

Patterns in the Requirements Engineering: A Survey and Analysis

Study

PRANAY MAHENDRA

Arizona State University

School of Computing, Informatics, and Decision Systems Engineering

7171 E. Sonoran Arroyo Mall, Mesa, AZ 85212

USA

Pranay.Mahendra@asu.edu

ARBI GHAZARIAN

Arizona State University

School of Computing, Informatics, and Decision Systems Engineering

7171 E. Sonoran Arroyo Mall, Mesa, AZ 85212

USA

Arbi.Ghazarian@asu.edu

Abstract: - Requirements patterns have recently been gaining popularity among research communities to help

users in identifying, analysing and structuring requirements of a software system. While still in their early stage

of development, organizing these patterns would not only assist practitioners in accessing patterns but also

provide developers with a direction to design their patterns accordingly. In this paper, an extensive study of

various pattern based methods for the requirements phase is reported. Their features, content, structure, purpose,

role in assisting requirements engineering activities, similarities and differences are analyzed as we

subsequently classify the constituting requirements patterns based on the kind of artefact they present to the

user.

Key-Words: - Requirements Patterns, Requirements Engineering, Classification

1. Introduction
Software engineering has been significantly

impacted since the concept of patterns was adopted

by researchers and practitioners. When a problem

occurs over and over in an environment, its

generalized solution along with certain forces that

govern the application of this solution is coupled to

form a pattern [2]. One can reuse pattern knowledge

to solve recurring problems, without ever doing it in

the same way twice. In their own way, patterns as

tools represent knowledge and experience that

underlies many redesign and reengineering efforts of

developers that have struggled to achieve greater

reuse and flexibility. Since patterns encourage

knowledge reuse and avoid reinventing the wheel,

they show great potential to build software better,

faster and at low cost [6].

Although the concept of patterns existed in the

1980s, it was after mid 1990s that patterns became

widely known and adopted. Over the last two

decades, a large body of pattern knowledge has been

amassed, spanning every phase of the software

development life cycle [60] since the Gang of Four’s

(GOF) design patterns [20] were first proposed for

the design and architecture phases. While an

overwhelming majority of them focus on the

solution space [60], the growth trend for patterns in

the problem space specifically the ones that aid

requirements engineering has slowly but steadily

been on the rise. Organizing them at this stage

would benefit both pattern users as well as

developers. Business analysts and requirements

engineers can find the pattern that solves their

problem more easily with the help of guidelines that

relate other patterns and apply them sequentially.

For pattern writers, a good categorization is the basis

of cross reference so that newer patterns can be

placed into correlated sets. Also, by organizing the

existing body of pattern knowledge, the need to

understand how requirements patterns tie into

modern development methodologies can be

satisfied.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 214 Volume 11, 2014

For the above purposes, the contribution of this

research is threefold – Firstly, we present an

extensive survey of the research in the field of

patterns in the problem space with a special focus on

requirements patterns, by investigate how and what

knowledge do patterns capture to help users

overcome inherent requirements engineering

problems. We then classify various pattern

methodologies found broadly into 3 main categories

based on the varying context of their applicability

and the kind of artefact they offer. Finally, we draw

an analysis of various approaches by comparing and

contrasting them based on general software pattern

criteria as well as general requirements engineering

parameters. The paper is structured as follows.

Section 2 provides a brief background and

motivation for requirements patterns. In section 3,

we present an extensive study of various

requirements patterns, classifying them into various

classes and subclasses. We discuss our findings in

section 4 following which, we conclude the paper in

section 5.

2. Requirements Engineering and

Patterns
Requirements Engineering is the branch of software

engineering where business requirements that a

system must satisfy first need to be gathered, refined

using various analysis techniques before being

verified against stakeholder needs and eventually be

transformed into a functional software product [63].

Though described as individual and ordered sub-

processes namely elicitation, analysis, negotiation

and validation, these activities in practice are

interleaved, iterative and span the entire

development process depending on the organization,

application domain, and people involved [44].

Natural language is the primary medium of

requirements communication among project

stakeholders. However, for later stages of

development, such descriptions are rendered

imprecise and not complete enough so as to be

transformed into software. Hence requirements are

also represented in a variety of other formats with

the help of various modelling tools and languages,

which provide a more concrete basis for designing

and consequently building the required system. In

the real world however, engineers face various

difficulties in this process.

1) The challenge of building a detailed

specification from abstract and often conflicting

ideas from various stakeholders [44].

2) Since a large group of stakeholders lack the

knowledge about computing but have to

understand various artefacts of the system,

defining requirements at different levels of

understandability is a tedious task [6].

3) Unlike the solution space, the problem space is

unconstrained which makes defining a system

requirement completely and unambiguously, a

rigorous task [6].

4) Often the end users themselves do not know

what they need from the system and the

scenarios they describe are vague and

incomplete, failing to identify all possible events

that occur during the same interaction [63].

Also, unlike other phases, effectiveness in handling

major social factors like communication, strategies

and guidelines plays a bigger role in the initial phase

than in later stages [52, 69]. As time and money are

the ultimate limiting factors for almost every

software project, one solution to these onerous tasks

would be to use reference frameworks and models

that have been applied successfully to similar

situations in the past. Artefact reuse in fact continues

to be a prominent subject of research at especially at

the requirements elicitation and modelling level [6].

Among all such methods, patterns have been

deemed the most prominent as they record and reuse

‘best practices’ from recurring problems [6, 38, 19].

Their potential is further justified by recent

workshops [30, 31] and conferences [48] dedicated

to the solely for the development of patterns that aid

requirements processes.

Since requirements engineering can, from one

perspective, be seen as defining the problem which

software engineers must solve, it is not clear

precisely what a requirements pattern should

capture. Therefore, there is no strict definition for a

requirements pattern. Through the survey we

conducted, it has become apparent that the word

‘pattern’ in software is contextually overloaded. As

a consensual and very generic definition,

A requirements pattern is a reusable, experience

based framework that aids a requirements engineer

write or model better quality requirements in as less

time possible.

Using a requirements pattern, a set of quality

attributes of a requirements specification as defined

and standardized by the IEEE [34] can be addressed.

The major goals of any requirements pattern are

a) To guide analysts and product developers to

most appropriately apply a set of techniques and

methods so as to produce a more thorough

analysis and understanding of the problem area.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 215 Volume 11, 2014

b) To provide a framework upon which to define

and capture requirements before and during

development and upon which a proposed

software product can be evaluated, designed,

built and tested.

c) To be able to trace the design of the system back

to the original business and system objectives.

 A majority of the patterns we found are documented

in a template that has been largely adopted from the

one prescribed in either the GOF [20] or the POSA

(Pattern Oriented Software Architectures) book [9].

Nonetheless, due to the wide variety of knowledge

which engineers have felt the need to capture,

distinct templates have emerged to support

expression of such requirements knowledge. In an

effort to bring uniformity, requirement pattern

conferences encourage pattern writers to adopt a

canonical template to express their patterns though it

is subject to revision. In this paper, we compare all

our findings with the latest proposed specification

by the RE conference [40] which we refer to it as the

General Pattern Format. This prescribed template is

mentioned below. By and large, most requirement

patterns follow this template and contain a subset of

the below attributes

Name: A self-explanatory name

Also known as: Alias, which is optional

Author: To manifest plausibility of the pattern

Problem: Objective or intent of the pattern

Context: Condition(s) justifying valid use of the

pattern.

Forces: Side-effects, constraints or conflicts that

arise when the pattern is applied

Solution: Text describing the situation where the

problem is solved within the described context and

forces, sometimes accompanied by diagrams

Applicability: Describes how and when the pattern

can be applied

Classification: In case the pattern conforms to a

category of existing software artefacts.

Known Uses: Contains the sources of knowledge

captured by the pattern

Examples: Pattern instantiations to aid better use of

the pattern

Related patterns: A list of patterns that relate to the

pattern semantically or conceptually.

3. Survey of Requirements Patterns
Solution space patterns are mainly for developers to

decide on the system design and code structure [20,

9]. Requirements patterns on the other hand, involve

not only the developer but end users, project

managers, business stakeholders, architects and

requirements analysts. In a recent study of

requirements pattern [24], 4 approaches have been

mentioned. Our search has led to the discovery of

many other pattern catalogues as we expanded our

search to a broader level. A summary of surveyed

pattern books can be seen in Table 1. We believe

that a comprehensive survey of requirements

patterns would require considerable effort and time

but at the same time not be worth the effort

considering the pace at which they continue to grow.

Nonetheless, the patterns mustered for this research

are a concrete representative set and provides

enough insight to develop stable classification.

A general agreement among researchers is that a

good classification is based on multiple metrics and

has henceforth been the approach for the methods

described in [25], [8], [27] and the only other known

attempt to consolidate and classify requirements

patterns [42]. Understandably such a categorization

helps break the target space comprehensively into

precise sections and provides flexibility with respect

to extending the classification. At the same time, a

multi-dimensional categorization may be difficult to

comprehend and also complex to navigate if each

classification dimension is a unique property of the

sample space. While there undoubtedly is merit in a

classification scheme that distinguishes between

individual elements of representative set, we have

decided to classify pattern catalogues instead of

dissecting them individually. This is mainly because

each pattern book has been developed in such a way

that it intrinsically imposes some level of uniformity

and predictability in the resulting artefacts. There

are many general criteria to classify patterns like

application domain or requirements phase at which

they can be used. Ours is based on the kind of

artefact these patterns present to their user. In the

following subsections, we describe each category of

patterns, providing relevant examples to justify our

grouping. We also present their intended purpose

and various similarities among individual pattern

collections.

3.1. Processes and Guidelines
With the emergence of several patterns in different

development phases and at various levels, Ambler

[3] differentiates and formalizes Process patterns as

“a collection of general techniques, actions and/or

tasks for developing software”. He describes

processes patterns at 3 levels of granularity –

Phases, Stages and Tasks. He relates them in a way

that one type of pattern may consist of one or more

of the other. He also identifies recurring processes in

an organization that have negative impact on the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 216 Volume 11, 2014

project as Process Anti-patterns. A process anti-

pattern describes an approach and/or series of

actions for developing software that is proven to be

ineffective and often detrimental to an organization.

Patterns listed under this section are recurring

instances of workflows, guidelines and best

practices aimed specifically for various RE

activities.

One of the earliest references to the word

‘pattern’ in relation to requirements engineering was

made by Whitenack in his RAPPeL framework [69].

RAPPeL is a pattern language which initially

consisted of 20 interconnected patterns, but has

grown over time to now contain over 100 patterns

[18], that provide direction and rationale for guiding

analysts, developers and project managers in

determining as well as defining requirements of

business applications in the object oriented (OO)

paradigm. The framework is a mixture of general

guidelines as well as low level principles which are

fairly technical. For instance, in the Defining

Requirements pattern, a guide to produce a detailed

specification is provided. It advocates the capture

structural and behavioural requirements along with

constraints from customers, making explicit various

relationships between them. To facilitate this

process, this pattern suggests an in-depth analysis of

the problem domain and also modelling prototypes

to expand and clarify requirements. Holding true to

its pattern language criterion, this pattern tightly

couples other constituting patterns like Prototyping,

Sponsor Objectives, Requirements Specification and

Problem Domain Analysis. On the other hand, an

activity with a comparatively narrow scope like

what needs to be done to handle a state change of a

business object while modelling real world entities

is discussed in the Object Aging pattern. Inspired by

RAPPeL, Rawsthrone [50] documented 12 patterns

that outline requirements analysis process adopted

for various defence projects, which can be used in

conjunction with Whitenack’s patterns. It is

noteworthy that his Requirements Analysis,

Prototyping, Requirements Specification and

Domain Analysis patterns are significantly similar to

Whitenack’s Defining Requirements, Prototypes,

Requirements Specification and Problem Domain

Analysis patterns respectively. They aim to solve the

same problem and also internally refer to other

lower level, standalone patterns. Since both these

pattern sets were some of the early ones, the pattern

format is very simplistic with just the name, a

problem description, a section defining the context

and the solution.

Hagge and Lappe’s RE patterns [39] are more

contemporary as their format is inspired from the

general pattern template with sections describing the

pattern’s objective, context of applicability, the

solution supplemented by figures, a listing of

applicable areas of the pattern, the resulting

consequences of using the pattern, example

implementations and a section that describes the

impact of the pattern. They focus on capturing

experience in the form of certain procedures

applicable throughout the requirements phase that

“offer guidance for organizing the specification

procedure and for eliciting, specifying and verifying

requirements”. Each of their 4 patterns in [39]

presents requirements engineers and project

managers with a solution to a requirement

management hurdle in terms of a set of tasks.

Consider the Generate Approval Checklists [39]

pattern which is prescribed to facilitate user driven

requirements validation. While customers would

appreciate checklists as approval certificates, it may

not serve the purpose if a requirement is to be

satisfied by multiple components of the system. As a

solution to better manage overlapping requirements

for various systems, they suggest building a

checklist for each product which can be used during

requirements verification and validation. A

repository of such patterns [26] has been developed

to facilitate learning and optimizing RE processes

within an organization.

Some methodologies subscribe to a more

general definition of a pattern, not conforming to

any of the standard pattern templates like [9] or [20].

A study of recorded online communication of

geographically distributed teams has led to

identification Clarification patterns [21] which can

be used to counter the problem of misinterpreting

requirements which is commonly encountered in

project environments where there is minimal or no

face to face communication between stakeholders.

Eric Knauss defines a clarification pattern as ‘a

recurring trajectory of communication throughout

the lifetime of a requirement’ [21]. Each pattern is a

line graph between the amount of communication

and the degree of clarification about certain aspect

of a requirement. A similar assessment of various

RE artefacts of a certain organization – requirements

documents, procedures to collect and validate these

requirements - was conducted to identify patterns

and their causes that lead to construction of

‘complete’ requirements artefacts [15]. Such

patterns do not prescribe a process but can be used

as indicators to correct existing processes by

exposing potential threats of requirements definition

early in the development phase.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 217 Volume 11, 2014

3.2. Models and Templates
As discussed in section 2 of this paper, for detailed

requirements definition, different levels of formality

need to be used to represent a single requirement.

Patterns belonging to this category are reusable

snippets of functionality which aid business analysts

in discovering, documenting and elaborating

requirements. This class of patterns was found to be

highly concentrated in terms of sheer amount as it

amasses over two-thirds of the total pattern space

surveyed. Each of the independent pattern books

however addresses a smaller problem. To cope with

this skewness and make the classification more

robust, we studied individual pattern books looking

for factors that define this pattern class. The various

roles of these patterns ranged from

a) Documenting high level functional and/or

nonfunctional requirements (NFRs)

b) Identify requirements of a specific application

domain

c) Identifying requirements pertaining to specific

feature(s) of the system like security or

reliability.

d) Formalizing high level requirements into

analysis models

To reflect as many of the aforementioned properties

and by maintaining the rationale of our overall

classification scheme, we divide these pattern sets

into elicitation patterns and analysis models keeping

the pattern users in mind. With this distinction, a

pattern user can make decisions based on the RE

activity being carried out.

3.2.1. Elicitation Patterns

The main motive of these patterns is to facilitate

easy and faster requirements communication among

various stakeholders of a project, especially the

nontechnical audience. These patterns typically

contain a checklist of items to be documented for a

requirement. The general template of these patterns

is slightly more enriched that the one described in

section 2 with additional sections to capture

necessary requirement metadata. In this section, we

describe the intended use of these patterns, their

structure in relation with the General Pattern

Template.

Wahono and Cheng [49] prescribe templates to

capture requirements for web based applications.

The proposed pattern template has a constraint

section which needs to be satisfied by an extensible

part. While constraints contain the forces and

context of the problem, the extensible parts of the

pattern are defined by semiformal models describing

behaviour, user interaction, architecture and

security. It is noteworthy that these patterns don’t

capture previous experience. Neither do they

account for any guidelines about how each section is

to be documented. They just provide a template for

documenting a requirement with a small degree of

homogeneity. Moreover, the pattern names suggest

that each is used to define an entire system or

subsystem, rather than a single requirement and is

subsequently categorized based on the type of

system being built. For instance, the Online Game

pattern and Registration Form pattern are classified

as interactive patterns while instances of

transactional patterns include Electronic Shopping

and Online Banking. Duran et al.’s [1] propose a

requirements documentation technique with their

fill-in-the-blank templates that capture high level

system features as a sequence of interactions

between the user and the system. This template

tracks requirement metadata like id, name, version,

author, source, purpose of the requirement and a

priority indicator. They introduce linguistic patterns

or L patterns to supplement their template with

controlled language sentences, constraining the way

a requirement can be worded. As requirements were

documented for several information systems

overtime, a recurring thread of functionality was

identified. These recurring functionalities have been

termed R Patterns or Requirements Patterns, making

them directly reusable when a demand for similar

functionality in a new arises. R patterns for Create,

Read, Update and Delete (CRUD) operations and

information storage have been identified from

several instantiations of their pattern based

methodology.

Creel’s [14] work can be seen as more aligned

towards the contemporary definition requirements

patterns as his patterns adopt a format from that of

[20] but exclude design specific sections like

structure, collaborations, participants and sample

code. The catalogue he proposed consists of Specify,

Presentation and Prioritize patterns, named after the

intent of constituting elements in the software

environment. The Presentation pattern [51] for

instance can be used to extract what the output layer

of an application should display to a user but not

how it should be presented. The applicability and

motivation sections of these patterns have a limiting

effect on their usage as they are described in terms

of vague examples. Being relatively primitive, they

do not ensure high quality or homogeneous

requirements but fulfil the basic requirement of a

pattern of capturing experience aiding elicitation.

The most popular requirements patterns among

researchers today are the ones developed by Withall

[70] as several other patterns draw inspiration from

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 218 Volume 11, 2014

his work. His collection of 37 patterns has been

crafted to identify and document functional and non-

functional requirements of a wide range of software

systems. Each pattern is available as an electronic

document, containing a rich set of guidelines that

help analysts extract information from the end user.

His pattern setup is one of the major contributors to

the standard requirement pattern guidelines [40].

Additionally, Withall supplements his patterns with

information that developers can use while modelling

and a guide for testers on how to test the given

requirement. All this information is the basis to fill

out one or more templates available within the

pattern, similar to the one proposed in [1]. Some

significant adaptations of his work can be seen in

Roher and Richardson’s Sustainability Requirements

Patterns [55] to specify aspects of a software system

that can be used to impact the surrounding physical

environment in a positive way and in patterns

described for eliciting requirements of online based

examination systems [64], which also draw major

structural adaptations from [1],[57] and [20].

The patterns by Renault et al. [57] capture

knowledge of recurring functionalities affecting

qualitative aspects of the system. They are primarily

designed to allow trade-off decisions during

selection of commercial-off-the-shelf (COTS)

products for custom development. The Failure

Alerts pattern [57] can be used to check the kind of

reliability feature a system possesses in notifying

failures. As they are designed for interview based

elicitation, patterns contain one or more ‘forms’ to

allow a requirement to be phrased as required. Each

form is further split into a fixed part and one or more

extended parts, the latter of which is optional. The

core of each pattern is its fixed part as it contains

information that is to be defined by the requirement.

An elaborate process [57] and set of tools [12] has

been developed using which these patterns can be

efficiently utilized to maintain completeness and

consistency of the resulting SRS. While their 27

patterns cover quality soft goals like reliability,

usability, efficiency and portability, they apply to

software systems across application domains. Juristo

et al. [43] conducted a more controlled study and

identified patterns that help elicit functional goals

that a Human-Computer Interface (HCI) based

system can incorporate to make it more usable. They

focus on 8 usability features defined in terms of 15

patterns, though using a minimalistic template. Each

of their patterns presents a checklist of questions for

project stakeholders as a solution, which in turn

helps developers model these usability features. On

similar lines, requirements patterns to understand

rules that a system must follow, from privacy and

trust compliance standpoint have been proposed

[29]. Laws and regulations for socio technical

information management systems form the rationale

for the pattern catalogue [28]. In a recent study by

Slavin et al. [62], security requirements patterns

were surveyed to identify heterogeneity in pattern

structure. They propose a standard security

requirement pattern format which is flexible enough

to capture major components of a security

requirement along different levels of abstraction.

Compliance business requirements for the

domain of e-commerce and banking systems can be

defined using Turetken et al.’s control patterns.

Control patterns are high-level, domain-specific

templates that represent desired properties that apply

to process specifications [45]. These patterns

however do not help identify scenarios but help

structuring high level compliance goals using

formalization rules to relate scenarios. For instance,

the statement {Receive_Invoice LeadsTo

Make_Payment} is an instantiation of the LeadsTo

pattern which assures that Make_Payment logically

follows Receive_Invoice. To address the

specification of more complex controls, simple

expressions are combined and nested via Boolean

operators (such as and, or, and xor). Web based

tools that verify and enforce these compliance rules

have been developed to automate the process [45].

By narrowing the problem space, patterns can

provide a more precise and straightforward solution,

also taking into consideration various aspect that

relate to the solution. This feature is seen in

Withall’s patterns and is listed as the ‘Consideration

for Development’ section. Mahfouz et al.’s patterns

[6] to elicit requirements concerned with how

communication should take place between various

modules in a service based computing environment

use this strategy. Their Deadline pattern

encapsulates the solution to deal with asynchronous

service communication by suggesting that a calling

service should wait for an expected resource for a

specified time, exceeding which an alternate course

of action is to be taken. They list a number of

considerations that engineers may also want to

ponder upon when this pattern is applied – (a) the

number of times the service may want to retry

before taking the alternative, (b) whether or not to

wait out the deadline if the required resource is

obtained early, (c) the relative or absolute value of

the delay to be set, (d) cases where deadline may

want to be postponed and finally (e) expiration time

of the requested resource. Due to their fairly

technical nature, the text in the solution is

supplemented by UML (Unified Modelling

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 219 Volume 11, 2014

Language) object diagrams [19] which provide a

better understanding of the solution.

3.2.2. Analysis Models

There are some patterns that use models to capture

domain and operation specific knowledge. While

patterns reviewed so far deal with identifying and

documenting high level user goals in an ad hoc

form, the dynamic aspects of the system still need to

be defined so that the development team understand

the process flow of a given system feature. Visual

representations of a requirement are more intuitive

and also best suited to capture such process flows.

UML [19], Problem frames [35], i* (pronounced ‘i

star’) framework [22] are some that provide a strong

platform to define both static and dynamic aspects

of a system. In this subsection, we discuss patterns

that capture domain structures and modelling

principles, which are more translatable to software

design than ad hoc requirements.

Although templates are useful tools to document

requirements, ad-hoc descriptions of NFRs are

rendered vague and often incomplete [1, 13]. Unlike

functional requirements which can be traced to a

certain part of the software system, NFRs are

qualities of the system as a whole. To standardize

the way NFRs are defined, the NFR framework [13]

defines quality requirements as soft goals that need

to be ‘satisficed’. Suppakul et al. use this framework

as the basis for their approach to capture, organize

and reuse knowledge in model based requirements

engineering [65]. To capture security requirements

patterns, an NFR model of the soft goal is to be

created based on the real world information

available. Based on the NFR model, 4 kinds of

patterns with specific roles are mined which can be

applied sequentially to model the quality goal in

future systems. Every pattern contains only 3

sections, unlike the general pattern template, to

capture the initial and resultant state in the form of

soft goal interdependency graphs [13]. The

transformation is rationalized by the supplemented

refinement rules which are mined from the NFR

model. Major objectives of the system are identified

using the Objective pattern which also captures

applicability information of the pattern in the form

of answers to who, what why, when, where, how

and how much. Various threats to the system are

identified using the Problem Pattern. The

Alternatives pattern is then applied to define

multiple solutions for the problem for flexibility.

Alternatives generally impact other soft goals

positively or negatively, hence possible side effects

are captured as well. After trade-off analysis, the

most suitable solution is chosen using the Selection

pattern. Quality attributes for a given software

system may be defined differently as there are no

standard definitions for them. Hence these patterns

can be used to address any such soft goals provided

their context is understood. The effectiveness of i*

models to elaborate quality requirements has also

been exploited in context of submarine navigation

systems [46]. These 4 patterns discuss tradeoffs

between non-functional requirements like accuracy

and noise, accuracy and maintainability using

specific scenarios based on i* models specified by

the pattern.

Functional reuse by capturing recurring

behaviours was proposed by Robertson in the form

of UML use case diagrams. According to her

method, patterns can be abstracted as required -

complex ones like making an online credit card

transaction or a low level instruction like a trigger to

store data into the system’s database. When systems

for the same domain or functionality are engineered,

these use cases can be reused instead of reinventing

the wheel. The examples provided in [54] capture

this knowledge using a very simplistic template

containing a pattern name, context, solution and

related patterns. These patterns define relationships

between various actors, activities, their data flow

and states. More contemporary patterns take this

modelling approach forward for specific application

domains like embedded systems [58] and mobile

and radio communication systems [4]. Patterns in

[58] provide a model to a specific embedded system

problem. For example, embedded systems generally

contain various actuators and sensors to receive

inputs that trigger a processing unit responsible for

certain computation. When there are large number

of acutators or sensors making requests, the load on

the computing component could cause the system to

crash. The Mask pattern helps model a solution for

such situations. The patterns help identify

components of the system and also suggest how to

use these components in the larger picture of the

system. In addition to UML class diagrams to

structure various components and sequence/state

diagrams to define interactions between these

components, each pattern also uses problem frames

[35] to explicitly state the context of the problem.

The collaborations and participants section

supplement the UML diagrams by describing the

role of each component in the pattern and how they

interact. The constraints section is very similar to the

one described in [5] with a comprehensive checklist

of considerations and restrictions of the pattern

application. For embedded systems, these cover

hardware, timing, environmental and safety

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 220 Volume 11, 2014

conditions. The various considerations listed for

implementing an embedded system fault handler

[58] are that it be hardware implemented in case of

performance constraint and unlikelihood of change,

it be protected in intensive geo environmental

conditions, user interface to indicate errors clearly,

safety actions mapped to error conditions and that

the hardware and related software components

should have a high degree of reliance on each other.

It is observed that due to domain specificity, there

are a finite number of patterns which share common

components. Hence, unlike Robertson’s patterns,

pattern interrelations are rationalized enforcing users

to consider technical dependencies. Additionally,

one or more design patterns are also listed to help

developers, resulting in an easily transformable and

traceable system.

Andrade’s patterns [4] aim at elaborating

problems in systems of mobile and radio

communication domain using Use Case Maps [63],

which illustrate a scenario based model relative to

optional components involved in the scenario. Use

case maps can be thought of as a combination of use

cases but are represented nothing like concentional

use cases. With them, it is easy to represent how a

specific scenario affects the entire system. She

brings to light that a recurring problem in mobility

management is to ensure privacy and secure

communication over insecure wireless channels (see

Chiphering pattern in [4]). As a common solution

and best practice, encryption of data being

transferred between subscribers is suggested.

However, the application of the encyption algorithm

is a joint responsibility of other components in the

field, which inturn are enlisted as patterns in her

collection. Hence, to describe such a scenario, use

case maps provide major benefits. Although visible

differences in template sctructure exist between

these patterns and requirements pattern for

embedded systems [58], a high degree of similar

traits overshadow them. Both patterns try to

complement design patterns and affect system

architecture directly. Both use sequence diagrams to

describe behaviour. Pattern interrelations are driving

forces for each pattern. Both catalogues are

classified into structural and behavioural patterns

based on the solution they provide. While it can be

argued that both these pattern catalogues can be

deemed analysis patterns true Fowler’s definition

[23] as they help model conceptual structures of

their respective domains, they extend the definion

by stressing extensively on the software design and

architectural implementations.

Though semiformal modelling languages are

helpful in representing system behaviour and

provide a platform for operationalization, complex

and safety critical systems need very precise

definitions which are at a much lower level of

abstraction. The patterns presented by Zhou et al.

[11] can be distinguished from other patterns in this

section as they focus on describing discrete and

continuous dynamics of the system rather than high

level functional behaviour. The pattern catalogue is

extracted from Simulink stateflow [61] modules

created to model systems designed by Honeywell

[32] which include components for aircrafts,

medical devices, automobiles and nuclear power

systems. These patterns are structured very

differently than conventional software patterns and

capture model specific information. A requirements

description section lists a set of inputs, outputs,

constraints, parameters and the defined functionality

of a component of the system while logical

assertions are used to define the relationship

between these components. Other patterns that

facilitate analysis of requirements with the help of

strict logical notations are [53] and [37].

3.3. Language Refinements
As mentioned earlier, natural language descriptions

of technical software requirements are imprecise.

This imprecision of natural language requirements

specifications can be attributed to 3 main causes –

the inherent ambiguity, incompleteness and

inaccuracy of natural language [17]. The way

requirements are specified in modern development

methodologies, especially the ones in line with the

agile movement which stresses on focussing on

writing software instead of supporting

documentation, are ambiguous and do not capture

all the nuances of the systems functionality [47].

Methods to address such ambiguities in

requirements specifications have been surveyed and

classified into post documented and prewritten

refinements [17]. These methods are applied by

requirements engineers to an SRS based on its state

of completion with the aim of improving

requirements inspection and preventing language

imprecision respectively. In [66], the universe of all

such methods has been classified into 3 groups

 Approaches that define linguistic rules and

keywords

 Methods that define guidelines for vocabulary

and sentence formation

 Language patterns used in requirements

specifications.

In this section, we discuss language refinements or

Language patterns which the most granular classes

of patterns are in RE Because of the scope of the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 221 Volume 11, 2014

patterns, the templates mentioned earlier in this

paper are not applicable here.

Denger’s patterns [16] enforce the usage of

certain sentence parts that help writers frame a

requirement based on the action being performed by

the system. This ensures that requirements in a

specification are streamlined. These sentence

patterns have been extracted specifically for the

domain of embedded systems. All 38 patterns are

consolidated into 9 classes based on the type of

requirement being documented. The categories are

Functional Requirements, Events, Reactions,

Computations, Conditions, Relationships,

Exceptions, Non-functional Requirements and

Special aspects patterns. Below are few variations of

TCP i.e. time condition pattern as described in [17].

TCP1: for time (variable of type Time)

TCP2: for at least time (variable of type Time)

TCP3: {for <not> more than | for at most} time

(variable of type Time)

TCP4: TCP2 {but | and} TCP3

Similarly, Tjong et al. [66] identified more language

patterns and suggests combining them with a

controlled language for defining requirements as

described in [1]. Their patterns are very similar

Denger’s but can be applied to systems across

domains. They are discussed in detail in the main

author’s doctorate dissertation [67]. Language

refinement patterns for specifying requirements

similar to Denger’s method have been proposed by

others. ProjectIT-RSL [10] is one such pattern

language that provides a definitive structure to

requirements statements based on the kind of

requirement being documented. The patterns

identified in the ProjectIT-RSL have been abstracted

and generalized to form a metamodel which helps

practitioners apply these patterns when applicable.

4. Discussion
The presented requirement pattern catalogues

provide ways to identify and define different kinds

of software requirements at varying levels of

formality. In this section, we discuss the benefits

and tradeoffs of our classification scheme.

According to Buschmann et al. [9], a good

categorization of patterns has the below properties.

I. Fairly simple and easy to learn

II. Few classification criteria

III. Reflects pattern properties

IV. Provides a roadmap to pattern selection

V. Flexibility to accommodate new patterns

VI. Shows relationship between patterns

The only attempt so far to organize the entire corpus

of requirements patterns is presented in [42]. The

classification is based on 4 general facets i.e.

purpose, domain specificity, content and RE phase

at which they are used, resulting in a high degree of

flexibility to classify individual patterns. Various

pattern properties can be recognized very easily as

individual classifications reflect precise properties of

the catalogue. On the contrary, such a scheme

doesn’t allow a comprehensive study of pattern

properties as these four facets are exclusive of each

other. It is considered sufficient if a given pattern is

classified under any of the 4 facets and not

necessarily under all. Not only does this isolation

make navigating through various patterns a

challenge but also poses a threat to understanding

relationships between patterns across facets.

In contrast, our categorization divides patterns

into 3 major groups as seen in Figure 1. An

advantage of such a general scheme is that instead of

classifying requirements patterns individually, this

scheme allows an entire pattern catalogue to be

classified as a single unit and make use of the

internal classification scheme provided as part of the

pattern book.

Figure 1: Classification of Requirements Patterns based

on artefact.

Data organized in a single tree structure is easier to

read and found to be more intuitive than in dispersed

sets. Due to this aspect and the number of classes in

our scheme, it can be said that our classification

meets criteria I and II as defined earlier. Although

very general in their outlook, each class of the

proposed categorization reflects certain properties

that concern pattern users in the requirements

creation process. Though multidimensional

classifications are better in this aspect, it can be

argued that our classification satisfies criteria III and

IV. All the patterns of a given catalogue have

several commonalities - structural and semantic.

After studying the large body of requirements

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 222 Volume 11, 2014

patterns collected, we are in agreement with Hafiz et

al. [25] that regardless of the classification scheme,

some patterns will always belong to more than one

category. However, these 2 criterions are closely

related with pattern applicability and the user would

have to go through patterns individually as

applicability varies from patterns to pattern. Since

we are classifying pattern collections, defining

precise relationships among constituting patterns

may not be possible. However, each class of patterns

proposed can be related to each other in more than

one way based on the development methodology

used, more precisely the order of RE activity. Figure

2 shows a general order of pattern application to

satisfy criteria VI. As for V, since we employ very

general criteria to divide the problem space, there is

sufficient reason to believe that our classification

can accommodate new patterns but it can only

further research can test the validity of our proposed

scheme.

Figure 2: Relationship between various classes of

Requirements Patterns

Though patterns can be found in all walks of life

across disciplines, domains and paradigms, it is

argued that good patterns are hard to write [2, 4, 6].

Below we discuss various properties that govern the

selection of a requirements pattern or pattern

catalogue.

Scope – While we outline the major purpose of each

kind of pattern in the beginning of each category,

the usage of many of these patterns is not restricted

to a certain RE phase. Devedzic classifies process

patterns that shape new organizations or evolve

existing ones as Organizational Patterns [19] which

apply to pragmatics concerning problems that lean

towards the functioning of the team and the

relationships between them. Other catalogues that

capture Customer Interaction patterns [52] and

Business Patterns [36, 56] prescribe processes which

are not specifically related to the technical aspect of

requirements gathering. A distinction can hence be

made between requirements and managerial

processes which underscores the impact of the

pattern on the quality of requirements creation. In

general, process patterns seem to have a broad

context exceeding that of just the RE specific aspect

but as a general guideline of distinguishing, RE

specific process patterns suggest methods that

directly facilitate requirements capture, analysis and

documentation. Patterns from [69] namely Customer

Rapport, Sponsor Objective and Envisioning, to

name a few, could be thought of as managerial

processes.

Similarly, several patterns described under

analysis models section of our classification [4, 46,

37, 58] contain rich sets of information that impacts

the architecture and design of a system. Some of the

patterns also provide metrics that can be collected as

the pattern is applied to test the validity of the

resulting solution [39, 5, 70] and also discuss

potential risks that may need to be mitigated during

and after their application.

Applicability – A common misconception among

pattern developers and users is that patterns are

exact solutions to a problem in a defined context

when in fact each instance of a pattern can produce a

correct solution to the problem [4]. With that being

said, the only feasible way to increase accuracy and

precision of a pattern, especially in a vast discipline

like requirements engineering, is to narrow the

problem space [16, 70]. The key to optimal pattern

reuse is to strike a balance by not making a pattern

too generic or open to interpretation like the ones in

[49] and [14], at the same time not making it very

rigid like the ones in [54] where a pattern can be

abstracted to a specific use case of a system.

Apart from factors like application domain, RE

task being carried out or organizational policies and

rules, several of the patterns we surveyed explicitly

describe specific situations and factors in which they

can be applied. Different patterns specify these

conditions under different sections. Some list them

as part of the Context while some have an

applicability section. There are others that implicitly

define applicability, mostly because of the nature of

the patterns themselves. Henceforth the pattern

template is an important factor that impacts

applicability.

Access to pattern catalogue - Patterns have been

documented and published as part of books and

articles. Even dedicated pattern repositories have

been created to store some of them like [26] and

[65]. Patterns and ready-to-use requirement

templates by Withall [70], for instance, are available

online and can be downloaded as required however

not all the patterns are freely accessible to users.

Getting access to all patterns in the proposed pattern

catalogues is still a major challenge as not all of

them have been published publicly. Another reason

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 223 Volume 11, 2014

for this is that many of the collections that we

studied are still a work in progress or incomplete.

Dependence on Frameworks and Tools –

Adopting a requirements pattern catalogue into a

generic development process isn’t always possible.

While all elicitation patterns can be used as a means

to identify and document high level requirements of

any general system, several goal and scenario based

requirements modelling requires users to have

considerable knowledge of the modelling languages

like i* [13] and KAOS [53]. According to Alexander

[2], a pattern does not need tool or methodical

support to be effective. However, the power of

certain patterns can only be harnessed when a user is

well acquainted with the underlying framework that

the patterns are based on. For instance, Supakkul et

al.’s [65] NFR patterns are heavily based on the

NFR framework proposed by Chung [13]. Similarly,

Compliance control patterns tie in with the Business

Process Compliance Management (BPCM)

Framework [45]. Also, several of the patterns are

supported by methodical processes and a set of tools

that help automate tasks.

Functional vs. Non-functional requirements - It is

noted that non-functional requirements tend to

remain unchanged across domains [57]. While this

is a true statement, we have come to the conclusion

that it is only the definition of high level goals in

natural language that remain unchanged. Their

implementations are seen to differ based on the type

of system and domain. Hence, elicitation patterns

are subjected to wider reuse than other classes of

patterns.

Another issue is that, it is difficult to classify

any requirements patterns into functional or non-

functional because non-functional requirements do

not pertain to a specific part but to the entire system

as a whole and are eventually refinement into

functional goals during elaboration. Consider the

Data Validation pattern in [70], for instance, is a

functional requirement. It can be described in

natural language and also in terms of a UML

sequence diagram based on the need of the user. At

the same time, the Watchdog Pattern [58] from the

embedded systems requirement pattern catalogue

can be seen as a functional as well as non-functional

because it helps users structure components in a

system that monitor and take correct action when

required which is a functional requirement but also

adds to the reliability, fault tolerance and safety of

the system.

Notation used for requirements definitions - All

requirements patterns use natural language as the

primary medium of communication. The emphasis

on it varies based primarily on the requirement

characteristics that the pattern addresses. Analysis

models that help elaborate requirements, i.e. define

their static or dynamic behaviour as a component in

the system and how they interact with corresponding

components are represented as diagrams or as

formal specifications. Patterns using formal or

semiformal constructs are seen to address more

requirement quality attributes than others. However,

the notation used is not a function of the type of

pattern. Patterns in [45] use formal assertions like

the patterns proposed by Zhou et al. [11] but we

classified the later as an analysis model pattern, the

former helps identify and structure requirements and

is hence an overlapping of an elicitation pattern and

a language rule. Note that natural language patterns

can be seen as formal logic rules applied on natural

language and have a very specific role of reducing

ambiguity in a requirements specification.

Domain specific patterns - Patterns which contain

semi-formal or formal representation of system

goals generally tend to be domain specific. Of the 12

pattern books that captures a recurring functional

aspect, 9 of were found to have some kind of formal

representation were identified as application domain

specific with the exception of [53], [7] and [37]. In

[53], patterns are essentially formal refinement rules

defined in the KAOS language that are used in the

elaboration of system goals. They suggest that

domain specific frameworks should be considered

when adapting them to systems of specific domains.

As for [37], Klop defines Organizational Patterns

for requirements analysis, more precisely modelling

the domain of the system to be built. Though the

patterns are domain independent, instances of each

pattern contain components to extract domain

specific information. It is important to note that

patterns in [53] and [37] do not follow the

Alexandrian definition of a pattern. Patterns in [7]

may not be domain specific but are targeted to

identify only security requirements. The application

domain specified for some domain specific patterns

is not clearly defined. Domains like business

systems or information systems have a very broad

definition.

Internal classification – Requirements patterns

which tend to follow a classification scheme are

found to be more helpful to the end user as it

provides a user to navigate and understand the

pattern catalogue better. Of the 28 pattern books

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 224 Volume 11, 2014

surveyed, 12 of them contain negligible (less than 7)

or no defined number of patterns. Of the remaining

16, 13 of them provide a way to classify the

constituent requirements patterns based on a metric

or property. However, the resulting classification is

precise or broad based on the metric chosen for

classification. Withall’s own pattern categorization

is based on high level features of software systems

which shows inter-pattern relationships specified

structurally (“has”, “uses”, “is-a”) and semantically

(“is across”, “displays”).

Pattern interdependence – Patterns have been

documented as individual solutions to a commonly

recurring problem under a very specific context.

This is true with most elicitation patterns and we

have referred to them as a pattern catalogue or

pattern book throughout our research. In many

others, patterns work in tandem with others to form

a vocabulary to solve a bigger problem than the one

they are designed for individually. Such systems of

highly coupled patterns constitute a Pattern

Language [19]. In the approaches surveyed, these

set of relations were either semantic or strict in

terms of a meta-model.

In a pattern language, a resulting context of one

pattern becomes the starting context of other

patterns. A fundamental view of a pattern language

is the description of the pattern relationships that is

also stressed in [2], as follows: “when you build a

thing you cannot merely build that thing in

isolation.” These relationships constitute the whole

system to be designed. In other words, the notion of

sequence of patterns in a pattern language is crucial

to explain how the language works.

5. Conclusion
Requirements patterns can be powerful tools to

streamline the requirements engineering processes

as they capture proven knowledge. In this paper, we

have surveyed and categorized various requirements

patterns according to the kind of artefact they

present to the user to aid the process of requirements

engineering. We also listed out some of our findings

which we believe will have significant impact in a

user’s pattern selection process.

However, further research effort to integrate

them into existing development frameworks is

necessary. Despite the fact that the pattern concept

has been applied to distinct fields, there are not

enough experience reports that patterns can help

everybody. Two major reasons for this is the lack of

access to requirements pattern catalogues and the

late growth trend of requirements patterns.

Extensive experimentation by external sources such

as the one done in [41] is needed prove their

validity. Also, adapting a pattern or in certain cases,

an instantiated pattern so that it fits the desired

context is still considered an art. We believe that

better examples of individual pattern

implementations could help widespread adaptation

of these patterns among practitioners.

References:

[1] A. Durán Toro, Bernárdez B Jiménez, A. Ruiz

Cortés & M. Toro Bonilla, A Requirements

Elicitation Approach Based in Templates and

Patterns, Workshop em Engenharia de

Requisitos, 1999.

[2] Alexander Christopher, The Timeless Way of

Building, Oxford University Press, 1979.

[3] Scott W Ambler, Process Patterns: Building

Large-Scale systems using Object Technology,

Cambridge University Press, 1998.

[4] Andrade Rossana Maria De Castro Capture,

Reuse, and Validation of Requirements and

Analysis Patterns – PhD. Dissertation,

University of Ottawa , 2001 .

[5] Ayman Mahfouz, Leonor Barroca, Robin

Laney & Bashar Nuseibeh, Patterns for

Service-Oriented Information Exchange

Requirements, Proceedings of the 2006

Conference on Pattern Languages of Programs

(PLOP '06), 2006.

[6] Betty Cheng & Joanne Atlee, Research

Directions in Requirements Engineering,

Future of Software Engineering (FOSE '07),

2007. - pp. 285 - 303.

[7] Betty Cheng, Sascha Konrad, Laura Campbell

& Ronald Wassermann, Using Security

Patterns to Model and Analyze Security, IEEE

Workshop on Requirements for High

Assurance Systems, 2003.

[8] Bunke Michaela, Koschke Rainer & Sohr

Karsten, Organizing Security Patterns Related

to Security and Pattern Recognition

Requirements, International Journal on

Advances in Security, 2012. - Vol. 5.

[9] Buschmann F, Meunier R, Rohnert H,

Sommerlad P & Stal M, Pattern Oriented

Software Architecture: A System of Patterns,

John Wiley & Sons, 1996.

[10] Carlos Videira & Alberto Rodrigues Da Silva,

Patterns and metamodel for a natural-

language-based requirements specification

language, Proc. of CaiSE’05 Forum, 2005.

[11] Changyan Zhou, Ratnesh Kumar, Devesh

Bhatt, Kirk Schloegel & Darren D. Cofer, A

Framework of Hierarchical Requirements

Patterns for Specifying Systems of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 225 Volume 11, 2014

Interconnected Simulink/Stateflow Modules,

Proceedings of the Nineteenth International

Conference on Software Engineering and

Knowledge Engineering (SEKE'2007), 2007.

[12] Christina Palomares, Carme Quer & Xavier

Franch, PABRE-Proj: Applying patterns in

requirements elicitation, 21st IEEE

International Requirements Engineering

Conference (RE '13), 2013.

[13] Lawrence Chung, Representing and Using

Non-Functional Requirements: A Process-

Oriented Approach, IEEE Transactions on

Software Engineering, 1992. - 6 : Vol. 18.

[14] Creel Christopher, Requirement Patterns, 30th

International Conference on Technology of

Object-Oriented Languages and Systems

(TOOL '99), 1999.

[15] Daniel Méndez, Fernández Stefan Wagner,

Klaus Lochmann & Andrea Baumann, Field

Study on Requirments Engineering Artefacts

and Patterns, 14th International Conference

on Evaluation and Assessment in Software

Engineering (EASE '10), 2010.

[16] Christian Denger, High quality requirements

specifications for Embedded Systems through

authoring rules and language patterns -

Masters Thesis, Kaiserslautern University,

2002.

[17] Denger C., Berry D.M. & Kamsties E., Higher

quality requirements specifications through

natural language patterns, IEEE International

Conference on Software: Science, Technology

and Engineering., 2003.

[18] Devedzic Vladan, Software Patterns in

Handbook of Software Engineering and

Knowledge by Chang S.K., World Scientific

Publishing Co, 2002.

[19] Documents Associated with Unified Modeling

Language (UML), V2.4.1, Object

Management Group 2014. Online at -

http://www.omg.org/spec/UML/2.4.1/Infrastru

cture/PDF/.

[20] E. Gamma, R. Helm, R. Johnson & J

Vlissides, Design Patterns : Elements of

Reusable Object Oriented Software, Addison-

Wesley Professional, 1994.

[21] Eric Knauss, Daniela Damian, Germán Poo-

Caamaño & Jane Cleland-Huang, Detecting

and classifying patterns of requirements

clarifications, 20th IEEE International

Requirements Engineering Conference (RE

'12), 2012.

[22] Eric Yu & John Mylopoulos, Understanding

"Why" in Software Process Modelling,

Analysis, and Design, Proceedings of the 16th

International Conference on Software

Engineering, 1994.

[23] Martin Fowler, Analysis Patterns: Reusable

Object Models, Addison-Wesley Professional,

1996.

[24] Xavier Franch, Cristina Palomares, Carme

Quer & Samuel Renault, A Metamodel for

Software Requirement Patterns, Requirements

Engineering: Foundation for Software Quality

(REFSQ '10), 2010. - Vol. 6182.

[25] Hafiz Munawar, Adamczyk Paul & Johnson

Ralph E, Organizing Security Patterns, IEEE

Software, 2007. - 4 : Vol. 24.

[26] Hagge Lars & Lappe Kathrin, Using

Requirements Engineering (RE) Patterns for

Organizational Learning, Journal of Universal

Knowledge Management, 2006. - 2 : Vol. 1.

[27] Elke Hochmüller, Requirements classification

as a first step to grasp quality requirements,

Proceedings of the Third International

Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ'

97), 1997.

[28] Hoffmann, A., Schulz T., Hoffmann H., Jandt,

S.; Roßnagel, A. & Leimeister J., Towards the

Use of Software Requirement Patterns for

Legal Requirements, 2nd International

Requirements Engineering Efficiency

Workshop (REEW '12), 2012.

[29] Hoffmann A., A Pattern-based approach for

analysing requirements in socio-technical

systems engineering, 20th IEEE International

Requirements Engineering Conference (RE

'12), 2012.

[30] Home: First International Workshop on

Requirements Patterns (RePa '11) 2011 online

http://www.utdallas.edu/~supakkul/rp11/index

.html.

[31] Home: Second International Workshop on

Requirements Patterns (RePa' 12) 2012 online

- http://www.utdallas.edu/~supakkul/repa12/.

[32] Honeywell International Inc, 2013 online at -

http://honeywell.com/Pages/Home.aspx.

[33] Ian Sommerville, David Martin & Mark

Rouncefield, Informing the Requirements

Process with Patterns of Cooperative

Interaction, International Arab Journal of

Information Technology, 2003.

[34] IEEE Recommended Practice for Software

Requirements Specifications, IEEE Computer

Society, 1998.

[35] Michael Jackson, Problem Frames: Analysing

& Structuring Software Development

Problems, Addison-Wesley, 2000.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 226 Volume 11, 2014

[36] Allan Kelly, Business Patterns Software

Developers, Wiley, 2012.

[37] Manuel Kolp, Organizational Patterns for

Early Requirements Analysis, 15
th

International Conference on Advanced

Information Systems Engineering (CaiSE’03),

Springer, 2003.

[38] Axel van Lamsweerde, Requirements

Engineering in the year 00: A Research

Perspective, Proceedings of the 2000

International Conference on Software

Engineering (ICSE ‘00), 2000.

[39] Lars Hagge & Kathrin Lappe, Sharing

requirements engineering experience using

patterns, IEEE Software, 2005. – 1 : Vol. 22.

[40] Lawrence Chung, Barbara Paech, Liping

Zhao, Lin Liu & Sam Supakkul, RePa

Requirements Pattern Template, International

Workshop on Requirements Patterns (RePa

‘12), 2012.

[41] Markus Strohmaier, Jennifer Horkoff, Eric

Yu, Jorge Aranda and Steve Easterbrook, Can

Patterns improve i* Modeling? Two

Exploratory Studies in Requirements

Engineering: Foundation for Software Quality

– Lecture Notes in Computer Science by

Barbara E Paech & Colette E Rolland,

Springer Berlin Heidelberg, 2008. – Vol.

5025.

[42] James Naish & Zhao Liping, Towards a

generalised framework for classifying and

retrieving requirements patterns, First

International Workshop on Requirements

Patterns (RePa ‘11), 2011.

[43] Natalia Juristo, Ana Moreno & Maria-Isabel

Sanchez-Segura, Moving Usability Forward

to the Beginning of the Software Development

Process in Human Computer Interaction by

Pavlidis Ioannis, InTech, 2008.

[44] Nuseibeh Bashar & Easterbrook Steve,

Requirements Engineering: a Roadmap,

Proceedings of the Conference on The Future

of Software Engineering (ICSE ‘00), 2000.

[45] Oktay Turetken, Amal Elgammal, Willem-Jan

van den Heuvel & Michael P. Papazoglou

Capturing Compliance Requirements: A

Pattern-Based Approach, IEEE Software,

2012. – 3 : Vol. 29.

[46] P. Pavan, N.A.M. Maiden & X. Zhu, Towards

a Systems Engineering Pattern Language:

Applying i* to Model Requirements –

Architecture Patterns, Proceedings of the 2
nd

International Workshop Software

Requirements to Architectures (STRAW’ 03),

IEEE Press, 2003.

[47] Paetsch F, Eberlein A & Maurer F,

Requirements Engineering and Agile Software

Development, Twelfth IEEE International

Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises,

2003.

[48] PloP Conferences – The Hillside Group,

2013 online at http://hillside.net/conferences.

[49] R. S. Wahono & J. Cheng, Extensible

Requirements Patterns of Web Application for

Efficient Web Application Development,

Proceedings of the First International

Symposium on Cyber Worlds, 2002.

[50] Daniel A Rawsthorne, A Pattern Language for

Requirements Analysis, Procs. Of Workshop

in the Conference of Pattern Language of

Programs, 1996.

[51] The Presentation Pattern Dr. Dobb’s – The

World of Software Development 2006 online

at – http://www.drdobbs.com/architecture-

and-design/requirements-by-

pattern/196600223?pgno=3.

[52] Rising Linda, Customer Interaction Patterns

in Pattern Languages of Program Design 4 by

Neil Harrison, Brian Foote & Hans

Rohnert, Addison Wesley, 2000.

[53] Robert Darimont & Axel v. van Lamsweerde,

Formal refinement patterns for goal-driven

requirements elaboration, Proceedings of the

4
th
 ACM SIGSOFT symposium on

Foundations of software engineering

(SIGSOFT ‘96), ACM Press, 1996. – Vol. 21.

[54] Robertson Suzanne, Requirements Patterns

Via Events/Use Cases, The Atlantic Systems

Guild Ltd, 1996.

[55] Kristin Roher & Debra Richardson,

Sustainability Requirements Patterns, Third

International Workshop on Requirements

Patterns (RePa ‘13), 2013.

[56] S. J. Bleistein, A. Aurum, K. Cox, & P. K.

Ray, Linking requirements goal modeling

techniques to strategic e-business patterns

and best practice, Australian Workshop on

Requirements Engineering (AWRE’03), 2003.

[57] Samuel Renault, Oscar Mendez-Bonilla,

Xavier Franch & Carme Quer, A pattern

based method for building requirements

documents in call for tender processes,

International Journal of Computer Science &

Applications (IJCSA ‘09), 2009. – 5 : Vol. 6.

[58] Sascha Konrad & Betty Cheng, Requirements

Patterns for Embedded Systems, Proceedings

of the IEEE Joint International Conference on

Requirements Engineering (RE’ 02), 2002.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 227 Volume 11, 2014

http://hillside.net/conferences
http://www.drdobbs.com/architecture-and-design/requirements-by-pattern/196600223?pgno=3
http://www.drdobbs.com/architecture-and-design/requirements-by-pattern/196600223?pgno=3
http://www.drdobbs.com/architecture-and-design/requirements-by-pattern/196600223?pgno=3

[59] Sascha Konrad, Laura Campbell, Betty Cheng

& Min Deng, A Requirements Patterns-Driven

Approach to Specify Systems and Check

Properties, Model Checking Software,

Springer Berlin Heidelberg, 2003. – Vol.

2648.

[60] Scott Henninger & Victor Corrêa, Software

Pattern Communities: Current Practices and

Challenges, Proceedings of the 14
th

Conference on Pattern Languages of Programs

(PLOP ‘07), 2007.

[61] Simulink, MathWorks 2013 online at –

http://www.mathworks.com/products/simulink

/index.html.

[62] Rocky Slavin, Shen Hui & Niu Jianwei,

Characterizations and boundaries of security

requirements patterns, Second International

Workshop on Requirements Patterns (RePa

‘12), 2012.

[63] Ian Sommerville & Pete Sawyer,

Requirements Engineering: A Good Practice

Guide, Wiley, 1997 .

[64] Sangeeta Srivastava, A Repository of Software

Requirement Patterns for Online Examination

System, International Journal of Computer

Science Issues (IJCSI ‘13), 2013. – 3 : Vol.

10.

[65] Sam Supakkul, Tom Hill, Lawrence Chung,;

Tun, Thein Than, Julio Cesar Sampaio do

Prado Leite, An NFR Pattern Approach to

Dealing with NFRs, 18
th
 IEEE International

Requirements Engineering Conference, 2010.

[66] Tjong S.F., Hallam N. & Hartley M.,

Improving the Quality of Natural Language

Requirements Specifications through Natural

Language Requirements Patterns, The Sixth

IEEE International Conference on Computer

and Information Technology (CIT ‘06), 2006.

[67] Sri Fatimah Tjong, Natural Language

Interfaces for Requirements Engineering –

PhD. Desertation, University of Nottingham,

2006.

[68] About Use Case Maps, User Requirements

Notation (URN) Wiki 2013 – online at

http://www.usecasemaps.org/aboutucms.shtml

[69] Bruce Whitenack, RAPPeL: A Requirements-

Analysis Process Pattern Language for

Object-Oriented Development in Pattern

Languages of Program Design by James

Coplien & Douglas C. Schmidt, ACM

Press/Addison-Wesley, 1995.

[70] Stephen Withall, Software Requirements

Patterns, Microsoft Press, 2008.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 228 Volume 11, 2014

http://www.usecasemaps.org/aboutucms.shtml

Table 1: Summary of different Requirements Patterns arranged chronologically.

Pattern

Book

Primary Purpose Domain Notation Pattern

Count

Year Requirement

Type

Aspect captured

[69]

To profile the roles of

project managers and

developers and

requirements analysts

General

Purpose

Natural

Language
NA 1995 NA

Software

engineering and

project

management best

practices

[50]

Suggest processes to

gather, model and

validate requirements

General

Purpose

Natural

Language
12 1996 NA

Requirements

Engineering best

practices

[54]
Requirements

Analysis

Business

Systems

Natural

Language +

UML

NA 1996 Functional

Structural and data

models of

requirements

[53]
Requirements

Elaboration

General

Purpose

Natural

Language +

logical

assertions

as AND

Trees

NA 1996 Both
Goal refinement

rules

[14]
Requirements

Elicitation

General

Purpose

Natural

Language
3 1999 Functional

High level system

goals

[1]
Document

Requirements

Information

Systems

Natural

Language
4 1999 Both

Functionality of a

system

[52]

Improving

communication

among project

stakeholders

General

Purpose

Natural

Language
12 2000 NA

Social and

psychological

factors that affect

stakeholder

communication

[4]
Requirements

analysis and

modelling

Mobile

systems

Natural

Language +

Use case

maps

12 2001 Both

Recurring

functional

behaviour and

architecture

[49]
Document

Requirements

Web based

systems

Natural

Language +

UML

30 2002 Both
Functionality of a

system

[16]

Improving precision

of natural language

requirements

specifications

Embedded

systems

Natural

language
38 2002 Functional NA

[7]
Requirements

Analysis

General

purpose

Natural

language +

UML

8 2003 Nonfunctional

Structure and

behaviour of

Security

Requirements

[58]
Requirements

Analysis

Embedded

Systems

Natural

Language +

UML

10 2003 Both

Structure and

behaviour of the

System

[33]

Facilitate

communication and

interaction among

various resources in a

team.

General

Purpose

Natural

Language +

Diagrams

10 2003 NA

Cross

ethnographic

studies

[46]
Requirements

modelling

Submarine

Manouvering

Systems

Natural

Language +

i* Models

4 2003 Both

Tradeoffs between

requirments and

architecture

choices

[37]
Requirements

modelling

General

Purpose

Telos + i*

Models
10 2003 Nonfunctional

Behaviour of a

system based on

architectural style

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 229 Volume 11, 2014

[5]

Identifying and

Structuring

Requirements

Information

systems

Natural

Language +

UML

11 2006 Both

Structure of

information

exchange

requirements

[66]

Formalize natural

language in

requirements

specifications

General

purpose

Natural

Language
23 2006 Both NA

[11]
Requirements

Analysis

Systems

modelled

using

Simulink

Natural

Language +

Temporal

Logic

NA 2007 Functional
Behaviour of a

system

[70]
Document

Requirements

General

purpose

Natural

Language
37 2008 Both

System

functionality

[43]
Requirements

Elicitation

General

Purpose

Natural

Language
15 2008 Nonfunctional

Usability

requirements for

HCI based

systems

[57]
Requirements

Elicitation

General

Purpose

Natural

Language
29 2009 Nonfunctional

Functionality of

COTS systems

[65]

Eliciting and

modelling

requirements

Web based

systems

Natural

language +

Goal

graphs

4 2010 Nonfunctional

Refinement rules

and trade-off

decisions for

security

requirements

[15]

To understand and

customize RE

processes for volatile

project environments

Business

Information

systems

Natural

Language
NA 2010 NA NA

[21]

Detecting and

rectifying

miscommunication

General

Purpose

Natural

Language +

Line/Bar

graphs

6 2012 Both NA

[29]
Requirements

Elicitation

Socio-

Technical

information

systems

Natural

Language
6 2012 Both

Requirements of

legal rules and

regulations that a

system is required

to adhere to.

[45]

Verifying and

managing

requirements

E-business

and banking

systems

Natural

language +

logical

assertions

27 2012 Both

Recurring

compliance rules

for business

processes

[55]
Document

requirements

General

Purpose

Natural

Language
3 2013 Both

Sustainability

requirements

[64]
Document

Requirements

Online

Examination

Systems

Natural

language
30 2013 Both

Functionality of a

system

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Pranay Mahendra, Arbi Ghazarian

E-ISSN: 2224-3402 230 Volume 11, 2014

