
An Efficient Kd-tree Building Algorithm base on VRDH for Ray
Tracing

Yue Cao
School of Computer Science and Engineering

University of Electronic Science and
Technology of China

Chengdu, CHINA

Leiting Chen
School of Computer Science and Engineering

University of Electronic Science and
Technology of China

Chengdu, CHINA
Xiao Liang

School of Computer Science
Southwest Petroleum University

Chengdu, CHINA

Abstract: The Surface Area Heuristic (SAH) is regarded as a standard heuristic for building acceleration structure
for ray tracing. However, its assumption of uniform ray distribution is a gross simplification and might lead to
unnecessary intersection tests. In this paper, we consider ray distribution and propose a novel heuristic based on
Visual Ray Distribution Heuristic (VRDH) to build a high-quality kd-tree. Because only the rays intersecting with
primitives will contribute to final image, we distinguish types of rays according to intersection results and improve
cost metric through only estimating traversal cost of visual rays. Since the knowledge of ray distribution is only
available during tracing process, temporal coherence is exploited. We construct an auxiliary 3D grid structure to
sample visibility. The knowledge in grid in frame k is employed to build kd-tree of frame k + 1. Additionally,
the boundaries of voxels in grid are regarded as main splitting candidates as well as two strategies are presented to
choose more optimal splitting planes. The experimental results indicate that our algorithm can reduce the number
of ray-primitive intersection tests by 20% ∼ 66%, meanwhile make a speedup of approximately 20% for scene
with 300K primitives for overall frame performance.

Key–Words: ray distribution, visual ray, 3D grid, ray tracing

1 Introduction
Ray Tracing is a fundamental rendering technique
which generates photo-realistic image due to support
arbitrary point-to-point visibility queries. However,
ray tracing is computationally demanding for consid-
erable ray-primitive intersection tests, thus, has been
used in off-line rendering until very recently.

Many acceleration structures have been proposed
to cull the number of ray-primitive intersection tests,
such as kd-tree [1], Bounding Volume Hierarchy (B-
VH) [2] [3] and grid [4]. Among those, kd-tree is re-
garded as a well-known spatial data structure for high
performance. Although several heuristics tend to con-
struct a high quality kd-tree, Surface Area Heuristic-
s (SAH) [5] is the most popular method during last
decades. The SAH estimates traversal cost for rays
and chooses the splitting plane with the minimum
cost. The key is to evaluate the probability that a ran-
dom ray intersects with a node of kd-tree based on
geometric probability theory [6]. Since the SAH is
based on the assumption that the rays are infinite lines
and distributed uniformly in the space, the probability

is proportional to the surface area.

If we consider all the rays R in the space, their
distribution roughly meet the assumption of SAH. But
ray tracing only considers the rays emitted for eye and
the reflected, refracted and shadow rays when they hit
some objects in the scenes. These rays are only a s-
mall subset of R and their distribution is barely uni-
form. Besides, since some rays might be blocked by
opaque objects, the ray distribution will be more ir-
regular. Particularly, for scenes with depth complex-
ity where only a small part of primitives are visible,
the SAH estimates traversal cost of the whole scene.
This estimation error might incur unnecessary ray-
primitive intersection tests, hence, surface area is a
gross simplification.

In this paper, we consider the actual ray distribu-
tion and derive a more accurate heuristic for ray trac-
ing, called Visual Ray Distribution Heuristic (VRD-
H), to build a high quality kd-tree. Because only the
rays intersecting with primitives will contribute to the
final image, called visual ray in our algorithm, the
heuristic distinguishes types of rays according to in-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 112 Volume 11, 2014



tersection results and estimates traversal cost of visual
rays. This cost metric are able to reflect the distri-
bution characteristics of rays in the scene. However,
neither ray distribution nor intersection results is only
available after building process, temporal coherency
is exploited. The knowledge in frame k is comput-
ed and recorded in an auxiliary 3D grid structure to
guide to build kd-tree in frame k+ 1. Then, to reduce
the amount of splitting candidates, only boundaries of
voxels in 3D grid are used as the main splitting probes.
Additionally, two strategies are proposed for choos-
ing optimal splitting planes to prevent the degrading
of quality of kd-tree.

It is viewed that our algorithm builds a special-
ized kd-tree dependent on rays distribution. We find
the algorithm achieves to reduce the intersection tests
by more than 20% ∼ 66% for scenes with ray oc-
clusion. Even the resolution of grid is sparse, it is
still effective. For example, a grid with resolution of
20× 5× 13 for scene Conference, is sufficient to im-
prove traversal performance only with trivial overhead
during traversal process.

The result of the paper is organized as follows.
Section 2 discusses the previous work. Section 3 de-
scribes the Visual Ray Distribution Heuristic. Experi-
mental results are given in Section 4. Finally, we make
a conclusion of the paper in Section 5.

2 Related Work
Kd-tree is a well-known acceleration structure for
high performance. For years, a great deal of algo-
rithms have concentrated on the effectiveness of kd-
tree. The key to build an optimized kd-tree is to de-
termined the splitting plane. Among many heuristics,
the Surface Area Heuristic (SAH) is considered as the
most popular model. Given a splitting candidate, the
SAH takes into account the average traversal cost and
the probability for hitting a volume for each ray, then
selects the candidate corresponding to the minimum
cost as the optimal plane. The cost function is defined
as the follows:

C =
SAL

SA
· CL +

SAR

SA
· CR (1)

where SAL
SA and SAR

SA is the probability of ray hitting
the left and right child, CL and CR is the traversal
cost for two children which is linear with number of
primitives.

The SAH based kd-tree combined with frustum
traversal [7] and ray packet tracing techniques [8] pro-
vide significant performance improvement in static
scenes. Wald et al. [9] propose a n log n algorithm

even with the same asymptotic complexity as medi-
an splitting heuristic, but still fail to allow to dynamic
scenes due to evaluating cost on each primitive.

To tradeoff between building time and tracing
performance, many SAH approximation algorithms
have been proposed. Hurley et al. [10] first introduce
a binning algorithm to restrict a great deal of splitting
candidates to discrete positions. Hunt et al. [11] em-
ploy a piecewise linear function to approximate the
SAH. Popov et al. [12] linearly approximate the SAH
cost with 1024 uniformly distributed samples mean-
while reduce memory bandwidth.

Recently, parallelizing construction has received
many attentions on different parallel platform, includ-
ing multi-thread, multi-core on CPU and GPU ver-
sions. Ben et al. [13] design a 2-thread parallelizing
method for creation and initial sorting of candidate
lists. Shevtsov et al. [14] introduce a 4-core paral-
lel kd-tree building algorithm with an improvement of
3.5 times for both building and rendering time. But
its traversal performance does not scale well with par-
allelism and the algorithm will generate nearly 30%
degrading due to employ a count median splitting in
the top tree. The first realtime kd-tree is presented
by Zhou et al. [15], which make best use of stream-
ing architecture on GPU during construction. It is s-
tated that its 128-core version achieves a speedup of
4 ∼ 7 times with well-optimized single-core CPU al-
gorithms and is competitive with multi-core CPU al-
gorithms. They use a spatial median heuristic in the
upper levels of tree and the SAH in the bottom lev-
els of trees respectively, which leads to approximate-
ly 10% degrading in tree quality as scene scales to
more that 100K primitives. Choi et al. [16] provide a
precise SAH based kd-tree construction on multi-core
CPU.

Sorting subdivision data structure is time-
consuming and could be a burden especially for com-
plex scenes. Mora et al. [17] present an efficient ray
tracing method nearly without conventional acceler-
ation structure meanwhile employ limited memory.
The algorithm achieves high performance in dynamic
scenes, but at the expense of bundling much rays per
rendering pass and less scalability on multi-core CPU
or GPU platform.

In recent years, many publications have attempt-
ed to improve accuracy of cost model for the SAH.
Havran et al. [18] first analyze the unrealistic assump-
tion, and propose a general cost model aiming to ap-
proach ray distribution. But the model is regarded to
be complicated for estimating the cost for hitting and
miss rays. Bittner et al. [19] extend the SAH by em-
ploying a represent ray set to re-estimated the prob-
abilities of rays intersecting with nodes, but achieve
a minor speedup. Fabianowski et al. [20] develop a

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 113 Volume 11, 2014



more accurate metric for rays originating inside the
scene with a average speedup of 3.5% in performance.
Vinkler et al. [21] construct a more efficient BVH by
modifying cost function. They achieve a 102% im-
provement on traversal for path tracing for high oc-
cluded scenes. Choi et al. [22] introduce voxel visibil-
ity to enable more sophisticated cost model for static
scenes. All these heuristics are mainly implemented
in static scenes.

3 Visual Ray Distribution Heuristic
In this section, we relief the assumption of the SAH
and aim to build a high quality kd-tree with the Visual
Ray Distribution Heuristic.

3.1 Cost Metric based on VRDH
For a given voxel V , the rays hitting the voxel can be
classified as two types. The first type is the rays that
penetrate V but without any intersection with prim-
itives. The other type is the rays that intersect with
primitives and stop to be traced. We define the second
type of rays that are hitting with the voxel as well as
occluded by primitives as visual rays. Because only
the intersection results of visual rays are contributed
to the final image, previous algorithms that can not
allow to distinguish these two types rays might over-
estimate the traversal cost. In this paper, we estimate
the traversal cost of visual rays. For a ray known to hit
a voxel, the probability of hitting its left or right child
is defined as follows:

pL/R =
numOfV isRay(VL/R)

numOfRay(V )
(2)

where numOfV isRay and numOfRay are the
amount of rays occluded by primitives in the voxel
and rays hitting the voxel respectively. VL and VR are
children node.

For a standard ray tracing method, the knowledge
of ray distribution and intersection results are known
during tracing. To solve the problem, temporal coher-
ence is exploited. For most animation scenes, the im-
age results between successive frames are similar. Es-
pecially for high occluded scenes, the invisible primi-
tives might be still invisible in next few frames. There-
fore, we take advantage of the knowledge of ray dis-
tribution and intersection result of frame k to build the
acceleration structure of frame k + 1.

An auxiliary structure, 3D regular grid named
V RD-Grid (Visual Ray Distribution Grid), is estab-
lished to save the knowledge of ray distribution, as
Fig. 1 (a) shows. Since the distribution of visual rays
varies among the whole space, for each regular vox-
el in V RD-Grid, we employ an value to represent

the feature of visibility, called visibility value. Po-
tentially, visibility value will be high if most of the
primitives in the voxel are visible. Usually, visibility
value for a voxel with less visible primitives might
be lower that the voxel with more visible primitives.
However, for most scenes, the geometry distribution
is not regular. As Fig. 2 describes, it is possible that
the voxel in (a) contains large size primitives while the
one in (b) contains some small size primitives. Both of
them have the same number of visible primitives, that
is t0 and t1 in (a), t0 and t4 in (b). But more visible
rays hit the left voxel. It is viewed that estimation of
visibility value only by number of visible primitives
might be coarse so that can bring some deviation. In
our algorithm, we estimate the value by the number of
visible rays. For simplification, if a ray is occluded by
a primitives, the value will be accumulated. Then, for
the voxel in (a) and (b), the values are 5 and 2 respec-
tively.

Figure 1: Using V RD-Grid to indicate the ray dis-
tribution. (a) The scene with its V RD-Grid. Only
primitives with orange color are visible. (b) visibility
value in each voxel. Deeper color in voxel indicates
that more visible rays are occluded.

Figure 2: Evaluating the feature of visibility. (a) Prim-
itive t0 and t1 are visible. (b) Primitive t0 and t4 are
visible.

With the conception of visibility value, we rep-
resent the values of voxels in Fig. 1 (b). It is noted
that only primitives with orange color are visible. The

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 114 Volume 11, 2014



deeper ones are more visible than the lighter ones. For
voxel containing many invisible primitives or empty
voxel, the visibility value is low or zero.

During ray tracing of frame k, the visibility
value of each voxel can be achieved through the re-
sults of ray-primitive intersection tests. Once a ray
is found to be occluded, according to the intersection
point, not the primitive, the visibility value of asso-
ciated voxel is increased.

In our algorithm, splitting axis is the one with
longest extent of primitives overlap. Different from
the SAH, the main splitting probes are placed along
the boundaries of vexels to reduce amount of split-
ting candidates, such as P0 and P1 in Fig. 1 (a). This
strategy as well as visibility value can allow to sep-
arate visible primitives from invisible ones, which is
explained in Section 3.3.

Based on the measure described above, the aver-
age cost function driven by visual rays is defined as
follows:

C = pL · CL + pR · CR

pL/R =

∑
voxel∈grid′ numOfV isRay(voxel)∑

voxel∈grid numOfRay(voxel)

CL/R = ci ·NL/R

(3)

where grid is a portion of V RD-Grid that current
node for splitting corresponds to, grid

′
is the voxel-

s set belonging to grid that are hit by visible rays,
voxel represents the voxel in grid or grid

′
, ci is in-

tersection cost with primitives. NL and NR are the
number of primitives in left and right child respective-
ly. numOfV isRay and numOfRay are defined the
same as previously.

3.2 Determining the Resolution of VRD-
Grid

The resolution of V RD-Grid should be carefully
considered as only the boundaries of voxel are used
as the main splitting candidates. Additionally, for dy-
namic scenes, the resolution would impact the avail-
ability of temporal coherence. Too large size of voxel
might not be capable of separating visible primitives
from invisible ones. On the other hand, too small vox-
els might incur a poor building performance due to an
increased number of splitting candidates.

In our algorithm, we use a similar method as [23]
to determine the resolution of grid. Given the inten-
tion of inhabiting the primitives more evenly into vox-
els, the resolution in x, y, z dimensions are regarded to
be proportional with the number of primitives as fol-
lows:

Resolutioni =
Bi

max {Bx, By, Bz}
× e× 3

√
N (4)

where i indicates the dimension, Bi denotes the length
of bounding box in dimension i, N is the number of
primitives in scene. In practice, the coefficient of e
is chosen experientially (some value between 0.4 and
0.6 is used in our implementation).

3.3 Choosing Optimal Splitting Probes
As described above, we use splitting planes at bound-
aries of voxels to reduce number of splitting samples.
But using the kind of splitting planes over the whole
scene might degrade the quality of tree. In this paper,
we use two additional strategies to solve the problem.
That is an early excluding process for the top hierar-
chy of tree, as well as an adaptive splitting probing
strategy for the lower hierarchy.

The main difference between the SAH and VRD-
H is that the SAH only considers the actual geome-
try distribution, while our algorithm considers geom-
etry distribution as well as ray distribution based on
V RD-Grid. As Fig. 1 shows, the left and the right
one are the view of the SAH and VRDH respectively.

For high occluded scene, V RD-Grid is featured
that only a few voxels are provided with high visibility
as shown in Fig. 1 (b). It is advantageous to separate s-
pace with low visibility from other as early as possible
during construction. Also, this property of ray distri-
bution is prone to lead a sharply discontinuities cost
function through our limited splitting probes. To pre-
vent the problem, our algorithm chooses the splitting
planes which allow to keep the probable discontinu-
ities into an isolated volume.

After selecting the splitting axis, an early exclud-
ing process is implemented. This process includes two
quick sweep over the splitting probes. First, we build
an array of bins to keep the visibility value for each
splitting probes. For each bin, we accumulate the val-
ue of corresponding voxels. Then, we sweep the bins
again and pick the plane Pi satisfying the define as
follows:

max

∣∣∣∣∣∣
∑
k≤i

bin(k)−
∑
j>i

bin(j)

∣∣∣∣∣∣ (5)

where i, j and k are index of splitting probes. Through
the strategy, P0 and P1 in Fig. 1 (b) are regarded as
optimal planes. This strategy is implemented at the
top of hierarchy where the visibility varies severely
among space.

Towards the middle or bottom levels of hierarchy,
where visual ray distribution is relatively smooth, we

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 115 Volume 11, 2014



start a two-step splitting sample strategy. Given a n-
ode, first, we compute traversal cost at boundaries of
voxels of the node. For each splitting probe Pi, the
cost is denoted as C(i). Usually, the loss of fidelity
appears the segments where C(i+ 1)−C(i) is mini-
mum. Then, towards these segments, we dispose more
splitting probes to approximate cost function.

3.4 Building a Specialized Kd-tree
Finally, we have developed a greedy, top-down kd-
tree construction based on VRDH. Rather than the
SAH, it is a specialized kd-tree dependent on ray dis-
tribution. The cost metric and strategies describes
above are primarily used on top and middle levels. To-
wards the bottom of the hierarchy, we still resort to the
SAH for the reason that most primitives are visible in
the volume.

Additionally, for scenes with depth complexity,
only a small portion of which from a single viewpoint
are visible, on-demand building strategy can be also
combined to our algorithm. This strategy aims to only
build visible portions of acceleration structure in each
frame. It interleaves the building and traversal process
so that only the volumes of hierarchy that are penetrat-
ed by rays are built.

4 Experiments and Results
We have implemented the VRDH on computer e-
quipped with 4 cores Intel Xeon E3-1230 CPU and 8
GB memory. To evaluate the quality of kd-tree by our
approach, two other well-known kd-tree methods are
also implemented. One is the high-quality SAH kd-
tree building algorithm [9], which takes splitting sam-
ple for each primitives, and is used for static scenes
mainly. The other one is min-max binning algorithm
[14] for dynamic scenes. We use the same building
parameters for the three algorithms. The intersection
cost for ray-primitives algorithm is 80, the traversal
cost is 1, the maximum tree depth is 8 + 1.3 log n,
and the primitives in leaf node is less than 16. All the
traversal are parallelized by OpenMP if no on-demand
building strategy is implemented.

To analyze the quality of the kd-tree, we use sim-
ilar way introduced by [21] to design our test. Scenes
with different geometry complexity as well as camera
viewpoints are chosen, as shown in Fig. 3. For each
architectural model, we test three camera viewpoints.
They are one camera viewpoint outside the scene, t-
wo camera viewpoints inside the scenes with different
geometry complex. We also test scenes with regular
geometry complexity, as shown in Fig. 4. The size of
scenes are listed in Tab. 1

(a) Bunny (b) Fairy

Figure 4: Test scenes with regular geometry distribu-
tion.

Scene Number of Primitives
Bunny 69, 451
Fairy 174, 117

Sibenik 80, 054
Cloister 81, 354
Sponza 67, 461
Conf. 282, 755

Table 1: Number of primitives of test scenes.

Performance comparison for three algorithms are
described in Tab. 2, including the number of ray-
primitive intersection tests, that is the computation
bottleneck for ray tracing, traversal performance in
fps as well as overall image time. Although our al-
gorithm builds an unbalanced tree which are prone
to produce more deeper tree depth than the SAH, the
overhead of traversal for more deeper tree is compen-
sated by the significant reduction of ray-primitive in-
tersection tests by nearly 20% ∼ 66%. Particular-
ly for Conference, our algorithm achieves to reduce
the intersection tests by more than 50% in all camera
viewpoints. Besides, the experimental results indicate
that our algorithm boosts the performance of traversal
by 30% ∼ 55%. This improvement is mainly owing
to the fact that the visible primitives are prior to be tra-
versed than invisible ones. It is observed that our al-
gorithm is less effective for moderate scenes with uni-
form distributed primitives, such as Bunny and Fairy.
This is because the overhead of intersection tests only
occupies a minor portion of the overall image time.

We also compare overall image time that includes
building time and traversal time. The improvement is
about 15% ∼ 23% for most scenes which is not as
excellent as the result of traversal performance. This
is because our current building algorithm is single-
threaded while the traversal is optimized by OpenMP.
If building process is paralleled, the improvement of
overall image time is much better.

Many recent publications also consider ray dis-
tribution to achieve a high performance acceleration
structure. We compare the reduction of ray-primitive

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 116 Volume 11, 2014



(a) Sibenik01 (b) Sibenik02 (c) Sibenik03 (d) Cloister01

(e) Cloister02 (f) Cloister03 (g) Sponza01 (h) Sponza02

(i) Sponza03 (j) Conf.01 (k) Conf.02 (l) Conf.03

Figure 3: Test scenes with different geometry complexity as well as different viewpoints for primary rays.

intersection tests of our algorithm with some recent
methods. They are OSAH [21] and Fast Approxima-
tion method [20], both of which take each primitive as
splitting candidate. The relative reduction ratio of ray-
primitives intersection tests for some complex scenes
are illustrated in Tab. 3. The fourth and fifth colum-
n show the data of VRDH with only primary rays and
extra shadow rays. The scenes rendered by the VRDH
with primary and shadow rays are shown in Fig. 5. It
can be seen that our algorithm tends to generate higher
quality kd-tree than these methods for highly complex
scenes.

Scene
Reduction of intersection tests

OSAH Fast Ap-
prox.

VRDH-
1

VRDH-
2

Sibenik -17% -4% -14% -3%
Cloister n.a. +1.4% -28% -13.15%
Sponza -20% -13.7% -31% -5.3%
Conf. n.a. -6.5% -68% -53%

Table 3: Comparison with recent publications in num-
ber of ray-primitive intersection tests.

We also compare the memory consumption and
building time with OSAH and Fast Approximiation
in Tab. 4. Although no exact memory consumption

(a) Sibenik (b) Cloister

(c) Sponza (d) Conf.

Figure 5: The test scenes with primary rays and shad-
ow rays.

data are presented for Fast Approximation algorithm,
they declare the memory consumption are more than
the SAH. Therefore, the memory consumption of our
algorithm is less than other algorithms. As to building
time, our method outperforms both of them an order
of magnitude.

If we combine on-demand building strategy into

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 117 Volume 11, 2014



Scene
Int. Num. (M) Render. Perf.(fps) Image Time (ms)

Fast SAH VRDH Fast SAH VRDH Fast SAH VRDH
Bunny 7 5.2 -24.6% 4.9 6.2 275 220
Fairy 15.4 12.2 -21% 3.7 3.3 492 480

Sibenik01 5.8 4.5 -22% 7.2 10 277 246
Sibenik02 15.1 10.2 -32% 3.6 5.1 349 297
Sibenik03 16.7 12 -28% 3.7 5.1 360 307
Cloister01 7 4.7 -33% 6.2 8.1 248 202
Cloister02 19 14.3 -24% 3.6 4.8 368 306
Cloister03 18.8 12.9 -32.8% 3.7 5.3 339 285
Sponza01 1.5 1.1 -27% 7.4 10 206 180
Sponza02 18.6 10.5 -44% 3.6 5.1 349 270
Sponza03 24.4 12 -49.8% 3.7 5.2 339 278
Conf.01 13.2 4.5 -66% 4.6 6.8 573 407
Conf.02 42 18 -57% 2.4 3.8 766 597
Conf.03 41 17.3 -58% 2.5 3.9 750 557

Table 2: Comparison of important features of kd-tree, using same building parameters and termination condition
with a resolution of 640× 480.

Scene
Memory Consumption

OSAH Fast Approx. VRDH
Sibenik +18% n.a. -2.7%
Cloister n.a. n.a. -30%
Sponza +22% n.a. -28%
Conf. n.a. n.a -11.2%

Scene
Building Time

OSAH Fast Approx. VRDH
Sponza +424% +5.8% -85.44%
Cloister n.a. n.a. -86.57%
Sibenik +330% +2.3% -84%
Conf. n.a. +7.6% -87%

Table 4: Comparison with recent publications in
memory consumption and building time.

building algorithm, more building time and memory
consumption are saved. As Tab. 5 shows, the VRDH
consumes comparable memory as Fast SAH and less
memory than the SAH. As to on-demand building, for
the four test scenes, we save 64.5%, 27.49%, 44.2%
and 25% in memory consumption than normal build-
ing method respectively.

Most recent publications aiming to a high-
quality kd-tree with consideration of ray distribu-
tion [19][20][21][22] are limited to static scenes.
However, our algorithm can be implemented to dy-
namic scenes. To test the availability of the regular
V RD-Grid, we test our algorithm under the situation
of dynamic viewpoints for different scenes. The ren-

dering time and overall image time of 40 continuous
frames are listed in Fig. 6 (a) ∼ (d). Fast SAH used
in dynamic scene is employed as test baseline. As the
result shows, our algorithm outperforms Fast SAH in
both rendering time and image time for all test scenes.

We test two dynamic scenes with our algorithm.
As Fig. 7 (a) and (b) show, one is a scene with nearly
deformation animation, where a great deal of marbles
move in Cloister. The other is a scene with rigid body
movement, where a wooden doll is running around a
table in Conference. Because our heuristic would re-
build from scratch according to ray distribution, both
the dynamic scenes are provided with moving view-
points to improve the dynamic characteristic further.
As Fig. 6 (e) and (f) describe, for marble animation,
we make an improvement in rendering time of 23% in
average as well as speed up the overall performance
by 17%. For wooden doll animation, we make an im-
provement in rendering time of 25% as well as im-
prove the overall performance by 16%.

(a) Marble animation (b) Wooden doll animation

Figure 7: Animation scenes.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 118 Volume 11, 2014



100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

150

250

350

450

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

(a) Sibenik (b) Cloister

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

(c) Sponza (d) Conference

200

300

400

500

600

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

Frame

T
im
e(
m
s)

(e) Marbles move in Cloister (f) Wooden doll runs around Conference

Figure 6: Rendering time and image time for all animation scenes. It is noted all the scenes are provided with
moving viewpoints and are rendered with a resolution of 640× 480. The green and orange line sketch the date of
rendering time of Fast SAH and VRDH. The blue and red line indicate the date of image time of Fast SAH and
VRDH respectively. (e) and (f) are dynamic scenes with rigid-body movement and nearly deformation respectively.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 119 Volume 11, 2014



Scene
Number of nodes of kd-tree

the SAH Fast SAH VRDH VRDH with on-
demand building

Sibenik01 88, 825 83, 648 82, 296 29, 197
Cloister02 155, 571 89, 259 91, 468 66, 325
Sponza03 109, 631 79, 579 81, 409 45, 406
Conf.02 1, 184, 561 321, 823 217, 725 162, 336

Table 5: Comparison with normal building and on-demand building algorithm in memory consumption.

5 Conclusion
The SAH is regarded as a popular heuristic for kd-tree,
but might lead error estimation of traversal cost due
to its assumption to reduce the quality of acceleration
structure.

In this paper, we introduce a novel heuristic for
ray tracing to build a high quality kd-tree. We ex-
ploit the obversion that the system has the knowledge
of ray distribution to build a new cost metric. Then,
an auxiliary grid is employed to record the knowledge
of visible ray distribution in frame k and to guide to
build kd-tree in frame k + 1. Two strategies are pro-
posed to choose optimal splitting plane. The experi-
mental results demonstrate that the SAH based meth-
ods do not always provide high quality kd-tree espe-
cially for large and complex scenes. On the other
hand, our algorithm can achieve an average of 30%
traversal improvement and 20% overall improvemen-
t for complex scenes over SAH-based methods. Even
compared with some time-consuming high quality kd-
tree building algorithms, our algorithm still has the
performance advantages.

In the future, we aim to test our algorithm with
more dynamic scenes with large-scale deformation,
and explore temporal coherence in ray tracing to im-
prove overall performance further.

Acknowledgements: The authors wish to thank the
anonymous reviewers. The research is supported by
the National High-Tech Research and Developmen-
t Program of China (863 Program) with grant No.
2012AA011503, and Youth Foundation of Southwest
Petroleum University with grant No. 285.

References:

[1] J. L. Bentley, Multidimensional binary search
trees used for associative searching, Communi-
cations of the ACM, Vol.18, No.9, 1975, pp. 509-
517.

[2] S. Rubin, T. Whitted, A 3-dimensional represen-
tation for fast rendering of complex scenes, In
Proceedings of SIGGRAPH, 1980, pp. 110-116.

[3] KAJIYA, J, A, The rendering equation, In Pro-
ceedings of SIGGRAPH, 1986, pp. 143-150.

[4] Akira Fujimoto, Takayuki Tanaka, and Kan-
sei Iwata, Arts: Accelerated ray-tracing system,
IEEE Comput. Graph. Appl., Vol.6, No.4, 1986,
pp. 16-26.

[5] Goldsmith, Jeffrey and Salmon, John, Automat-
ic Creation of Object Hierarchies for Ray Trac-
ing, IEEE Comput. Graph. Appl., Vol.7, No.5,
1987, pp. 14-20.

[6] H. Solomon, Geometric Probability, J.W. Arrow-
smith Ltd, 1978.

[7] Alexander Reshetov, Alexei Soupikov, Jim Hur-
ley, Multi-level ray tracing algorithm, ACM
Trans. on Graphics, 2005, pp. 1176-1185.

[8] Ingo Wald, Vlastimil Havran, Interactive Ren-
dering with Coherent Ray Tracing, Computer
Graphics Forum, 2001, pp. 153-164.

[9] Ingo Wald, Philipp Slusallek and Carsten Ben-
thin and Markus Wagner, On building fast kd-
trees for ray tracing, and on doing that in
O(N logN), Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, 2006, p-
p. 61-69.

[10] Jim Hurley, Er Kapustin, Er Reshetov, Alexei
Soupikov, Fast Ray Tracing for Modern Gener-
al Purpose CPU, In Proceedings of Graphicon,
Vol.7, No.5, 2002, pp. 2002.

[11] W. Hunt, W.R. Mark, G. Stoll, Fast kd-tree
Construction with an Adaptive Error-Bounded
Heuristic, Symposium on Interactive Ray Trac-
ing, Los Alamitos, CA, USA, 2006, pp. 81-88.

[12] Stefan Popov, Johannes Gnther, Hans-Peter Sei-
del, Philipp Slusallek, Experiences with Stream-
ing Construction of SAH KD-Trees, PRO-
CEEDINGS OF THE 17TH EUROGRAPHICS
SYMPOSIUM ON RENDERING, 2006, pp. 139-
149.

[13] Benthin, C., Realtime Ray Tracing on Current
CPU Architectures, PhD thesis, SaarIand Uni-
versity, 2006.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 120 Volume 11, 2014



[14] Maxim Shevtsov, Alexei Soupikov, Alexander
Kapustin, Highly Parallel Fast KD-tree Con-
struction for Interactive Ray Tracing of Dynamic
Scenes, Computer Graphics Forum, Vol. 26, No.
3, 2007, pp. 395-404.

[15] Kun Zhou, Qiming Hou, Rui Wang, Baining
Guo, Real-time KD-tree construction on graph-
ics hardware, ACM SIGGRAPH Asia, 2008, p-
p. 126:1–126:11.

[16] Byn Choi, Rakesh Komuravelli, Victor Lu, Hy-
ojin Sung, Robert L. Bocchino, Sarita V. Adve,
John C. Hart, Parallel SAH k-D tree construc-
tion, High performance Graphics, 2010, pp. 77-
86.

[17] Mora, Benjamin, Naive ray-tracing: A divide-
and-conquer approach, ACM Trans. Graph.,
Vol.30, No.5, 2011, pp. 77-86.

[18] Vlastimil Havran, Heuristic Ray Shooting Algo-
rithms, Ph.D. Thesis, 2000.

[19] Bittner, Jiřı́ and Havran, Vlastimil, RDH: ray
distribution heuristics for construction of spatial
data structures, Proceedings of the 25th Spring
Conference on Computer Graphics, 2009, p-
p. 51-58.

[20] Bartosz Fabianowski, Colin Fowler, John D-
ingliana, A Cost Metric for Scene-Interior Ray
Origins, Eurographics Short Papers, 2009, p-
p. 49-52.

[21] Marek Vinkler, Vlastimil Havran, Jiri Sochor,
Visibility driven BVH build up algorithm for ray
tracing, Comput. Graph., Vol.36, No.4, 2012, p-
p. 283-296.

[22] Byeongjun Choi, Byungjoon Chang, Insung Ih-
m, Construction of efficient kd-trees for static
scenes using voxel-visibility heuristic, Comput.
Graph., Vol.36, No.1, 2012, pp. 38-48.

[23] Matt Pharr, Greg Humphreys, Physically Based
Rendering, Second Edition: From Theory To
Implementation, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2010.

[24] Ingo Wald, William R. Mark, State of the Art
in Ray Tracing Animated Scenes, Computer
Graphics Forum, Vol.28, No.6, 2009, pp. 1691-
1722.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Yue Cao, Leiting Chen, Xiao Liang

E-ISSN: 2224-3402 121 Volume 11, 2014




