to achieve even higher effectiveness in the
application scenarios they are applied to [29, 31, 17].
For instance, [29, 16] generate probabilistic streams
by inference on an HMM. Then, probabilistic infer-
ence is required in order to extract high-level com-
plex events from the low-level atomic events acquired
by the readings. For example, in tracking applica-
tions, the location of the objects is unknown to the
system and observed low level sensor data is trans-
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Figure 12: Case 4: No Stay with 2 Tags

lated into precise and more reliable estimates about
the location of these objects [29, 17]. Note that all
such RFID systems define locations on the basis of
actual places/areas which are of interest to the final
users (e.g. a restricted-access room), as reflected also
by the supported queries and the produced results (e.g.
“Find out which rooms entered Paul today”).

In [6, 7], Deshpande et al. discuss techniques
based on probabilistic model in order to handle input
errors and inaccuracies. These techniques are based
on temporal and spatial correlations to predict miss-
ing values, to identify outliers and to approximate an-
swers to queries. Most of them mainly deal with inac-
curacy errors present in raw RFID data, filtering and
smoothing operations before feeding into higher level
applications, thus not dealing (and not exploiting) the
“meaning” of the managed information.

A number of probabilistic techniques have also
been proposed for the analysis and transformation of
RFID low-level data streams into meaningful infor-
mation in order to deal with data-information mis-
match problem. These techniques, exploit the proba-
bilistic nature of RFID data and manage their inherent
uncertainty in the form of probabilities and correla-
tions, so to achieve even higher effectiveness in the ap-
plication scenarios they are applied to [17, 29, 31, 32].
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For instance [16, 29] generate probabilistic streams by
inference on an HMM. Then, probabilistic inference is
required in order to extract high-level complex events
from the low-level atomic events acquired by the read-
ings. For example, in tracking applications, the loca-
tion of the objects is unknown to the system and the
observed low level sensor data is translated into pre-
cise and more reliable estimates about the location of
these objects by implementing an HMM [29, 31].

In this paper, we presented filtering and uncer-
tainty management techniques for RFID probabilistic
data management which are able to convey the RFID
data to higher level data information modules, filter-
ing inaccuracy errors and smoothing the raw RFID
streams.

The proposed techniques, also in the light of the
successful experimental evaluation we performed in
real-world object tracking scenarios: (a) differently
from most of the techniques available in the literature,
work effectively without knowing in advance any spe-
cific information characterizing data uncertainty, such
as the entire probability density function or standard
error data available; (b) achieve the ultimate goal of
transforming raw RFID data into reliable meaningful
probabilistic data streams.

In the future, we will continue our work in mak-
ing RFID data available to high level data manage-
ment modules. In particular, by extending the tech-
niques developed in complementary research fields,
such as semantic data sharing and querying [12, 22,
23, 24, 25], toward RFID data, we will contemplate
the feasibility of querying in a uniform way multiple
RFID streams together with other kinds of heteroge-
neous data sources.
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